
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

936

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2053109119/2019©BEIESP
DOI: 10.35940/ijeat.A2053.129219
Journal Website: www.ijeat.org

Abstract: The high throughput - low latency stream
processing systems are required to be elastic enough to scale for
varying load spike on-demand. However, in the current stream
processing systems, the load shedding is observed which impacts
the final accuracy. In order to get rid of this issue, the elasticity
can be implemented in all kinds of resources involved in the
stream processing systems. This paper focuses on providing the
elastic scalability in queues and Serverless functions for the event
stream processing systems. First, we explain the need of elastic
multi-queue with Serverless function in detail for event stream
processing, and then will propose an algorithm for elastic
scalability of multi-M/M/s/K Queuing with Serverless functions
for the efficient stream processing. The experiment result shows
that the system scales very well in short span of time with the help
of our proposed algorithm. The increased availability in turn helps
improving the high processing throughput in low latency.

Keywords: Event Stream Processing, Elastic Multi-M/M/s/K

Queue, Serverless.

I. INTRODUCTION

Though the data stream is getting generated

everywhere with high velocity and volume, the real-time
processing has some latency while producing the output. This
latency leads to the backpressure that discards the new
events. As valuable insight might exist in any event, those
discarded events will have impact in the final outcome. So, in
order to give equal importance for getting the accurate result,
the stream processing systems are expected to be highly
available [1] on-demand. The recent technologies such as
virtualization, container, and cloud can help to meet these
requirements. This paper explains the need to think about
multi-queue systems for event stream processing and focuses
on how elastic multi-queue and Serverless [5] computing can
be used together for the effective stream processing systems.

Generally, in Queuing theory, single queue with multiple
servers is believed to perform better than multiple queues
with multiple servers [7] considering cost and other
overheads. This is true for the systems where the fixed
number of servers are used. However, in cloud computing,
since the queues can be elastically provisioned based on the
stream load, having multiple queues on-demand will help us

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Jagadheeswaran Kathirvel*, Research Scholar, Department of

Computer Science, Bharathiar University, Coimbatore, INDIA. Email:
jagpro@gmail.com

Elango Parasuraman, Assistant Professor, Department of Information
Technology, Perunthalaivar Kamarajar Institute of Engineering and
Technology, Karaikal, INDIA. Email: elanalin_74@yahoo.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

meet the higher QOS latency requirements. Serverless
computing helps to deploy the business application without
worrying about the infrastructure deployments. These
systems will auto-scale based on the load; hence the
availability also will be high [14]. Also, these systems are
designed to function with less processing and memory
requirements. Since processing of events also requires less
processing capacity and memory [13], the serverless is the
best fit for stream processing. The following is the flow of the
rest of this paper. Section II will talk about the background,
and in section III, we will provide the overview of the
solution, and in section IV, the elastic provisioning
algorithms will be explained, and the experiment and results
will be explained in section V and VI respectively, and the
paper will be summarized in Section VII.

II. RELATED WORK

The research on elasticity in stream processing has been
getting more attention in the recent past. Bugra et al [1]
proposed a system of auto-parallelization that dynamically
adjusts the number of parallel channels to achieve the best
performance based on changes in the workload.
Marangozova-Martin et al [2] proposed multi-level elasticity
in stream processing environments with low latency and
minimum resources, and Cardellini et al [3] dealt with
effective runtime management in terms of placement and
replication decisions while considering the application and
resource heterogeneity and the migration overhead, so to
select the optimal adaptation strategy that can minimize
migration costs while satisfying the application QoS
requirements. These papers’ objective was to achieve the
elastic scalability for stream processing systems based on the
individual machines or nodes. Similarly, our earlier work [4]
proposed adding additional elasticity on Serverless apps in a
single queue stream processing system. Mu-Song et al [6]
analyzed the state diagram of multi-queue model with finite
lengths, and David Raz et al [7] analyzed the fair operation of
multi-queue multi-server, and Hedayati et al [8] demonstrates
that a single queue system is more fair than multiples queues,
and Röger et al [9] proves that multi-queue fair queuing
achieves both fairness and high throughput. Gurtov et al [10]
demonstrates the need of on-demand servers in real time
systems. From the above exploration, it seems that the
existing works attempted to solve the high scalability issue
with the help of either elastically deploying the individual
nodes, or using multi-queue, or using single queue
on-demand multi servers approach, but neither attempted to
solve the problem with elasticity on multi-queue and
Serverless computing. Our proposed algorithms will
elastically provision the required numbers of queues and
Serverless container instances, whenever there is a huge load
and demand for high throughput and low latency
requirements.

