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Abstract: The high throughput - low latency stream 
processing systems are required to be elastic enough to scale for 
varying load spike on-demand. However, in the current stream 
processing systems, the load shedding is observed which impacts 
the final accuracy. In order to get rid of this issue, the elasticity 
can be implemented in all kinds of resources involved in the 
stream processing systems. This paper focuses on providing the 
elastic scalability in queues and Serverless functions for the event 
stream processing systems. First, we explain the need of elastic 
multi-queue with Serverless function in detail for event stream 
processing, and then will propose an algorithm for elastic 
scalability of multi-M/M/s/K Queuing with Serverless functions 
for the efficient stream processing. The experiment result shows 
that the system scales very well in short span of time with the help 
of our proposed algorithm. The increased availability in turn helps 
improving the high processing throughput in low latency. 

 
Keywords: Event Stream Processing, Elastic Multi-M/M/s/K 

Queue, Serverless.  

I. INTRODUCTION 

Though the data stream is getting generated 

everywhere with high velocity and volume, the real-time 
processing has some latency while producing the output. This 
latency leads to the backpressure that discards the new 
events. As valuable insight might exist in any event, those 
discarded events will have impact in the final outcome. So, in 
order to give equal importance for getting the accurate result, 
the stream processing systems are expected to be highly 
available [1] on-demand. The recent technologies such as 
virtualization, container, and cloud can help to meet these 
requirements. This paper explains the need to think about 
multi-queue systems for event stream processing and focuses 
on how elastic multi-queue and Serverless [5] computing can 
be used together for the effective stream processing systems.  

Generally, in Queuing theory, single queue with multiple 
servers is believed to perform better than multiple queues 
with multiple servers [7] considering cost and other 
overheads. This is true for the systems where the fixed 
number of servers are used. However, in cloud computing, 
since the queues can be elastically provisioned based on the 
stream load, having multiple queues on-demand will help us 
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meet the higher QOS latency requirements. Serverless 
computing helps to deploy the business application without 
worrying about the infrastructure deployments. These 
systems will auto-scale based on the load; hence the 
availability also will be high [14]. Also, these systems are 
designed to function with less processing and memory 
requirements. Since processing of events also requires less 
processing capacity and memory [13], the serverless is the 
best fit for stream processing. The following is the flow of the 
rest of this paper. Section II will talk about the background, 
and in section III, we will provide the overview of the 
solution, and in section IV, the elastic provisioning 
algorithms will be explained, and the experiment and results 
will be explained in section V and VI respectively, and the 
paper will be summarized in Section VII. 

II.  RELATED WORK 

The research on elasticity in stream processing has been 
getting more attention in the recent past. Bugra et al [1] 
proposed a system of auto-parallelization that dynamically 
adjusts the number of parallel channels to achieve the best 
performance based on changes in the workload. 
Marangozova-Martin et al [2] proposed multi-level elasticity 
in stream processing environments with low latency and 
minimum resources, and Cardellini et al [3] dealt with 
effective runtime management in terms of placement and 
replication decisions while considering the application and 
resource heterogeneity and the migration overhead, so to 
select the optimal adaptation strategy that can minimize 
migration costs while satisfying the application QoS 
requirements. These papers’ objective was to achieve the 
elastic scalability for stream processing systems based on the 
individual machines or nodes. Similarly, our earlier work [4] 
proposed adding additional elasticity on Serverless apps in a 
single queue stream processing system. Mu-Song et al [6] 
analyzed the state diagram of multi-queue model with finite 
lengths, and David Raz et al [7] analyzed the fair operation of 
multi-queue multi-server, and Hedayati et al [8] demonstrates 
that a single queue system is more fair than multiples queues, 
and Röger et al [9] proves that multi-queue fair queuing 
achieves both fairness and high throughput. Gurtov et al [10] 
demonstrates the need of on-demand servers in real time 
systems. From the above exploration, it seems that the 
existing works attempted to solve the high scalability issue 
with the help of either elastically deploying the individual 
nodes, or using multi-queue, or using single queue 
on-demand multi servers approach, but neither attempted to 
solve the problem with elasticity on multi-queue and 
Serverless computing. Our proposed algorithms will 
elastically provision the required numbers of queues and 
Serverless container instances, whenever there is a huge load 
and demand for high throughput and low latency 
requirements. 
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III. SOLUTION OVERVIEW 

In this section, we will first provide the required 
background on the queuing theory and Serverless computing 
that are going to be used in our control algorithms, and then 
provide the core logic behind our algorithms. 

