
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-1, October, 2019

6312

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Novel Space Efficient Indices for Kannada Text: V-
KTPY Trie Family

Yashaswini Hegde. Padma S.K

Abstract: V-KTPY Trie family is a group of space efficient
indices designed to store and search Kannada text. The existing
text searching and document fetching methods use different
kinds of indices such as indices based on hashing,
lexicographical indices and clustering technique based indexing.
Each of these indexing methods have their own advantages
including the optimal time complexity. However these indices are
not space efficient. In this paper we are proposing a family of
novel space efficient indices called V-KTPY Tries, which
have the features of both lexicographical and hash based
indexing. V-KTPY Tries are congruence of V-KTPY Rule
(“Vistruta Katapayadi sutra”) and Prefix trees (Trie) , where the

text labels of the Trie are encrypted by V-KTPY Rule. This
powerful rule is an extension of an ancient “Katapayadi Sutra”

(KTPY Rule) which can convert characters of
Brahmi/Devanagari scripts to numbers. In this paper V-KTPY
Tries are indexing V-KTPY encrypted Kannada text due to which
compression is possible. The experiments are conducted on the
family of V-KTPY Tries and their corresponding Tries with
unicode Kannada. And the results show that the simple V-KTPY
Trie gives 35% space efficiency; V-KTPY 10Ary Trie gives 65%
space efficiency over simple unicode Trie with almost the same
time complexity. The Prefix Hashed Trie is a fully compressed V-
KTPY Trie which gives 20% space efficiency when compared to
fully compressed unicode Trie.

 V-KTPY Tries can be used where Tries are applicable. The V-
KTPY prefix hashed Tries are used in Kannada feature selection.
V-KTPY Tries can be extended to index many (120+) Indian
languages which follow Brahmi or Devanagari script.

Keywords— Indices; VKTPY Tries; Prefix Hashed Trie;
Kannada; ಕನ್ನಡ

I. INTRODUCTION

Kannada being a spoken language of around 40 to 60
million people from Karnataka, a southern state of India,
generates billions of web pages/documents in Kannada. The
current retrieval engines works with unicode versions of
algorithms and structures for non-English Languages
including Kannada. These existing unicode based techniques
are good and capable of handling all the languages of the
world. However it is not explored from the perspective of
common and similar scripts used in Indian Languages such
as Brahmi or Devanagari Scripts. [1]. More than 120 Indian
Languages [2] share either Brahmi or Devanagari scripts. In
these both scripts the ordering of the alphabets are similar,
enabling a possibility of a common numerical representation
to all these Languages.

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
Yashaswini Hegde*, Graduate in Electronics and Communications

Engineering from UBDT College of Engg, Davangere.
Dr. S.K Padma, Professor, Department of Information Science &

Engineering, SJCE College Mysuru.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

It is interesting to note that this common numerical
representation can have several advantages varied from
space efficient data structures to common Computational
Phonetic Model(CPM) for Indian Languages. This
possibility motivated us to figure out a novel encryption
(encoding and decoding) method which would give common
numerical representation to as many Indian Languages as
possible. We extended Panini’s “Katapayadi Sankhya

Sutra” (ಕಟಪಯಾದಿ ಸಂಖ್ಾಾ ಸೂತ್ರ) [3] (KTPY Rule [4])

which was used to convert only consonant characters of
Devanagari script to numbers and called it as “Vistruta

Katapayadi Sutra” (ವಿಸೃತ್ ಕಟಪಯಾದಿ ಸಂಖ್ಾಾ ಸೂತ್ರ), (V-

KTPY Rule) [5]. This rule is capable of covering many
(around 120 [2]) Indian and south east Asian languages and
capable of encrypting every alphabet classification such as
vowels, consonants, conjugate consonants in an unique way
[5].
Table- I: Vistruta Katapayaadi Sankhya Sutra (V-KTPY

Rule) ವಿಸ್ತೃತ ಕಟಪಯಾದಿ ಸ್ತಂಖ್ಾಾ ಸ್ತೂತರ [5]

Grp
Name

1 2 3 4 5 6 7 8 9 0

Ka-grp

1

k

ಕ

kh

ಖ

g

ಗ

gh

ಘ

ng

ಙ

c

ಚ

ch

ಛ

j

ಜ

jh

ಝ

ny

ಞ್

Ta-grp

2

T

ಟ

Th

ಠ

D

 ಡ

Dh

ಢ

N

ಣ

t

 ತ್

th

ಥ

d

ದ

dh

ಧ

n

 ನ್

Pa-grp

3

p

 ಪ

Ph

 ಫ

b

 ಬ

bh

 ಭ

m

ಮ

Ya-grp

4

y

ಯ

r

ರ

l

ಲ

v

 ವ

sh

ಶ

Sh

ಷ

s

ಸ

h

ಹ

L

ಳ

Swara0

5

a

ಅ

Aa

ಆ

i

ಇ

ii

ಈ

u

ಉ

uu

ಊ

R

ಋ

Ru

ೠ

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.A1985.109119&domain=www.ijeat.org

