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Abstract: Epilepsy is a group of neurological disorders 
identifiable by infrequent but recurrent seizures. Seizure 
prediction is widely recognized as a significant problem in the 
neuroscience domain. Developing a Brain-Computer Interface 
(BCI) for seizure prediction can provide an alert to the patient, 
providing a buffer time to get the necessary emergency medication 
or at least be able to call for help, thus improving the quality of life 
of the patients. A considerable number of clinical studies 
presented evidence of symptoms (patterns) before seizure episodes 
and thus, there is large research on seizure prediction, however, 
there is very little existing literature that illustrates the use of 
structured processes in machine learning for predicting seizures. 
Limited training data and class imbalance (EEG segments 
corresponding to preictal phase, the duration just before the 
seizure, to about an hour prior to the episode, are usually in a tiny 
minority) are a few challenges that need to be addressed when 
employing machine learning for this task. In this paper we present 
a comparative study of various machine learning approaches that 
can be used for classification of EEG signals into preictal and 
interictal (Interictal is the time between seizures) using the 
features extracted from the intracranial EEG. Publicly available 
data has been used for this purpose for both human and canine 
subjects. After data pre-processing and extensive feature 
extraction, different models are trained and are effectively used to 
analyze the temporal dynamics of the brain (interictal and 
preictal) in affected subjects. We present the improved results for 
various classification algorithms, with AUROC values of best 
classification models at 0.99. 
Keywords : Epilepsy, Electroencephalogram, Seizure Prediction, 
Linear Classifier, Ensemble Classifier, Time series analysis. 

  

I. INTRODUCTION 

Epilepsy is a chronic neurological condition where 

abnormal electrical activity in the brain causes seizures. 
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Epileptic seizures are events that can vary from brief and 
nearly unnoticeable periods to long stretches of vigorous 
shaking, rhythmic muscle contractions or muscle spasms.  
Certain studies conclude that 1 in 26 people in the United 
States develop epilepsy at some point in their life. A cure to 
epileptic seizure does not exist for most of the patients but it 
can be controlled by anti-epileptic drugs.  The seizure causes 
an array of problems, especially for patients who have 
developed drug-resistant epilepsy. The possibility of 
predicting seizures in advance could be very useful, not only 
for the patients but also for the medical professionals dealing 
with such disorders. In current practice, trained neurologists 
analyze signals from EEG and a synchronized video of the 
patients for localization and diagnosis. This task tends to be 
very tedious and slow, as it requires differentiating signals 
across multiple days. An automated system that accurately 
analyses patterns and classifies signal segments into different 
temporal dynamics of the brain would be extremely fast and 
useful. Due to extensive development in the field of EEG data 
collection and machine learning [1–4], and upcoming 
methods in signal acquisition and cleaning, and adequate 
performance evaluation for efficient seizure intervention 
systems there is a potential to completely automate the 
seizure prediction process [5–8]. In this study numerous 
strategies are employed to clean the raw iEEG data like 
binning and outlying frequency removal, perform feature 
extraction to quantize fluctuations or rhythmic behavior, 
variation or dispersion of data, self-similar unvaried pattern 
repetition, and energy distribution in a signal, and apply the 
following four broad categories of machine learning 
approaches, generalized Regression models, Support Vector 
Ma- chines, Decision Trees and Tree Ensemble classifiers, to 
lay out a comparative analysis of the applicability of these 
approaches to predict the onset of a seizure episode under 
different constraints.  

II. RELATED WORK 

Automatic prediction of epileptic seizures and the 
classification of EEG signal as preictal or interictal have 
vastly improved primarily due to the development of EEG 
signal recording technology and exploiting newer machine 
learning algorithms. The analysis of EEG signals is 
performed for various research purposes like psychiatric 
studies, brain-machine interfaces, seizure classification, 
seizure prediction etc.  
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In this section, we provide a brief overview of some 
previous work done in the qualitative analysis of EEG signal 
data and the corresponding prediction and classification 
inferences drawn. Brinkmann et al. 