Queuing theory: Kendall’s notation [11] helps in defining 
the model for the queuing system and Little’s formula [12] 
helps in finding out the different steady state properties of the 
queue. The Kendall’s notation for a queue can be generalized 

as A/B/C/D/E/F. Here, A and B represent the probability 
distribution of event arrival and event servicing respectively, 
D represents the capacity of the system, and E represents the 
maximum number of events in total, and F represents the 
queuing discipline. A and B can have, either M for a Poisson 
arrival distribution or exponential interarrival distribution or 
an exponential service time distribution, D for a 
deterministic, and G for general distribution. C can have a 
positive integer value, but mostly non-zero. If it is zero, then 
it means the queue is open to accept the events, but there are 
no event processors yet. If it is infinite, then it means it a 
self-service queue. If D and E are not specified, then they are 
infinite. F can have FIFO, SIRO, LIFO, or priority, and so on. 
The following symbols and notations are used for finding out 
the steady state parameters: 

− λ - number of events arriving per unit time 
− μ - number of events being serviced per unit time 
− s - number of parallel event processors 
−  - utilization factor of the event processors 
− L - number of events in system (waiting and 

in-service) 
− Lq - number of events waiting in queue 
− W - waiting time of an event in system (waiting and 

in-service) 
− Wq - waiting time of an event in queue 
− P0 - probability that the system is empty 
− Pn - probability that there are n events in system 

A queue with single server can be represented as M/M/1. A 
queue with multiple servers can be represented as M/M/s. A 
queue with multiple servers with fixed number of queueing 
capacity can be represented as M/M/s/K.  In a system like 
Serverless computing, the number of event processing 
container instances provisioned will vary based on system 
performance parameters from time to time. Hence, it can be 
mentioned as M/M/sl,su/K for easily differentiating the elastic 
multi-server queue from the fixed multi-server queue. Here, l 
and u represent the lower and upper bounds of the containers 
respectively which are provisioned in a Serverless 
environment from time to time. Since having infinite queue 
size is unrealistic, we will focus more on the M/M/s/K queue 
in rest of this paper. In addition to the general symbols and 
notations given above, the following are some of the specific 
symbols and notations for M/M/s/K queue: 

− K - capacity of the queue 
− PK - Probability that the system is full 
− λe - Average rate that the events enter into the system 

The formulas for the same are given below that will be used 
in our control algorithms:  

 
 

We will use the terms “processor”, “event processor”, or 

“container” interchangeably in place of “server” of queuing 

theory in rest of this paper.  
Serverless: The underlying container instances in the 

serverless function will be provisioned on-demand based on 
load, invocation method, and other variables [14]. 
Provisioning more fixed number of event processors will not 
be efficient, as the utilization factor () will be low when the 
arrival rate is less. There is a limit for the maximum number 
of container instances that can be deployed in a Serverless 
function. The lower bound can be zero, when there is no 
event in the queue, though it will have the cold-start issue 
later when the new events arrive.  

It is possible that the concurrent issues may arise when 
more processors compete each other to fetch the events from 
the queue. In this case, the multi-queue is the only option 
[16], though it has some overheads. Each queue in the 
multi-queue needs to have one or more processors. Having 
fixed number of multi-queues will lead to cold start and low 
utilization issues. So, there needs elasticity in provisioning 
the multi-queues. Whenever a new queue is provisioned, a 
new Serverless function also needs to be provisioned to 
process the events in the new queue. This will help to meet 
the QOS requirement. When the load decreases, the newly 
provisioned queues and their dependent Serverless function 
can be removed. The expected number of queues and 
Serverless functions can be pre-provisioned to avoid the cold 
start-issues during the actual processing. If more queues and 
Serverless functions are required, those can be 
auto-provisioned on-the-fly, when the pre-provisioned ones 
are fully utilized.  
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The steady state parameter PK is going to play vital role in 

this elastic approach. PK indicates that the probability of the 
queuing system is full. If it is full, all its dependent variables 
will have the impact. Figure 1 shows the conceptual design of 
this paper. A simple stream processing system is in Figure 1a. 
Figure 1b shows a system where the latency is moderately 
tolerated. It has multiple producers, multiple consumers on a 
queue. Figure 1c has multiple producers, multiple queues, 
multiple processors, and a database. Figure 1d is similar to 
1c, but has a main queue in front of the fixed number of 

sub-queues. Here, the main queue will load balance the 
events and forward [17] them to sub-queues based on their 
availability. Figure 1e is similar to 1d, but instead of having 
the fixed number of queues and fixed number of multiple 
individually spun up stream processors, these queues will be 
elastically provisioned. Similarly, the stream processors will 
be provisioned or de-provisioned on-demand by the 
Serverless function. Our algorithm will provision the 
required number of sub-queues and Serverless functions 
based on the availability of the existing queues. 