Novel Space Efficient Indices for Kannada Text: V-KTPY Trie Family

6313

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119
Journal Website: www.ijeat.org

Swara1

6

e

ಎ

ee

ಏ

ai

ಐ

o

ಒ

O

ಓ

ou

ಔ

am

ಅಂ

ah

ಅಃ

Gunita1

7

ಾಾ ಾ ಾ ಾ ಾೂ ಾ ಾ

Gunita2

8

ಾ ಾ ಾ ಾ ೂ ಾ ೂ ಾ ಾಂ ಾಃ

Some more features of the V-KTPY rule listed in [5] are , it
• extends KTPY Rule to numerically represent all

characters (Akshara) of Brahmi and Devanagari scripts
including Kannada and other Indian languages.

• considers all alphabet classifications mentioned by a great
grammarian of ancient India called Panini. These natural
classifications based on origin of sounds (phonemes) such
as ‘swara’ (vowels), ‘kaaguNita’ (Conjunctive

consonants), ‘ottakshara’ (compound consonants) ,

‘vargeeya vyanjana’ (classified consonants), ‘avargeeya

vyanjana’ (miscellaneous consonants), ‘yogavaahaka’ are

given bin (1-8) and index (1-9 and 0) numbers. Only ‘pa-
grp’ is indexed from 1 to 5.

• Table I shows how unique numerical representations are
given to all characters. [5]

• Easy to decode back to unicode.
By this V-KTPY rule as given in Table I , each Kannada
character can be represented by a two digit number. The first
digit indicates the group to which the character belongs to,
(nothing but a ‘bin number’)
and second digit gives the position of the character in that
group (bin) as its index. For example the word ‘Kannada’(

ಕನ್ನಡ) becomes 1120882023 , ದಮಿತ್ (damita) becomes

28357226 and ಕ್ಷಣಿಕ (kShaNika) becomes 118746257211.

Table-II. Unicode V/s V-KTPY Numerical
Representation

 V-KTPY Unicode

1. Capable giving numerical
representations up to 100
alphabets/characters

Capable giving numerical
representations up to 127
alphabets/characters for a
language

2. Each alphabet is given a 2 digit
number.
Ex: ‘ಕ ‘ (ka) = 11

Each alphabet is given a 4
digit number.
Ex: ‘ಕ ‘ (ka) = 0C95

3. Words with Compound
consonants like Kannada
(ಕನ್ನಡ) = 1120882023

For the same word Kannada
(ಕನ್ನಡ) =

0C950CA80CCD0CA8 0CA1

4. Alphabets used in day to day
life to speak and write – are
considered.

Considers all regular alphabets
and those used in ancient
scripts and emojis .

5. • Simple and compact in
terms memory usage .

• Same numerical
representation to Indian

• A multi byte character
representation where its
size varies from 1 to 6
bytes. [5]

Languages following
Brahmi/Devanagari script.

• Takes more space as it is
capable of representing
all global languages.

It is notable that these representations are more compact
compared to unicode as shown in Table II . The Table II
compares advantages of the V-KTPY encryption over
Unicode style encryption. However we don’t see our V-
KTPY rule as an alternate to unicode since this rule can not
encode ancient scripts and emojis and also limited to only
Indian Languages. But V-KTPY encryption can be easily
decoded back to unicode hence can be used as potential
encryption technique .

V-KTPY encrypted text as they are numeric in nature can be
used in many data structures and algorithms of Document
Retrieval engine. To name a few advantages of such usage
are

1. Compact memory usage (lossless compression)
2. Gain in accuracy and precision
3. Defining new features of the language model

To demonstrate the first one of these claims, we have
implemented the V-KTPY Rule, computed the memory
occupied by the V-KTPY representation of Kannada and
compared this with the memory occupied by the unicode
representation of Kannada. We have also implemented the
simple and compressed V-KTPY Tries, and compared its
performances with the unicode Kannada Tries to show that
V-KTPY text improves memory usage when stored in data
structures like Trie.