Serverless Stream Processing with Elastic
Multi-M/M/s/K Queue System

Jagadheeswaran Kathirvel, Elango Parasuraman

http://www.ijeat.org/
mailto:jagpro@gmail.com
mailto:elanalin_74@yahoo.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.A2053.129219&domain=www.ijeat.org

Serverless Stream Processing with Elastic Multi-M/M/s/K Queue System

937

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2053109119/2019©BEIESP
DOI: 10.35940/ijeat.A2053.129219
Journal Website: www.ijeat.org

III. SOLUTION OVERVIEW

In this section, we will first provide the required
background on the queuing theory and Serverless computing
that are going to be used in our control algorithms, and then
provide the core logic behind our algorithms.

Queuing theory: Kendall’s notation [11] helps in defining
the model for the queuing system and Little’s formula [12]
helps in finding out the different steady state properties of the
queue. The Kendall’s notation for a queue can be generalized

as A/B/C/D/E/F. Here, A and B represent the probability
distribution of event arrival and event servicing respectively,
D represents the capacity of the system, and E represents the
maximum number of events in total, and F represents the
queuing discipline. A and B can have, either M for a Poisson
arrival distribution or exponential interarrival distribution or
an exponential service time distribution, D for a
deterministic, and G for general distribution. C can have a
positive integer value, but mostly non-zero. If it is zero, then
it means the queue is open to accept the events, but there are
no event processors yet. If it is infinite, then it means it a
self-service queue. If D and E are not specified, then they are
infinite. F can have FIFO, SIRO, LIFO, or priority, and so on.
The following symbols and notations are used for finding out
the steady state parameters:

− λ - number of events arriving per unit time
− μ - number of events being serviced per unit time
− s - number of parallel event processors
−  - utilization factor of the event processors
− L - number of events in system (waiting and

in-service)
− Lq - number of events waiting in queue
− W - waiting time of an event in system (waiting and

in-service)
− Wq - waiting time of an event in queue
− P0 - probability that the system is empty
− Pn - probability that there are n events in system

A queue with single server can be represented as M/M/1. A
queue with multiple servers can be represented as M/M/s. A
queue with multiple servers with fixed number of queueing
capacity can be represented as M/M/s/K. In a system like
Serverless computing, the number of event processing
container instances provisioned will vary based on system
performance parameters from time to time. Hence, it can be
mentioned as M/M/sl,su/K for easily differentiating the elastic
multi-server queue from the fixed multi-server queue. Here, l
and u represent the lower and upper bounds of the containers
respectively which are provisioned in a Serverless
environment from time to time. Since having infinite queue
size is unrealistic, we will focus more on the M/M/s/K queue
in rest of this paper. In addition to the general symbols and
notations given above, the following are some of the specific
symbols and notations for M/M/s/K queue:

− K - capacity of the queue
− PK - Probability that the system is full
− λe - Average rate that the events enter into the system

The formulas for the same are given below that will be used
in our control algorithms:

We will use the terms “processor”, “event processor”, or

“container” interchangeably in place of “server” of queuing

theory in rest of this paper.
Serverless: The underlying container instances in the

serverless function will be provisioned on-demand based on
load, invocation method, and other variables [14].
Provisioning more fixed number of event processors will not
be efficient, as the utilization factor () will be low when the
arrival rate is less. There is a limit for the maximum number
of container instances that can be deployed in a Serverless
function. The lower bound can be zero, when there is no
event in the queue, though it will have the cold-start issue
later when the new events arrive.