  
The state diagram of the different components of our 

proposed elastic system is given in Figure 2. Figure 2a shows 
the number of containers that gets spun up and spun down in 
Serverless. When there are no events in the system, the 
number of containers will become zero. On event arrival, the 
containers will get provisioned one after the other based on 
the events arrival rate. It will elastically go up to the 
maximum number of containers that are allowed in the 
Serverless function.  Figure 2b shows the state diagram of a 
M/M/s/K queue. It will change based on the number of 
containers provisioned in Serverless. Figure 2c shows the 
state diagram of an elastic Multi-M/M/s/K Queue. The new 
queue is provisioned whenever the existing queues are full, 
and deprovisioned/released when the load is reduced. 

Having elastic multi-queue and elastic processers from 
Serverless will auto-adjust the event processing system to 
process with high throughput and low latency requirements. 
The following are the possible scenarios in this system: 
 
1. One queue – Zero processor: This case will occur when 

the queue started receiving the events, but there is no 
processor to process the events yet. Now, the queue is in 
M/M/0/K state. 

2. One queue – One processor: Once the events started 
adding into the queue, the Serverless function will 
provision a new processor. There will be cold start 

latency in this scenario. The queue enters into the 
M/M/1/K state. 

3. One queue – Multi-processors: Based on the arrival rate, 
the Serverless will keep adding more processors. Then 
PK will become low. The queue is in M/M/s/K state now. 
Average rate (λe) of events that enters into the system 
will be increased. But if there is no reduction in arrival 
rate, it is time to add the new queues. 

4. Multi-Queues – Multi-processors: A new queue and 
Serverless function is added to reduce the PK. The 
system will forward the events to available queues based 
on PK of the individual queues. However, PK of each 
queue will vary based on the number of operators 
attached in each queue. The current state of the system is 
Multi-M/M/s/K. In each cycle, the average PK of all 
queues are calculated. The new events are forwarded to 
the queues based on their PK. 

5. When the arrival rate is reduced, the number of queues 
will also get reduced, and hence the Serverless function 
will elastically deprovision the number of event 
processors that it has spun up. 
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In a M/M/s/K queue, the main thing to be noted is the 
queue capacity (K). If it is less than arrival rate and number of 
event processors, most of the events will be ignored/rejected. 
This will have impact on the accuracy of the result. The 
system with finite capacity (M/M/s/K) experiences the 
frustration and opportunity costs. But in reality, this is the 
case for all queues, even if the systems are designed to work 
in M/M/s model because of space limitation in all kinds of 
resources. 

IV. ALGORITHMS 

The control algorithm for our elastic Multi-M/M/s/K 
queue with Serverless processors is given in Algorithm 1. 
The algorithm starts with required initial infrastructures such 
as a queue and a Serverless function. There are some 
thresholds configured. These values will help in scaling the 
overall system. The scaling algorithm will run at certain 
frequency, so that the elastic-scaling can happen 
automatically. Algorithm 2 is for load balancing and 
forwarding the events to the sub-queues. Algorithm 3 is for 
pre-provisioning the required number of resources and 
keeping them in the pool in advance. 

The scaling algorithm runs in certain time frequencies and 
it monitors all queues in this system. It takes care of finding 
out the required number of queues for processing the stream 
events in a low latency. There will be one main queue and 
one sub-queue when the algorithm begins. It finds out the 
average PK and average number of Serverless containers 
created on all queues. If the average PK is above max PK 
threshold and if average number of event processing 
containers is equal to the maximum possible containers in 
each Serverless function, then the scale out will happen. The 
maximum number of containers will vary from one 
Serverless provider to another, which can be noted either 
from the provider’s documentation or by experience. During 
scale-out, a new queue will be added from the 
pre-provisioned resource pool. This pre-provisioned queue 
would have been attached with a pre-provisioned Serverless 
function. After the new queue is added, the algorithm will 
find out the input ratio for each queue to receive the events 
from the main queue. The events are forwarded based on this 
ratio by the load balancer and splitter that is given in 
Algorithm 2. 