Fig. 1.Simple Kannada unicode Trie [5]

A. Tries

Tries are tree based lexicographical indexing structures.
They are widely used to search variable length strings that
are stored as text labels in the Trie data structure. Its
optimal time complexity is O(dm), where d is the size of a
string and m is the size of a alphabet. Hence they are
popular as fast data structure. However Tries are space
intensive with space complexity O(n) where n is the total
size of strings. They are also known as Prefix trees or Radix
trees. The text labels stored in the nodes are keys and
common prefixes of those text labels are shared by all the
descendants of the nodes. The frequencies of the prefixes
are stored along with the leaf
node details of the Trie.

http://www.ijeat.org/

Novel Space Efficient Indices for Kannada Text: V-KTPY Trie Family

6314

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119

The Fig. 1. shows the visuals of the standard simple Trie for
unicode Kannada words. In simple unicode Kannada Trie
each node is labeled with a Kannada character except the
root. A Path from the root to the leaves gives a word.
Radix and Patricia trees are the compact Tries. They are
space optimized variants of Trie. The compact Prefix Tries
or fully compressed Trie or the Radix Trie are obtained by
collapsing the single leaf nodes. In other words the only
child will be merged with its parent. In the Radix tree the
number of children of every internal node is at most the
radix r, where r > 0 and a power x of 2, where x ≥ 1 and

unlike a simple Trie the edges are labeled instead of nodes.
Unlike other trees where a full key is compared in Radix
Trie, the key at each node is compared bits by bits. The
multiplies of bits at the node is the radix r of a tree. The
Patricia Tree is a special case of the Radix Tree where r=2.
In the Patricia tree each bit of a key is compared leading to a
two-way split. When r ≥ 2

^4 it is called an r-ary Trie. As the
radix value increases, less is the depth but at the expense of
sparsity.
Tries are used for
• Its optimal insert, delete and search time hence for pre

processing the patterns to speed up pattern matching.
• Its capability to retrieve all possible complete values

which matches a prefix.
• Prefix search with a count. ie To get the the count of

words having the common prefix.
• Capability to identify the root word.
• Indexing the sorted text with best time complexity for

inserting and searching the patterns.
These applications of Trie inspired us to explore different
Tries labeled with V-KTPY encrypted Kannada text.
 We explain related works in section II; V-KTPY family of
Tries in section III; details of the text corpus used,
experiments and results in section IV; conclusion and future
work in section V.

II. RELATED WORKS

The Katapayadi sankhya sutra (KTPY Rule) though used in
ancient time (1 st CE), it is being considered by the
computer scientists recently for its powerful encoding
capabilities. This rule is compared with modern hashing
technique by Anand Raman from Massey University, New
zealand [6], where till today the credit for inventing hashing
method was given to H.P. Luhn of IBM (1953). While
working in Bhandarkar Oriental Research Institute Subhash
kak figures out the possibility of using KTPY rules as binary
numbers [4]. Further in his book ”Computation in Ancient

India” T.R.N Rao and Subhash Kak, significance of KTPY

rule in science of computing , Indian logic and grammar [7].
Trie [8] that has been successfully used in information
retrieval . The end node called leaf node which is end of the
chain of alphabet labels of a Trie, represents a string [9].
Tries are pretty fast with good insert, delete and search time
with good optimal time complexity. Hence are used in huge
text management applications. With their good performance
k-d digital Trie [10] are used in pattern matching and double
array listing [11] . MSD Radix sorting and searching [12]
techniques are used in dictionary and text processing. The
hash-trees are used in text data mining and compression[13].
Bell et al. in 1990 [13] shows that the space can be saved by
reducing the number of Trie nodes. They achieve reduction
in memory usage by omitting chains with a single leaf.They

call it a compact Trie [13]. Sedgewick, in 1998 [14]
proposed a Trie called Patricia Trie with which the
compression is further achieved by omitting not only those
nodes with single leaves but also an entire chains without
branches. The ternary search tree [12] by using a 3-way trie-
nodes can reduce the memory usage for sparse data
comparisons with greater than, less than and equal to. The
Trie literature observes Trie compression [15] , Trie
compaction and heuristics [16] . However these techniques,
trade off insertion and the search time with space. At first
these issues are addressed by Acharya et al.[17]. They
developed cache efficient algorithms that choose between
several representations of Trie nodes. In 2002, Heinz et al.
[18] reduced the number of Trie nodes at little cost. They
successfully achieved this by collapsing trie-chains with
common prefixes into the same buckets. They named it as
Burst-trie . This trie has move-to-front on access strategy
while buckets represented as linked lists. [9]. They are then
selectively burst into smaller buckets that are parented by a
new Trie.
In the context of Kannada language, Tries have been used to
figure out the root words by eliminating its prefixes.They
are used as the indexing technique. In 2013, Sumant
Kulkarni and Srinath Srinivasa worked on Trie indexing and
they called this Trie as TrieIR [19].
Though there are several attempts to improve the memory
usage in Trie, not many have achieved the average good
time complexity and good space complexity in Trie for
unicode Kannada Text. In our approach to compress the
Trie we have not only adopted previous methods like
collapsing the nodes but also a new method of collapsing the
nodes by combining the codes for compound and
conjunctive consonants. We explain our approach in the
following section.