 [9] proposed the classification of interictal and preictal 
intracranial EEG data using Power in Band and 
inter-electrode synchrony intracranial EEG features for 
naturally occurring canine Epilepsy. They concluded that 
optimization of feature selection and best fitting algorithms 
are subject specific. Luigi et al. [10] pro- posed a technique 
for categorization of EEG signals in real time by means of 
Support Vector Machines. They also gave information about 
feature extraction that requires low computational power 
which felicitates the use of the algorithm in real time. Lin & 
Chen et al. [11] proposed the classification of EEG signals 
into preictal and interictal EEG epochs using artifact-free 
signals characterized by 216 global feature descriptors. A 
parameter selective computer-aided diagnosis system for 
identifying epileptic seizures was proposed by Sood et al. 
[12]. This technique performs the work by identifying the 
appropriate features from the data for identifying seizures. 
Tawfik et al.[13] proposed an epileptic seizure detection 
technique which uses Support Vector Machines. The idea 
proposed takes into consideration the fact that weighted 
permutation entropy-based measures for EEG signals when a 
person is in an ictal state are lower compared to when the 
person is in the interictal state. Wang & Lyu et al. [14] 
proposed a new approach where they use elimination based 
feature selection method to increase the efficiency of the 
existing algorithms and diminish the redundant points in the 
EEG signal. An evolutionary harmony search based 
algorithm for feature selection on EEG signals was presented 
by Zainuddin et al. [15] Focusing on the feature selection 
technique is the main contribution of the authors towards an 
EEG based seizure detection framework. Zhang et al. [16] 
proposed using Linear Support Vector Machine classifier for 
epileptic seizure prediction wherein spectral power and ratios 
of spectral power are extracted from intracranial EEG signals 
and processed by a second-order Kalman filter which is then 
fed as input to the SVM classifier.  

Shafiul Alam et al. [17] proposed a method that uses 
higher order statistical moments of signals calculated in the 
empirical mode decomposition (EMD) domain for detecting 
epileptic seizures. Andriy Temko et al. [18] presents a 
methodology to effectively develop and combine approaches 
like Gaussian mixture models, Gaussian Super vector, 
Support Vector Machines and Hybrid Likelihood Ratio for 
efficient seizure prediction. Subha et al. [19] discusses 
different signal processing methods to extract the hidden 
information from the signal. Chen et al. [20] developed a 
method to decompose EEG data into seven commonly used 
wavelet families to the level of each mother wavelet and then 
wavelets and decomposition levels were searched in an 
exhaustive selection of frequency bands to provide optimal 
accuracy and low computational costs. Alotaiby et al. [21] 
devised a patient specific epileptic seizure prediction method 
relying on the common spatial pattern (CSP) based feature 
extraction of scalp electroencephalogram (sEEG) signals. Fei 
et al. [22] proposed a novel method to capture subtle chaotic 
dynamics for epileptic signals in fractional Fourier transform 
domain.  

III. DATA SET DESCRIPTION 

In 2014 the American Epilepsy Society provided data and 
hosted a competition on Kaggle.com, a platform for 
predictive modeling and analytics competitions, to get help 
from contributors around the world to develop algorithms 
that can compete with human expert encephalographers in 
terms of epileptic seizure detection. The data comprises of 
fairly long intracranial Electroencephalography (iEEG) 
signals, which are recordings of the brain activity quantified 
by measuring out the extracellular field potentials owing to 
the neuronal discharges. The data has iEEG recordings of 
seven different subjects, two human subjects, and five 
canines. The data has clips of two types, Preictal; A recording 
between 65 minutes to 5 minutes before the onset of a 
seizure, Interictal; the normal brain activity of a subject such 
that the segments are as far from any seizure  as can be 
practically achieved to avoid contamination with preictal or 
postictal signals. The canine subjects have data gathered from 
16 channels while the human subjects have 24 channels. The 
location of the implant placements may differ within 
different subjects.  