Similarly, when the average PK is below the min PK 
threshold, the scale-in is initiated, in which a queue is 
identified for the removal, and its input rate is reduced 
gradually before finally removing it from the system. The 
removed queue will go back to the pool of queues which can 
be reused again when required. But, if the average PK goes 
above the min PK then the scale-in will be cancelled, hence 
this queue will start receiving more events. 

Algorithm 1: Elastic Multi-M/M/s/K Queue Serverless Scaler 

const maxPk = 0.7 

const minPk = 0.4 

const minLambda = 100 

const maxS = 10 

 

scaler() { 

    monitorQueues() 

     

    if (avgPk > maxPk) { 

        if(avgS = maxS){ 

            scaleOut() 

        } 

    } 

    else if (avgPk < minPk) { 

        initScaleIn() 

    } 

    else if (avgPk >= minPk) { 

     cancelScaleIn() 

    }     

} 

 

monitorQueues() { 

    avgPk = queues.avg(queue => queue.Pk) 

    avgS = queues.avg(queue => queue.S) 

    sumS = queues.count() * maxS 

} 

 

scaleOut() { 

    queues.add(getQueueFromPool())  

    generateLambdaRatio() 

} 

 

generateLambdaRatio() { 

    sumPk = queues.sum(queue => queue.Pk) 

    foreach (queue in queues) { 

        queue.deltaPk = sumPk - queue.Pk 

    }  

     

   sumDeltaPk = queues.sum(queue => 

queue.deltaPk) 

   foreach (queue in queues) { 

        queue.ratio = queue.deltaPk / sumDeltaPk 

   }  

} 

 

initScaleIn() { 

    if(!hasRemovableQueue()) { 

        foreach (queue in queues) { 

            if (queue.Pk <= avgPk) { 

                queue.removable = true; 

                break; 

            }      

        } 

    } 

 

    removableQueue = getRemovableQueue() 

 

    if (removableQueue) { 

       reduceLambda(removableQueue); 

     if (removableQueue.lambda <= minLambda) { 

            scaleIn(removableQueue) 

       } 

    } 

}  

 

scaleIn(queue){ 

    queues.remove(queue) 

    resourcePool.add(queue) 

    generateLambdaRatio() 

} 
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cancelScaleIn() { 

    resetRemovableQueue() 

    generateLambdaRatio() 

} 

 

reduceLambda(queue) { 

    queue.lambda = queue.lambda / 2 

} 

 

hasRemovableQueue() { 

    return getRemovableQueue().count() > 0 

} 

 

getRemovableQueue() { 

  return queues.select(queue => queue.removable 

== true) 

} 

 

resetRemovableQueue() { 

    foreach (queue in queues) { 

        queue.removable = false; 

    } 

} 

 

getQueueFromPool() { 

    if(resourcePool.count() > 0) 

       return resourcePool.firstQueue() 

} 

 

Algorithm 2: Forwarder 

 

loadBalancer() { 

    mainQueueLambda = mainQueue.lambda 

    removableQueue = getRemovableQueue() 

    if (removableQueue){ 

        mainQueueLambda =  

          mainQueue.lambda - 

removableQueue.lambda 

 

    foreach (queue in queues) { 

       if(queue!=removableQueue) 

       queue.lambda = queue.ratio * 

mainQueuelambda 

    } 

} 

 

Algorithm 3: Pre-provisioner 
resourcePoolMonitor() { 

  const minQueues = 2 

  if (resourcePool.availableQueues() < minQueues) 

{ 

        newQueue = new Queue() 

        newServerlessFunc = new ServerlessFunc() 

        newQueue.Add(newServerlessFunc) 

        resourcePool.addQueue(newQueue) 