III. V-KTPY TRIE FAMILY

The family of V-KTPY Trie consists of simple Trie , PAT
tree and fully compressed Prefix hashed Trie. These Tries
are labeled with V-KTPY encrypted Kannada text instead of
unicode Kannada text. And hence they are congruence of
Tries and V-KTPY encrypting rule. Fig. 1 is a simple Trie
constructed for unicode Kannada words and its equivalent
V-KTPY Trie is shown in Fig. 2.
We are proposing a new way of node compression method
by combining consonant conjunctives with their respective
consonants. In Kannada language usually such a
combination, for example ‘ಯಾ’ (combination of ‘ಯ ‘ and

‘ಾಾ’) is treated as a single letter. Such a compression of

combination of letters is shown in The Fig. 3. The Fig. 4.
shows its equivalent in Kannada unicode. Comparison of
these two figures leads to a conclusion that the number of
pointers can be reduced in a Trie by using our this simple
compression method which improves usage of main
memory. This is possible in unicode Kannada also but at the
cost search time to search such combinations. Hence we
argue that our approach is a better option.

Novel Space Efficient Indices for Kannada Text: V-KTPY Trie Family

6315

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119
Journal Website: www.ijeat.org

Fig. 2.Equivalent V-KTPY Trie [5]

A. Compressed Simple V-KTPY Trie

A compressed Trie is the one having fewer branches. The
elements of the subtrie are not partitioned into more groups
in a compressed Trie due to removing all branch nodes
having a single child. This feature can improve performance
metrics of both time and space.

Fig. 3.Compressed V-KTPY Trie [5]

Fig. 4.Unicode equivalent Trie of Fig 3. [5]

1) V-KTPY-Patricia Trie: VKPT
 Our proposed V-KTPY-Patricia Trie (VKPT) is very
similar to Patricia Trie. Since V-KTPY Trie encodes a
Kannada character with each two digits it can easily be
compressed like a Patricia Trie with 8-bits key fragments.
The Fig. 5 shows the insertion of strings in a VKPT.

 The Insertion in VKPT issimilar to Patricia Trie. But in the
case of VKPT unlike Patricia with Kannada unicode ,it is
enough to compare 8 bits where as in the unicode bits vary
from 8 bits to 48 bits. For example if set of strings

Fig. 5.Insertions: V-KTPY Patricia Trie

S= {ಸರ್ಾಾರದ, ಸರ್ಾಾರಗಳ, ಸರ್ಾಾರದಲ್ಲಿ, ಸರ್ಾಾರವನ್ ನ}

its equivalent V-KTPY codes are

V-KTPY = {47428711714228, 4742871171421349,
4742871171422843874372, 4742871171424420872074}.

The last 2 digit of 47428711714228,

4 2 2 8 = 0100 0010 0010 1000 is compared with

4 2 1 3 = 0100 0010 0001 0111

differs after 11th digits and hence it is branched to the left.
And in case of 4 2 2 8 = 0100 0010 0010 1000 and
42 13=01000010 00010111 V-KTPY allows fixed and less
number of comparisons.

The main advantage of using the V-KTPY with Patricia is
even in the case of variable length key, that the number of
bits comparison at the max is 8 bits as shown in the above
example. Further the height of the tree is reduced since each
character is represented by 8 bits only unlike 8 to 48 bits in
case of Kannada unicode.
2) V-KTPY-10Ary Trie
Our proposed V-KTPY-10Ary Trie is a higher order
compressed Trie just like a Social Security Trie. It is a
compressed Trie with digit numbers with variable length
keys. Each node of V-KTPY-10Ary Trie has 10 + 1 fields
and indices from 0 to 9 and one more for ’$’. Along with

these fields each node structure has two additional fields.
The branchChar field tells us which digit of the key is used
to branch at this node. And fptr field gives the pointer to the
first child in a node. Since by V-KTPY rule, a character is
represented by 2 digits, the search key is scanned for 2 digits
at a time. Hence if the branchChar field has odd number
then the following character is from the same bin.
If the value is even number then it means the following
character belongs to the same or different bin. Fig. 6. gives
the node structure of the V-KTPY-10Ary Trie.

http://www.ijeat.org/

Novel Space Efficient Indices for Kannada Text: V-KTPY Trie Family

6316

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119

Only the branchChar field is shown in this Figure.

Fig. 6. 10-way V-KTPY Trie Node

A V-KTPY-10Ary trie is searched by following a path from
the root. The digit in the branchChar field, at the each
branch node is used to determine which subtrie to move to.
For example while searching for the key 1120872023 in Fig.
6., we begin with the root. Since branchChar field value is
branchChar = 0, the first digit (key positions enumerated
from 0 towards right) of the search key is used to choose a
branch. In this case it is child[1] and the search pointer is
moved to child[1] which is node2. Now since branchChar
field value of child[2] is 2, the 2nd digit of the search key is
used to branch to the next level. Since child[2] is a leaf field
value we get the search key found after a successful
comparison. The search key 1120872067 also eventually
falls in the same path but search fails due to unsuccessful
match. Since V-KTPY-10Ary trie can has variable length
keys the prefixes, for example key 11208720, are branched
with an ending character '$' as shown in Fig. 7. as case2 with
in the box. The search algorithm is explained in Algorithm
1.
Algorithm 1: searchTrie , search in variable length
V-KTPY 10Ary Trie
Input : ROOT , K ← V-KTPY key
Initialize: Set P ← ROOT ,N ← currNode