IV. METHODOLOGY  

Artifacts in EEG recordings are forms of outliers and are 
considered as disturbances in a regular brain-signal, not 
originating from the brain, which usually shows up in the 
signal as noisy frequency bands. Binning and outlying 
frequency removal is carried out. Any frequency below 
0.5Hz and above 200 Hz is removed as they are assumed to 
give no significant information gain.  The data is then 
windowed into 30-sec segments which results in 20 
non-overlapping windows for every 10 min clip. After 
artifact removal, the features described in the following 
paragraph are then extracted for each segment for each of the 
subjects. Power spectral density and energy at specific 
frequencies are extracted as they may be used to identify 
seizures. Spectral entropy is a measure of the spectral power 
distribution of a signal treating it as a probability distribution 
in the frequency domain. The spectral entropy is lower when 
there is information in the signal. This aspect is used for 
feature extraction in biomedical signals as shown in [23]. We 
extract signal energy based features like entropies and 
spectral densities. Statistical quantitative features as 
moments, particularly skewness, kurtosis, are a measure of 
the shape of the distribution of a set of points, while standard 
deviation quantifies the amount of variation or dispersion of 
data points of the signal. These statistics are applied as 
features. Further measures like Hjorth parameters which 
indicate statistical properties used in signal processing in the 
time domain are also used. The parameters are Activity, 
which indicates the surface of the power spectrum in the 
frequency domain, Mobility, which is the proportion of 
standard deviation of the power spectrum, and Complexity, 
which represents a measure of similarity between the signal 
and a pure sine wave are also computed. Fractal Dimension 
(FD) estimates are obtained from the segment to capture 
self-similar unvaried repetitive patterns in the EEG signal.  
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Fractal dimension is shown to characterize the nonlinear 
behavior and state of many chaotic systems. Fractal 
dimensions for each segment are computed and used as 
features. The Haar wavelet is used to derive DWT for each 
segment. Additional features from spectral bands which 
measure the signal energy in a specific frequency range, as 
calculated through Fourier transform, and spectral frequency 
are also taken in. A flow chart of the methodology is given in 
Figure.1. 

 

 
Figure 1: Flow of methodology 

A total of 56 features are extracted for every 30-second 
non-overlapping segment of the EEG signals. For every 10 
minutes recording, the 56 features derived from the 30- sec 
segment are concatenated to derive a 1220 dimensional 
feature vector representing the recording. Features extracted 
differ in number among subjects because the features also 
quantify the correlation between channels, and hence depend 
on the number of channels for each subject. For canine 
subjects, dog 1 to dog 4, each with 16 channel iEEG data, 
feature vectors of length 768 are extracted while for dog 5, 
with 15 channels, a feature vector of length 705 is extracted. 
For Human subjects, each with 24 channels, feature vectors 
of length 1334 are extracted. The dataset is shuffled to 
eliminate data grouping which may have a bearing on the 
training algorithm. After shuffling, the data is partitioned into 
randomized fivefold training and a validation sets.  

After testing a range of machine learning algorithms suited 
for classification of the signal into interictal or preictal 
classes, we use three algorithms for this task and in addition 
to these, four ensemble models are explored. We lay out 
below a comparative analysis of the applicability and results 
for each of these. The three shortlisted algorithms are listed 
below: 

A. Logistic Regression 

Logistic Regression is primarily used when the response 
variable is categorical and we would like to predict the 
probability of the particular output given our input x as 

  
 
 
where α is the intercept while β denotes the regression 

coefficient.  
 Adding more independent variables to the model will 

increase the variance. However this can result in overfitting 
and reduce generalization, hence the regularisation terms are 
added. L1 regularisation takes into account the absolute 
difference of the predicted and computed value as a penalty 
whereas L2 takes into account the squared difference as the 
penalty. The main aspect where they differ is that L1 reduces 
the causal effect of the less important features to zero and 
removes them completely. In our approach we use L2 
regularisation over L1 because L2 generally leads to smaller 
coefficients while L1 results in sparse coefficient vectors 
with just a few higher value coefficients which increases the 
variance which corresponds to overfitting. 