    } 

} 
 

V. IMPLEMENTATION 

The experiment was performed in Azure cloud. The 
experimental setup had data producers, queues, and function 
app. The synthetic data that was produced by the multiple 
producers were added into the Queue. The Function App was 
created to classify the transactions with simple logic. The 
classification result was stored into the Azure Table along 
with its processing time and transaction details. This output 
table was used to identify the final accuracy. The main queue 
was getting filled with the data added by the producers. 
Initially there was only one sub-queue. The function app 
attached to the sub-queue started processing the transactions. 
Since there were huge number of transactions had been being 
added into main queue, the new event processing instances 
were added by the first Function App one by one. At certain 

stage, it was noticed that the number of outgoing items were 
very less than the incoming items, and eventually the load 
shedding started occurring. Then our algorithms that were 
scripted with Azure CLI were executed. The algorithm 
subsequently picked one of the pre-provisioned queues from 
the pool, and the load balancer started forwarding the events 
to both the queues. The containers of both queues’ Function 
App started processing the transactions. Subsequently the 
algorithm created few more sub queues, since there were 
huge transactions that were yet to be processed in the main 
queue. After some time, the number of outgoing messages 
were increased in all sub queues, and load shedding was 
gotten rid of completely. 

VI. RESULT 

The experimental results are shown in this section. The 
Table 1 and 2 show the steady state parameters of event 
stream processing system with single queue - multi servers 
and elastic multi queues - multi-server systems respectively. 
The λ, μ, and K are in the scale of thousands. In single queue 
system the λ, μ, and K are 200, 10, and 50 respectively. In 
elastic multi-queue system, μ and K remained the same as 
single queue, but λ was reduced to 100. 
 

Table 1. Single queue – multi servers 

 
 

Table 2. Multi queues – multi servers 

 
 

The charts in Figure 3 shows the comparison between 
different steady state parameters. The chart in figure 3a 
shows the arrival rate over time in a single queue system. The 
average number of events that entered into the system is very 
less than the average number of events that didn’t enter the 

system. When time flies, the serverless function app started 
added new containers that lead to the gradual increase in the 
events’ entry, but when the function app’s maximum possible 

containers are reached, the load shedding continued to exist. 
Figure 3b shows the arrival rate over time in a multi queue 
system. Here, the overall load got load balanced into sub 
queues. The average number of events that entered into the 
system was very less than the average number of events that 
didn’t enter the system.  
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After the Function App started adding the new containers, 
there was a gradual increase in the entry. Since the new 
queues are provisioned whenever the Function App’s 

maximum possible containers are reached, the over-shedding 
has been completely avoided. Figure 3c shows the containers 
that are provisioned over time in a Serverless Function App. 
Figure 3d shows the queue length over single queue vs multi 
queues. In single queue, the queue length stays higher all the 
time, but in multi-queue, it reached to lower value, which 
leads to lower waiting time in Figure 3e. Figure 3f shows the 
probability of system being full. The probability of system 
being full is very low in multi-queue than in single queue, so 
the load-shedding will be rare, which leads to more 
throughput and higher accuracy in the final result. 

VII. CONCLUSION AND FUTURE WORK 

We presented a novel elastic stream processing system that 
scales well with elastic Multi-M/M/s/K queue and Serverless 
functions. It is observed from the experimental result that our 
algorithm gets rid of the load shedding issue by adjusting the 
number of queues and processors elastically. This leads the 
system to be capable of handling the events with the high 
processing throughput with low latency. This makes our 
elastic multi-queue multi-server algorithm to perform better 
than singe-queue multi-server system. We are going to 
explore our algorithm in applications where the elastic 
scalability is highly required on-demand in short notice. 

REFERENCES 

1. B. Gedik, S. Schneider, M. Hirzel and K. Wu, "Elastic Scaling for Data 
Stream Processing," in IEEE Transactions on Parallel and Distributed 
Systems, vol. 25, no. 6, pp. 1447-1463, June 2014. doi: 
10.1109/TPDS.2013.295 

2. V. Marangozova-Martin, N. de Palma and A. El Rheddane, 
"Multi-Level Elasticity for Data Stream Processing," in IEEE 
Transactions on Parallel and Distributed Systems, vol. 30, no. 10, pp. 
2326-2337, 1 Oct. 2019. doi: 10.1109/TPDS.2019.2907950 

3. Cardellini, V, Lo Presti, F, Nardelli, M, Russo Russo, G. Optimal 
operator deployment and replication for elastic distributed data stream 

processing. Concurrency Computat Pract 
Exper. 2018; 30:e4334. https://doi.org/10.1002/cpe.4334 