1. while Until N is NOT a leafNode containing the
key K do
1. Get branch char from current node - bchar

← N.bchar
2. Compute Key Index -

keyIndex ← getIndex(K,bchar)
3. if keyIndex is found among N.children then

Get the child with that key index and set it
as current node

1. N ← child
4. else

Return the node with 0 indicating
unsuccessful search

1. return P,0
5. end

2. end
return parent of leafNode, N and non zero keyIndex
indicating successful search

3. return N , keyIndex
To insert an element with key 538828358835 into the Trie
of Fig. 6., we first search for an element with this key.
 The search ends at node3 of Fig. 6. Since, the search key
and the node key, 53442035873544, do not match, we
conclude that the Trie has no element whose key matches
with the search key. To insert the this new key, we find the
first digit where the search key differs from the key in the

node node3, and create a branch node for this digit, a new
branchChar.
Since, the first digit where the search key 538828358835
and the element key 53442035873544 differ in the second
digit (indexing begins with zero), we create a new
intermediate branch node n3, with branchChar = 2 as shown
in Fig. 7. Since, the value of branchChar increases as we go
down the Trie, the proper place to insert the new branch
node can be determined by retracing the path from the root
to node3 of Fig. 6. and stopping as soon as either a node
with digit value greater than 2 or the node3 is reached. In the
Trie of Fig. 6., this path retracing stops at node3. The new
branch node, n3 is made the parent of the node n4 (which is
node3 in Fig. 6.), and we get the Trie of Fig. 7. case1.
There is another case of insertion as in with the key
53442026873544 into the compressed Trie of Fig. 6.
Insertion of this key begins with the search for a leaf node
and eventually terminates with the pointer node3.child[6]
= null. So to complete the insertion, the leaf node key is
sought in the subtrie rooted at node node3. This key is found
by traversing through a path from node node3 using the first
non null link in each branch node encountered. Thus
compressed Trie of Fig. 6., leads us to first leaf of node3
when this procedure is followed.

Fig. 7. Insertion: 10-way V-KTPY Trie

After reaching a leaf node of node3, we find the first digit
where the leaf node key and the search key differ and
complete the insertion as in the previous example. The
insertion algorithm is explained in Algorithm 2.
Algorithm 2: insertTrie , variable length V-KTPY key
sinsertion in V-KTPY 10Ary Trie
1. Initialize: Set P <- ROOT ,N <- currNode , K is V-

KTPY key
2. insertTrie() invokes searchTrie() and K is searched in the

Trie, if K is not found in the Trie a new node with K is
inserted into the Trie in the appropriate place, and returns
an updated V-KTPY populated Trie. If k is found then
frequency count of the K is incremented.

3. N, keyIndex <- searchTrie(P,K); The return enumerates
three cases

• case1. N is root when Trie empty
• case2. N is node where search stops not finding the key

with keyIndex
• case3. N is parent node of leaf key node with keyIndex if

Key exists in Trie

Novel Space Efficient Indices for Kannada Text: V-KTPY Trie Family

6317

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119
Journal Website: www.ijeat.org

4. if N.fptr is None: case1 then
• Creating the first child
• Get index as first character of key K
• Set N.bchar <- None
• Create a new leaf childlea f containing N as its parent,

index as the keyIndex and K the key
• Set firstPointer N. f ptr <- index , a pointer to any leaf in

the N to index of the key
• return P
5. end
6. if searchTrie() returns with keyIndex None :case2 then
• Get child <- f irstLea f , any leaf child in the N node

pointed by N.fptr
7. else if keyIndex in N.children :case3 then
• child ← node.children[keyIndex] this step enables 2 cases
c1: child exists with keyIndex and key equal to K
c2: child exists but K is a new a key to be inserted
• if child.key is equal to K :c1
then increment K prefix count
return P
end

8. if leaf child is not Null :c2 then
• Getting the existing leaf details child.K
• Get new branch char bchar
• Recompute the index of the child leaf and K due to new

bcharcldIndex←getIndex(childKey,bchar)
• ktpykeyIndex ← getIndex(K,bchar)
• Get index returns index of the key and if the key is a

prefix of the existing key in Trie it returns $ thus capable
of handling the variable length strings

• Recomputed branch char enumerates three cases
• cc1. if node branch char none or recomputed bchar and

currentNode N.bchar are same – indicating insertion in the
existing node

• cc2. if recomputed bchar is less than currentNode N.bchar
indicating new branch created somewhere between root
and leafparent node.