It is possible that the concurrent issues may arise when
more processors compete each other to fetch the events from
the queue. In this case, the multi-queue is the only option
[16], though it has some overheads. Each queue in the
multi-queue needs to have one or more processors. Having
fixed number of multi-queues will lead to cold start and low
utilization issues. So, there needs elasticity in provisioning
the multi-queues. Whenever a new queue is provisioned, a
new Serverless function also needs to be provisioned to
process the events in the new queue. This will help to meet
the QOS requirement. When the load decreases, the newly
provisioned queues and their dependent Serverless function
can be removed. The expected number of queues and
Serverless functions can be pre-provisioned to avoid the cold
start-issues during the actual processing. If more queues and
Serverless functions are required, those can be
auto-provisioned on-the-fly, when the pre-provisioned ones
are fully utilized.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

938

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2053109119/2019©BEIESP
DOI: 10.35940/ijeat.A2053.129219
Journal Website: www.ijeat.org

The steady state parameter PK is going to play vital role in

this elastic approach. PK indicates that the probability of the
queuing system is full. If it is full, all its dependent variables
will have the impact. Figure 1 shows the conceptual design of
this paper. A simple stream processing system is in Figure 1a.
Figure 1b shows a system where the latency is moderately
tolerated. It has multiple producers, multiple consumers on a
queue. Figure 1c has multiple producers, multiple queues,
multiple processors, and a database. Figure 1d is similar to
1c, but has a main queue in front of the fixed number of

sub-queues. Here, the main queue will load balance the
events and forward [17] them to sub-queues based on their
availability. Figure 1e is similar to 1d, but instead of having
the fixed number of queues and fixed number of multiple
individually spun up stream processors, these queues will be
elastically provisioned. Similarly, the stream processors will
be provisioned or de-provisioned on-demand by the
Serverless function. Our algorithm will provision the
required number of sub-queues and Serverless functions
based on the availability of the existing queues.

The state diagram of the different components of our

proposed elastic system is given in Figure 2. Figure 2a shows
the number of containers that gets spun up and spun down in
Serverless. When there are no events in the system, the
number of containers will become zero. On event arrival, the
containers will get provisioned one after the other based on
the events arrival rate. It will elastically go up to the
maximum number of containers that are allowed in the
Serverless function. Figure 2b shows the state diagram of a
M/M/s/K queue. It will change based on the number of
containers provisioned in Serverless. Figure 2c shows the
state diagram of an elastic Multi-M/M/s/K Queue. The new
queue is provisioned whenever the existing queues are full,
and deprovisioned/released when the load is reduced.

Having elastic multi-queue and elastic processers from
Serverless will auto-adjust the event processing system to
process with high throughput and low latency requirements.
The following are the possible scenarios in this system:

1. One queue – Zero processor: This case will occur when

the queue started receiving the events, but there is no
processor to process the events yet. Now, the queue is in
M/M/0/K state.

2. One queue – One processor: Once the events started
adding into the queue, the Serverless function will
provision a new processor. There will be cold start

latency in this scenario. The queue enters into the
M/M/1/K state.

3. One queue – Multi-processors: Based on the arrival rate,
the Serverless will keep adding more processors. Then
PK will become low. The queue is in M/M/s/K state now.
Average rate (λe) of events that enters into the system
will be increased. But if there is no reduction in arrival
rate, it is time to add the new queues.

4. Multi-Queues – Multi-processors: A new queue and
Serverless function is added to reduce the PK. The
system will forward the events to available queues based
on PK of the individual queues. However, PK of each
queue will vary based on the number of operators
attached in each queue. The current state of the system is
Multi-M/M/s/K. In each cycle, the average PK of all
queues are calculated. The new events are forwarded to
the queues based on their PK.

5. When the arrival rate is reduced, the number of queues
will also get reduced, and hence the Serverless function
will elastically deprovision the number of event
processors that it has spun up.

http://www.ijeat.org/

Serverless Stream Processing with Elastic Multi-M/M/s/K Queue System

939

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2053109119/2019©BEIESP
DOI: 10.35940/ijeat.A2053.129219
Journal Website: www.ijeat.org

In a M/M/s/K queue, the main thing to be noted is the
queue capacity (K). If it is less than arrival rate and number of
event processors, most of the events will be ignored/rejected.
This will have impact on the accuracy of the result. The
system with finite capacity (M/M/s/K) experiences the
frustration and opportunity costs. But in reality, this is the
case for all queues, even if the systems are designed to work
in M/M/s model because of space limitation in all kinds of
resources.

IV. ALGORITHMS

The control algorithm for our elastic Multi-M/M/s/K
queue with Serverless processors is given in Algorithm 1.
The algorithm starts with required initial infrastructures such
as a queue and a Serverless function. There are some
thresholds configured. These values will help in scaling the
overall system. The scaling algorithm will run at certain
frequency, so that the elastic-scaling can happen
automatically. Algorithm 2 is for load balancing and
forwarding the events to the sub-queues. Algorithm 3 is for
pre-provisioning the required number of resources and
keeping them in the pool in advance.