B. Support Vector Machines (SVM) 
SVM determines non-linear class demarcations boundaries 

by cleverly using linear models.  The linear classification 
model build in the new space serves as a non-linear decision 
boundary for the input space. SVMs works as follows: For a 
training data of the form {Xi, yi}, where each yi is either 1 or 
-1 denoting the class of the n dimensional input Xi, the aim is 
to compute a maximum-margin. Hyper plane that classifies 
the vector Xi into one of the two groups, and also making sure 
that the distance of the nearest point Xij is maximum from the 
plane. A hyperplane is defined by a set of points {Xi} 
satisfying  

 
 
The bounds p(w,b) of the calculated hyperplane H(w,b) is   

the distance from the hyperplane to the support vectors, i.e, 
  
 

SVMs have been very successful when kernels are used. 
In this work, we define some kernels which enable us to 
work in higher dimensions (with respect to the input vector) 
without computing the coordinates of the data in the higher 
dimension. This approach is generally computationally 
cheaper than computing the coordinates of the data in the 
newly defined space. A standard SVM seeks to find a 
margin that separates all positive and negative examples. 
However, this can lead to poorly fit models if any examples 
are mislabeled or extremely unusual. To account for this, in 
1995 Cortes and Vapnik et al. [24] proposed the idea of a 
“soft margin” SVM that allows some examples to be 
“ignored” or placed on the wrong side of the margin; this 
innovation often leads to a better overall fit.  
C. Decision Trees 

Decision Tree is a supervised learning algorithm which 
revolves around the idea of formulating rules and 
performing decision-based splitting based on different 
attributes to construct a tree structure. The splitting and 
decision rules learned by the algorithm is based on 
information gain, defined as the effective change in entropy 
after a decision rule has been extracted based on an artifact 
a. Information gain after splitting can be defined as 
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 where H(s,a) is given by 
  
 
 
 

Here P(x) is the probability of event x. Decision tree is very 
sensitive to the depth that is chosen. Greater the depth of the 
tree, more it tends to over fit (high variance). On the other 
hand if the tree is too short the results are very generalized 
and many false positives are encountered.  

 
D.  Sequential Ensemble Models (Adaboost) 

AdaBoost is an ensemble supervised learning algorithm 
that combines a set of weak classifiers to boost their 
performance. Each sample in the dataset is weighted and the 
weak learner is trained on a subset of the data. The 
misclassified samples of the weak learner are assigned higher 
weights. This enhances the probability of the sample being 
used in the training of the next classifier. The algorithms aim 
to create a classifier that focuses on examples misclassified in 
the previous steps. Each classifier is also assigned a weight 
which depends on the accuracy achieved. The equation for 
classification can be represented as: 

                 (6) 
Where  stands for the mth weak classifier and  is the 

corresponding weight.  Below we describe briefly how an 
ensemble model works: 
 For a dataset of n points where Xi belongs to Rd and y 
belongs to {1, -1} denotes the two classes, initial weights of 
the points are set as w{Xi, yi} = 1/n, i=1,2…n. Each of the M 
classifiers are trained on the dataset.  We select the one with 
the lowest weighted Classification error. The error weights of 
the selected classifier are calculated by the equations 
  
 
 
 
 
The modified weights  depend on the error rate of the 
classifiers  which is defined as the ratio of the number of 
misclassification over the training set size. 

 
E.  Sequential Ensemble Models (Gradient Boost) 
Gradient boosting algorithm is a supervised model which 

consists of an ensemble of weak prediction classifiers, 
predominantly decision trees. The classifiers are trained 
sequentially over the training set where the weak models 
learn from the misclassification of the previous models. Each 
model contributes towards reducing the loss function and 
minimizing the error rate to provide a more accurate estimate 
of the response variable. The ensemble model due to the use 
of the boosting exhibits high bias and low variance. 

 
F. Parallel Ensemble Models (Random Forest) 
Random forest is a supervised learning algorithm. Random 

Forests consist of multiple decision trees initialized with 

different hyper-parameters ensembled using bagging 
technique. Bagging is a mechanism in which the predictions 
from multiple base models are used together for training. The 
main advantage of Random Forest over the decision trees is 
its ability to prevent over fitting as it randomizes the feature 
subset and builds smaller trees for classification as op posed 
to a single deep tree. The prediction from the model is 
achieved by a voting process wherein votes are received from 
each tree. The important hyper-parameters are the number of 
trees it uses for final prediction and the number of features in 
the subset that each tree uses. 