• cc3. if bchar is less than root N.bchar then newbranch
node created above the existing root node and set as root
of the Trie.

• cc4. if bchar is greater than root N.bchar then newbranch
node created at the next level of the Trie.

• if N.bchar is None or bchar is equal to N.bchar:cc1
then new Node
1. NN←CreateNewLeaf(N, ktpykeyIndex,K)
2. update its branch char and set its fPtr NN.fptr to min of

cldIndex and ktpykeyIndex
• else if bchar less than node.bchar then
3. trace the node tracedNode in the Trie from Root upto the

leaf child node for right place to insert K
4. Create a new BranchNode newBranchNode there
5. if tracedNode.parent is None indicating that it is root: cc2

then
• Set tracedNode as a child of newBranchNode with

cldIndex newBranchNode as the new Root , by its parent
None

• Set newBranchNode as parent of tracedNode.parent
• update branch char and fptr of newBranchnode
• Set P <- newBranchNode
6. else :cc3 case
• Set tracedParent as parent of tracedNode
• Make newBranchNode as a child of tracedParent with

tracedIndex

• Set tracedNode as a child of newBranchNode with
cldIndex

• Set newBranchNode as parent of tracedNode
• update branch char and fptr of newBranchnode
• else :cc4 case
• newBranchNode with lea f Index is created with bchar

and K
• Set child as child of newBranchNode
• Set newBranchNode as parent of the child
• update branch char and fptr of newBranchnode
• Set N as parent of newBranchNode and make

newBranchNode as N’s child
• return P

As suggested by Knuth[29] a generic equation for M-Ary

Tries are considered with N numbers of key words for an
analysis of these algorithms.

According to Knuth , in a in M-ary Trie , the number of
nodes needed to store N random keys with branching
terminated for s keys is approximately

 N/(s ln M) (1)
This equation 1 is valid for large N small s and small M and
for a Trie with M link fields. The “(1)” can be further

simplified to
 N/(ln M) (2)
if s=M. Thus for around N = 4000 random keys and M = 11
(0 to 9 and one for '$') we require 1668 number of link
fields. In our case for 3791 words we get 1568 link fields
(excluding leaf links), true to the equation N / ln M.
Further, in V-KTPY-10Ary Trie if the key contains say
9 digits then the height of Trie is <= 10. And search takes
nine branches and a single comparison. If the same keys of 9
digits are stored in Red-back Tree then height is around 60 (
2 log2 109) and it takes up to 60 memory access and 60
comparisons. It is around 40 in case of AVL Tree and 30 in
case of binary tree.
3) VKTPY Prefix Hashed Trie : VKTPY PHT
VKTPY PHT is a special kind of Trie, a compressed one
with less number of branches. It is a lexicographical index
as well as a hash based index structure.

 It is compressed by

1. combining consonant conjunctives

2. storing indexed prefixes, by its first character

3. collapsing all single nodes

In VKTPY PHT, each node is an array structure which
stores the prefix and a child pointer. The VKTPY PHT data

structure as shown in Fig. 8 has these following features.

• VKTPY PHT root node is similar to a hash table.
• Each bin of the the has table holds a hash key and a

pointer.
• This hash key is nothing but V-KTPY encoded Kannada

word.
• And the pointer is to point a NAry Tries of the subsequent

levels.

http://www.ijeat.org/

Novel Space Efficient Indices for Kannada Text: V-KTPY Trie Family

6318

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119

 Fig. 8. VKTPY-PHT Node Structure [5]

V-KTPY words with similar prefixes, for example

“ಕನ್ನಡಬಾವುಟ"(kannaDabaavuTa) and "ಕನ್ನಡಅಕ್ಷರ"

(kannadDaakShara) both have same prefix “ಕನ್ನಡ"

(kannaDa) are hashed to same location in Nary as they have
same numeric representation “ 1120882023” . Then the

node1 in Fig.8. is split with its prefix “ಕನ್ನಡ" (kannaDa) as a

label of the root node (node1) and remaining length of the
keys "ಬಾವುಟ" (baavuTa) as a subKey1 and “ಅಕ್ಷರ"

(akShara) as subkey2 will become the labels of the children
of the node1. Further details are of the V-KTPY PHT
structure as shown in Fig. 8. and the insertion and searching
algorithms are discussed in [5].

IV. EXPERIMENTAL SCENARIOS AND RESULTS

Our experiments are conducted with python implementation
of V-KTPY encryption and VKTPY Family of Tries. The
data set used for experiment are set of short political articles
penned by noted journalist Shekhar Gupta for his
‘Prajavani’(A famous Kannada daily) column
’RaaShtrakaaraNa’[20]. These articles contains 6200 words

after removal of stops words by our own tool [22]. The
resulting text corpora can be found in [21].