The scaling algorithm runs in certain time frequencies and
it monitors all queues in this system. It takes care of finding
out the required number of queues for processing the stream
events in a low latency. There will be one main queue and
one sub-queue when the algorithm begins. It finds out the
average PK and average number of Serverless containers
created on all queues. If the average PK is above max PK
threshold and if average number of event processing
containers is equal to the maximum possible containers in
each Serverless function, then the scale out will happen. The
maximum number of containers will vary from one
Serverless provider to another, which can be noted either
from the provider’s documentation or by experience. During
scale-out, a new queue will be added from the
pre-provisioned resource pool. This pre-provisioned queue
would have been attached with a pre-provisioned Serverless
function. After the new queue is added, the algorithm will
find out the input ratio for each queue to receive the events
from the main queue. The events are forwarded based on this
ratio by the load balancer and splitter that is given in
Algorithm 2.

Similarly, when the average PK is below the min PK
threshold, the scale-in is initiated, in which a queue is
identified for the removal, and its input rate is reduced
gradually before finally removing it from the system. The
removed queue will go back to the pool of queues which can
be reused again when required. But, if the average PK goes
above the min PK then the scale-in will be cancelled, hence
this queue will start receiving more events.

Algorithm 1: Elastic Multi-M/M/s/K Queue Serverless Scaler

const maxPk = 0.7

const minPk = 0.4

const minLambda = 100

const maxS = 10

scaler() {

 monitorQueues()

 if (avgPk > maxPk) {

 if(avgS = maxS){

 scaleOut()

 }

 }

 else if (avgPk < minPk) {

 initScaleIn()

 }

 else if (avgPk >= minPk) {

 cancelScaleIn()

 }

}

monitorQueues() {

 avgPk = queues.avg(queue => queue.Pk)

 avgS = queues.avg(queue => queue.S)

 sumS = queues.count() * maxS

}

scaleOut() {

 queues.add(getQueueFromPool())

 generateLambdaRatio()

}

generateLambdaRatio() {

 sumPk = queues.sum(queue => queue.Pk)

 foreach (queue in queues) {

 queue.deltaPk = sumPk - queue.Pk

 }

 sumDeltaPk = queues.sum(queue =>

queue.deltaPk)

 foreach (queue in queues) {

 queue.ratio = queue.deltaPk / sumDeltaPk

 }

}

initScaleIn() {

 if(!hasRemovableQueue()) {

 foreach (queue in queues) {

 if (queue.Pk <= avgPk) {

 queue.removable = true;

 break;

 }

 }

 }

 removableQueue = getRemovableQueue()

 if (removableQueue) {

 reduceLambda(removableQueue);

 if (removableQueue.lambda <= minLambda) {

 scaleIn(removableQueue)

 }

 }

}

scaleIn(queue){

 queues.remove(queue)

 resourcePool.add(queue)

 generateLambdaRatio()

}

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

940

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2053109119/2019©BEIESP
DOI: 10.35940/ijeat.A2053.129219
Journal Website: www.ijeat.org

cancelScaleIn() {

 resetRemovableQueue()

 generateLambdaRatio()

}

reduceLambda(queue) {

 queue.lambda = queue.lambda / 2

}

hasRemovableQueue() {

 return getRemovableQueue().count() > 0

}

getRemovableQueue() {

 return queues.select(queue => queue.removable

== true)

}

resetRemovableQueue() {

 foreach (queue in queues) {

 queue.removable = false;

 }

}

getQueueFromPool() {

 if(resourcePool.count() > 0)

 return resourcePool.firstQueue()

}

Algorithm 2: Forwarder

loadBalancer() {

 mainQueueLambda = mainQueue.lambda

 removableQueue = getRemovableQueue()

 if (removableQueue){

 mainQueueLambda =

 mainQueue.lambda -

removableQueue.lambda

 foreach (queue in queues) {

 if(queue!=removableQueue)

 queue.lambda = queue.ratio *

mainQueuelambda

 }

}

Algorithm 3: Pre-provisioner
resourcePoolMonitor() {

 const minQueues = 2

 if (resourcePool.availableQueues() < minQueues)

{

 newQueue = new Queue()

 newServerlessFunc = new ServerlessFunc()

 newQueue.Add(newServerlessFunc)

 resourcePool.addQueue(newQueue)