4. Kathirvel, J., & Parasuraman, E. (2019). A QoS-Latency Aware Event 
Stream Processing with Elastic-FaaS. Volume-8 Issue-10, August 2019, 
International Journal of Innovative Technology and Exploring 
Engineering, 8(10), 3756–3762. doi: 10.35940/ijitee.j9965.0881019 

5. Stefan Brenner and Rüdiger Kapitza. 2019. Trust more, serverless. 
In Proceedings of the 12th ACM International Conference on Systems 
and Storage (SYSTOR '19). ACM, New York, NY, USA, 33-43. DOI: 
https://doi.org/10.1145/3319647.3325825 

6. Mu-Song Chen & Hao-Wei Yen (2012) A state diagram analysis of the 
multi-queue M/M/1 model with finite lengths, Journal of the Chinese 
Institute of Engineers, 35:2, 165-179, DOI: 
10.1080/02533839.2012.638514 

7. David Raz, Benjamin Avi-Itzhak, and Hanoch Levy. 2005. Fair 
operation of multi-server and multi-queue systems. In Proceedings of 
the 2005 ACM SIGMETRICS international conference on Measurement 
and modeling of computer systems (SIGMETRICS '05). ACM, New 
York, NY, USA, 382-383. 
DOI=http://dx.doi.org/10.1145/1064212.106426 

8. Hedayati, Mohammad, Michael L Scott, and Mike Marty. “Multi-Queue 
Fair Queuing,” October 2018. http://hdl.handle.net/1802/34380. 

9. Röger, Henriette, and Ruben Mayer. “A Comprehensive Survey on 
Parallelization and Elasticity in Stream Processing.” ACM Computing 
Surveys 52, no. 2 (2019): 1–37. https://doi.org/10.1145/3303849. 

10. Gurtov, A., & Mazalov, V. (2012). Queueing System with On-Demand 
Number of Servers. Mathematica Applicanda, 40(2). 
doi:10.14708/ma.v40i2.358 

11. Queuing theory tutorial, 
https://people.revoledu.com/kardi/tutorial/Queuing 

12. Queueing theory formulas, 
http://irh.inf.unideb.hu/user/jsztrik/education/09/english/index.html   

13. Batch Processing vs Real Time Processing – Comparison, 
https://data-flair.training/blogs/batch-processing-vs-real-time-processin
g/ 

14. Azure Functions scale and hosting, 
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale  

15. Azure Service Bus Management, 
https://github.com/Azure-Samples/service-bus-dotnet-management/blo
b/master/src/service-bus-dotnet-management   

16. Best practices for improving performance using Azure Service Bus, 
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-
bus-performance-improvements  

17. Auto-forwarding Azure Service Bus messaging entities, 
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-
bus-auto-forwarding  

 

 

http://www.ijeat.org/
https://doi.org/10.1002/cpe.4334
https://doi.org/10.1145/3303849
http://irh.inf.unideb.hu/user/jsztrik/education/09/english/index.html
https://data-flair.training/blogs/batch-processing-vs-real-time-processing/
https://data-flair.training/blogs/batch-processing-vs-real-time-processing/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://github.com/Azure-Samples/service-bus-dotnet-management/blob/master/src/service-bus-dotnet-management
https://github.com/Azure-Samples/service-bus-dotnet-management/blob/master/src/service-bus-dotnet-management
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-performance-improvements
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-auto-forwarding
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-auto-forwarding


International Journal of Engineering and Advanced Technology (IJEAT) 
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019 

942 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: A2053109119/2019©BEIESP 
DOI: 10.35940/ijeat.A2053.129219 
Journal Website: www.ijeat.org 

AUTHORS PROFILE 

 
Jagadheeswaran Kathirvel is pursuing his doctorate in 
Department of Computer Science at Bharathiar University, 
India. His area of interests includes data stream processing, data 
mining, artificial intelligence, along with event driven software 
architecture, design, and engineering. He completed his master’s 

degree in computer applications in 2007 at Bharathiar University, and 
bachelor’s degree in computer science at Periyar University, India, in 2003. 

 
Elango Parasuraman is working as an Assistant Professor in 
Department of Information Technology at Perunthalaivar 
Kamarajar Institute of Engineering and Technology, Karaikal, 
India. His area of interests includes image processing, data 

mining, and web mining. He completed his Ph.D., at National Institute of 
Technology Tiruchirappalli, India, in 2011, and his M.Tech., at National 
Institute of Technology Karnataka, India, in 2005. 

http://www.ijeat.org/