Table-III. Details of the Data set

Data Set Total
words
in Doc

w

Number of
unique
words

u

Number of
repeated

words
r

Number of
stop words

s

Total
words4
w-s =
u+r

Prajavani
articles

6200 2326 1465 2409 3791

 Table III gives the details about the data set used. To create
this data set the Kannada articles are downloaded from
‘Prajavani’ column and parsed in to tokens. Later they were

encrypted by V-KTPY rule. These encrypted words are
stored and searched in each of the family member of the
V-KTPY Tries. The results, of several experiments with
different V-KTPY Trie data structures are discussed under
different sections.
A. Memory and Time taken by V-KTPY Trie and
Kannada unicode Trie
The performance of the Simple Compressed V-KTPY Trie
and V-KTPY 10Ary Trie are compared with simple Trie
with Kannada unicode. The fig. 9. shows the memory usage
of these Tries and it is clear from the figure that V-KTPY
10Ary out performs the rest two in saving the run time
memory.

Fig. 9. Insertion: Memory vs Time taken by V-KTPY

encoded and Kannada unicode Trie
Table-IV. Details of the Field links in Tries

Tries Simple unicode
Trie

Proposed Simple
compressed

V-KTPY Trie

Proposed
 compressed

variable
length

V-KTPY 10
Ary Trie

Number of
field links =
(node + leaf)

 11265 7255 3894

Table 4 gives the comparison of different field links
(pointers) created with these three Tries.
This further proves that the number of fields links created by
V-KTPY 10Ary Trie is very less compared to the other
Tries ans thus it reduces the memory usage with good
margin about 65%.

Figure 10: Search time taken by Unicode Kannada, V-
KTPY encoded Kannada and V-KTPY encoded com-

pressed 10 way Tries
Fig. 10 shows the comparison of average search time taken
by these three Tries. This bar chart estimates the average
time taken by these three Tries.
From this bar chart it is clear that the search time taken by
these Tries are comparable and in an average the time
complexity is same. This time trade off with the space is
because it requires some time to construct conjunctive
consonants from the search string.

Novel Space Efficient Indices for Kannada Text: V-KTPY Trie Family

6319

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119
Journal Website: www.ijeat.org

 A string with out any compound consonant takes less
search time in V-KTPY 10Ary Trie compared to others two
Tries.

B. Memory and time taken by Prefix hashed VKTPY PHT
and fully compressed Kannada unicode Trie

Fig. 11. Insertion: Memory vs Time taken by VKTPY
PHT and fully compressed Kannada unicode Trie [5]

The VKTPY PHT is a fully compressed prefix hashed ,
sorted Trie. The performance of VKTPY PHT and a fully
compressed Trie with unicode Kannada is plotted in Fig. 11.
This figure shows VKTPY PHT gives a good compression
and saves 20% of memory when compared with fully
compressed unicode Kannada Trie. The details of the data
set are discussed in [5].

Fig. 12. Search time taken by fully compressed Unicode
Kannada Trie and VKTPY PHT [5]

The comparison of search time taken by VKTPY PHT and
fully compressed unicode Kannada Trie is plotted in Fig. 12.
And on an average the time complexity of both tries looks
the same.

V. CONCLUSIONS

The experimental results show that our proposed family of
V-KTPY Tries are space efficient with almost same time
complexity and suitable for indexing huge text corpora.
Our V-KTPY Trie gives 35% space efficiency, V-KTPY
10Ary Trie gives 65% space efficiency over simple unicode
Trie. And the V-KTPY Prefix Hashed Trie gives 20% space
efficiency when compared to fully compressed unicode Trie.
 The goal of this research is to use these results in Indian
language modeling and the document retrieval tools. We
would like to use V-KTPY numerical representation in
Computational phonetic models, feature hashing and
V-KTPY prefix hashed Tries in feature selection and

extraction which would lead to efficient Kannada document
representation. Further we would like to examine how
V-KTPY codes work with LSTM a deep learning algorithm.
This would be our future work with bigger text corpora.

REFERENCES

1. https://en.wikipedia.org/wiki/Brahmic_scripts
2. https://scriptsource.org/scr/Deva
3. https://en.wikipedia.org/wiki/Katapayadi_system
4. Subhash Kak, 2000, ”Indian binary numbers and the Katapayadi

notation”, Annals of the Bhandarkar Oriental Research Institute,

vol.81, 2000, pp.269-272
5. Yashaswini Hegde , Padma S. K, 2019, V-KTPY Prefix Hashed Trie

for Indian Languages: A Case Study with Kannada Text Retrieval,
INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH &
TECHNOLOGY (IJERT) Volume 08, Issue 06 (June 2019),

6. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.9659&re
p=rep1&type=pdf

7. T.R.N. Rao and Subhash kak, August 8, 2016, ”Computation in

Ancient India”, Paperback – August 8, 2016, 2017
8. Fredkin, E. 1960, ”Trie memory”, Communications of the ACM 3(9),