 }

}

V. IMPLEMENTATION

The experiment was performed in Azure cloud. The
experimental setup had data producers, queues, and function
app. The synthetic data that was produced by the multiple
producers were added into the Queue. The Function App was
created to classify the transactions with simple logic. The
classification result was stored into the Azure Table along
with its processing time and transaction details. This output
table was used to identify the final accuracy. The main queue
was getting filled with the data added by the producers.
Initially there was only one sub-queue. The function app
attached to the sub-queue started processing the transactions.
Since there were huge number of transactions had been being
added into main queue, the new event processing instances
were added by the first Function App one by one. At certain

stage, it was noticed that the number of outgoing items were
very less than the incoming items, and eventually the load
shedding started occurring. Then our algorithms that were
scripted with Azure CLI were executed. The algorithm
subsequently picked one of the pre-provisioned queues from
the pool, and the load balancer started forwarding the events
to both the queues. The containers of both queues’ Function
App started processing the transactions. Subsequently the
algorithm created few more sub queues, since there were
huge transactions that were yet to be processed in the main
queue. After some time, the number of outgoing messages
were increased in all sub queues, and load shedding was
gotten rid of completely.

VI. RESULT

The experimental results are shown in this section. The
Table 1 and 2 show the steady state parameters of event
stream processing system with single queue - multi servers
and elastic multi queues - multi-server systems respectively.
The λ, μ, and K are in the scale of thousands. In single queue
system the λ, μ, and K are 200, 10, and 50 respectively. In
elastic multi-queue system, μ and K remained the same as
single queue, but λ was reduced to 100.

Table 1. Single queue – multi servers

Table 2. Multi queues – multi servers

The charts in Figure 3 shows the comparison between
different steady state parameters. The chart in figure 3a
shows the arrival rate over time in a single queue system. The
average number of events that entered into the system is very
less than the average number of events that didn’t enter the

system. When time flies, the serverless function app started
added new containers that lead to the gradual increase in the
events’ entry, but when the function app’s maximum possible

containers are reached, the load shedding continued to exist.
Figure 3b shows the arrival rate over time in a multi queue
system. Here, the overall load got load balanced into sub
queues. The average number of events that entered into the
system was very less than the average number of events that
didn’t enter the system.

http://www.ijeat.org/

Serverless Stream Processing with Elastic Multi-M/M/s/K Queue System

941

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2053109119/2019©BEIESP
DOI: 10.35940/ijeat.A2053.129219
Journal Website: www.ijeat.org

After the Function App started adding the new containers,
there was a gradual increase in the entry. Since the new
queues are provisioned whenever the Function App’s

maximum possible containers are reached, the over-shedding
has been completely avoided. Figure 3c shows the containers
that are provisioned over time in a Serverless Function App.
Figure 3d shows the queue length over single queue vs multi
queues. In single queue, the queue length stays higher all the
time, but in multi-queue, it reached to lower value, which
leads to lower waiting time in Figure 3e. Figure 3f shows the
probability of system being full. The probability of system
being full is very low in multi-queue than in single queue, so
the load-shedding will be rare, which leads to more
throughput and higher accuracy in the final result.

VII. CONCLUSION AND FUTURE WORK

We presented a novel elastic stream processing system that
scales well with elastic Multi-M/M/s/K queue and Serverless
functions. It is observed from the experimental result that our
algorithm gets rid of the load shedding issue by adjusting the
number of queues and processors elastically. This leads the
system to be capable of handling the events with the high
processing throughput with low latency. This makes our
elastic multi-queue multi-server algorithm to perform better
than singe-queue multi-server system. We are going to
explore our algorithm in applications where the elastic
scalability is highly required on-demand in short notice.

REFERENCES

1. B. Gedik, S. Schneider, M. Hirzel and K. Wu, "Elastic Scaling for Data
Stream Processing," in IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1447-1463, June 2014. doi:
10.1109/TPDS.2013.295

2. V. Marangozova-Martin, N. de Palma and A. El Rheddane,
"Multi-Level Elasticity for Data Stream Processing," in IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 10, pp.
2326-2337, 1 Oct. 2019. doi: 10.1109/TPDS.2019.2907950

3. Cardellini, V, Lo Presti, F, Nardelli, M, Russo Russo, G. Optimal
operator deployment and replication for elastic distributed data stream

processing. Concurrency Computat Pract
Exper. 2018; 30:e4334. https://doi.org/10.1002/cpe.4334

4. Kathirvel, J., & Parasuraman, E. (2019). A QoS-Latency Aware Event
Stream Processing with Elastic-FaaS. Volume-8 Issue-10, August 2019,
International Journal of Innovative Technology and Exploring
Engineering, 8(10), 3756–3762. doi: 10.35940/ijitee.j9965.0881019

5. Stefan Brenner and Rüdiger Kapitza. 2019. Trust more, serverless.
In Proceedings of the 12th ACM International Conference on Systems
and Storage (SYSTOR '19). ACM, New York, NY, USA, 33-43. DOI:
https://doi.org/10.1145/3319647.3325825

6. Mu-Song Chen & Hao-Wei Yen (2012) A state diagram analysis of the
multi-queue M/M/1 model with finite lengths, Journal of the Chinese
Institute of Engineers, 35:2, 165-179, DOI:
10.1080/02533839.2012.638514

7. David Raz, Benjamin Avi-Itzhak, and Hanoch Levy. 2005. Fair
operation of multi-server and multi-queue systems. In Proceedings of
the 2005 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems (SIGMETRICS '05). ACM, New
York, NY, USA, 382-383.
DOI=http://dx.doi.org/10.1145/1064212.106426

8. Hedayati, Mohammad, Michael L Scott, and Mike Marty. “Multi-Queue
Fair Queuing,” October 2018. http://hdl.handle.net/1802/34380.

9. Röger, Henriette, and Ruben Mayer. “A Comprehensive Survey on
Parallelization and Elasticity in Stream Processing.” ACM Computing
Surveys 52, no. 2 (2019): 1–37. https://doi.org/10.1145/3303849.

10. Gurtov, A., & Mazalov, V. (2012). Queueing System with On-Demand
Number of Servers. Mathematica Applicanda, 40(2).
doi:10.14708/ma.v40i2.358

11. Queuing theory tutorial,
https://people.revoledu.com/kardi/tutorial/Queuing

12. Queueing theory formulas,
http://irh.inf.unideb.hu/user/jsztrik/education/09/english/index.html

13. Batch Processing vs Real Time Processing – Comparison,
https://data-flair.training/blogs/batch-processing-vs-real-time-processin
g/

14. Azure Functions scale and hosting,
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

15. Azure Service Bus Management,
https://github.com/Azure-Samples/service-bus-dotnet-management/blo
b/master/src/service-bus-dotnet-management

16. Best practices for improving performance using Azure Service Bus,
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-
bus-performance-improvements

17. Auto-forwarding Azure Service Bus messaging entities,
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-
bus-auto-forwarding

http://www.ijeat.org/
https://doi.org/10.1002/cpe.4334
https://doi.org/10.1145/3303849
http://irh.inf.unideb.hu/user/jsztrik/education/09/english/index.html
https://data-flair.training/blogs/batch-processing-vs-real-time-processing/
https://data-flair.training/blogs/batch-processing-vs-real-time-processing/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://github.com/Azure-Samples/service-bus-dotnet-management/blob/master/src/service-bus-dotnet-management
https://github.com/Azure-Samples/service-bus-dotnet-management/blob/master/src/service-bus-dotnet-management
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-auto-forwarding
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-auto-forwarding

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

942

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2053109119/2019©BEIESP
DOI: 10.35940/ijeat.A2053.129219
Journal Website: www.ijeat.org

AUTHORS PROFILE

Jagadheeswaran Kathirvel is pursuing his doctorate in
Department of Computer Science at Bharathiar University,
India. His area of interests includes data stream processing, data
mining, artificial intelligence, along with event driven software
architecture, design, and engineering. He completed his master’s

degree in computer applications in 2007 at Bharathiar University, and
bachelor’s degree in computer science at Periyar University, India, in 2003.

Elango Parasuraman is working as an Assistant Professor in
Department of Information Technology at Perunthalaivar
Kamarajar Institute of Engineering and Technology, Karaikal,
India. His area of interests includes image processing, data

mining, and web mining. He completed his Ph.D., at National Institute of
Technology Tiruchirappalli, India, in 2011, and his M.Tech., at National
Institute of Technology Karnataka, India, in 2005.

http://www.ijeat.org/