490–499.
9. Knuth, D. E., 1998, The Art of Computer Programming: Sorting and

Searching, Vol. 3, second edn, Addison-Wesley.
10. Flajolet, P. & Puech, C. 1986, ”Partial match retrieval of multimedia
11. data”, Jour. of the ACM 33(2), 371–407.
12. Aoe et al. 1992 , ”An Efficient Implementation of Trie Structures”,

SOFIWARE—PRACTICE AND EXPERIENCE,VOL.22(9), 695–

721 (SEPTEMBER 1992)
13. Jon L. Bentley , Robert Sedgewick , 1997, ”Fast Fast algorithms for

sorting and searching strings”, Proceeding SODA’97 Proceedings of
the eighth annual ACM-SIAM symposiu on Discrete algorithms ,
Pages 360-369, Society for Industrial and Applied Mathematics
Philadelphia, PA, USA ©1997

14. Bell, T. C., Cleary, J. G. & Witten, I. H. 1990, ”Text Compression”,
Prentice-Hall. ISBN:0-13-911991-4

15. Robert Sedgewick, 1998 ,” Algorithms in C++, Parts 1–4:
Fundamentals, Data Structure, Sorting, Searching”, Third Edition,
Addison Wesley 1998, chapter 15.

16. M. Al-Suwaiyel and Ellis Horowitz, 1984, ”Algorithms for Trie

Compaction”, ACM Trans. Database Syst., v.9, pp.243-263
17. Comer, D. 1979, ”Heuristics for trie index minimization”, ACM trans.

on Database Systems 4(3), 383–395.
18. Acharya, A., Zhu, H. & Shen, K. 1999, ”Adaptive algorithms for

cache-efficient trie search”,in ’Proc ALENEX Workshop on

Algorithm Engineering and Experiments’, Springer-Verlag, pp. 296–

311.
19. Heinz, S., Zobel, J. & Williams, H. E., 2002,”Burst tries: A fast,

efficient data structure for string keys”, ACM trans. On Information

Systems 20(2), 192–223.
20. Sumant Kulakari, Srinath Srinivasa ,”TrieIR: Indexing and Retrieval

Engine for Kannada Unicode Text”,Digital Libraries: Social Media

and Community Networks: 15th International Conference on Asia-
Pacific Digital Libraries, ICADL 2013, Bangalore, India, December
9-11, 2013. Proceedings (pp.21-24)

21. http://www.prajavani.net/news/category/22885.html
22. https://drive.google.com/drive/folders/10MFrrFZLNhr7F0Ge9XOLg

WeTgIxL2IyX
23. Y. Hegde, S. Kadambe and P. Naduthota, "Suffix stripping algorithm

for Kannada information retrieval," 2013 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
Mysore, 2013, pp. 527-533.doi: 10.1109/ICACCI.2013.6637227

AUTHORS PROFILE

Yashaswini Hegde is a graduate in Electronics and
Communications Engineering from UBDT College of
Engg , Davangere. For 10 years she worked in various
software companies and involved in several projects such
as Telemetry Telecommand Data Base, Star tracking
system (for ISRO) and E-commerce project based on
Design Patterns in Sankhya Systems.

http://www.ijeat.org/
https://en.wikipedia.org/wiki/Brahmic_scripts
https://scriptsource.org/scr/Deva
https://en.wikipedia.org/wiki/Katapayadi_system
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.9659&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.9659&rep=rep1&type=pdf
http://www.prajavani.net/news/category/22885.html

Novel Space Efficient Indices for Kannada Text: V-KTPY Trie Family

6320

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A1985109119/2019©BEIESP
DOI: 10.35940/ijeat.A1985.109119

She also worked in the area of mobile applications such as Push-to-Talk
and other client side applications for Sonim Technologies, Kodiak networks
and Quallphone Inc. on different mobile OS. She completed her masters in
Computer Science in 2009 from Mysuru university. She worked as
Assistant professor in NIEIT Mysuru. She is pursuing her PhD under the
guidance of Dr.S.K. Padma at VTU, Belagavi . She has published several
research papers related to the development of Machine Learning techniques
for Kannada Language.

 Dr. S.K Padma is working as a Professor ,
Department of Information Science & Engineering ,
SJCE College Mysuru. She is a graduate in Electronics
and Communication Engg. from SJCE Mysuru in
1984. She holds the master degree in Computer
Engineering from SJCE Mysuru in 1992. She is a PhD
degree holder for her works in the area of ‘Computer

and Information Sciences’. She has published many
research papers and articles and a life member of

Indian Society for Technical Education (ISTE) New Delhi:MISTE and
Indian Institute of Engineers, India, MIE,M-124282-7. She also has
membership of university and Institution authorities likes BOS and BOE.
She has chaired many technical sessions of international conferences.