 
G. Parallel Ensemble Models (Extra Trees) 
Extra Trees is a supervised learning algorithm and is a 

modification of Random Forest. In Extra Trees, the process 
of feature selection is completely randomized for different 
trees as opposed to the random forest where feature selection 
is based on specific rules. The splitting threshold of the nodes 
in Extra Trees is also randomized whereas it is fixed in a 
Random Forest. The reason that Extra Trees perform better 
than the Random Forest in some cases is that it makes the 
decision boundaries smooth and does not use the bagging 
mechanism which is computationally expensive when the 
volume of the data is considerably high. Extra Trees is more 
generalized and tolerant against overfitting since the 
hyper-parameters of each tree is different and hence the 
performance and prediction of each tree has a minimal 
correlation.  
 

IV. RESULTS AND DISCUSSION 
After artifact removal and feature extraction from the 

signal, the features are scaled so that the coefficients are 
penalized based on their predictive power and not their 
amplitude. These features are used to train the following four 
broad categories of models; Generalized Regression models 
(Logistic Regression), Support Vector Machines (Linear and 
RBF Kernel Support Vector Machine Classifiers), Decision 
Trees (Decision Tree Classifier) and Tree Ensemble models 
(Parallel ensemble models: Random Forests, Extra Trees 
Classifiers and Sequential ensemble models: Adaboost and 
Gradient Boosting Classifiers). The training dataset is 
skewed towards the interictal class. Hence instead of using 
accuracy as a measure, we use the area under the receiver 
operating characteristic curve as a measure. This also allows 
us to penalize for false negatives. The performance of the 
model for each of the subject in terms of Area under ROC 
curve is given in Table 1. The corresponding ROC curves for 
the subjects for Linear SVM, Logistic Regression and 
AdaBoost is shown in Figure 3. 

The results in Table 1 show that simplicity rules over 
common models as Logistic Regression and Linear kernel 
SVM tend to classify the test segments for five out of seven 
subjects almost perfectly, as seen in Columns 1 and 2 of 
Table 1. One expects kernel SVM to outperform Linear 
SVM, for non-linear iEEG signals with high dimensional 
feature representation used. However, the contrary appears to 
be true for our experiments. We can infer that the linear 
kernel performs better than nonlinear kernels such  
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Table 1: Average Area Under ROC curve values for all the subjects for the four categories of models 

 

Table 2: Average Area Under ROC Curve values for all the subjects for Tree Ensemble 
approaches, before and after Regularisation 

 
Subject 
Details 

Tree Ensemble Models - 
Before Regularisation 

Tree Ensemble Models - 
After Regularisation 

Parallel 
Ensemble Models 

Sequential 
Ensemble Models 

Parallel 
Ensemble Models 

Sequential 
Ensemble Models 

Random 
Forests 

Extra 
Trees 

Gradient 
Boosting 

Ada 
Boost 

Random 
Forests 

Extra 
Trees 

Gradient 
Boosting 

Ada 
Boost 

Dog 1 0.78 0.77 0.84 0.87 0.87 0.89 0.92 0.94 
Dog 2 0.96 0.96 0.98 0.96 0.98 0.97 0.99 0.97 
Dog 3 0.87 0.89 0.92 0.92 0.90 0.92 0.95 0.95 
Dog 4 0.86 0.87 0.91 0.91 0.90 0.88 0.94 0.93 
Dog 5 0.98 0.97 0.97 0.98 0.99 0.99 0.99 0.97 

Patient 1 0.91 0.93 0.87 0.90 0.97 0.98 0.97 0.92 
Patient 2 0.91 0.99 0.99 0.93 0.93 0.97 0.96 0.96 

 
as RBF are not necessarily better at classification than the 
linear one. Since the distribution of classes in our data is 
imbalanced and the data is limited, SVM with non-linear 
kernel tend to overfit on the training data due to their 
complexity, that is, there is not enough data to generalize 
over a complicated non-linear decision surface. 

Logistic Regression performs at par or better as seen in 
Column 3 of Table 1 for four of the subjects when compared 
to the best performing Gradient Boosted Classifier. When the 
probability estimate is not of concern, we can consider 
Logistic Regression as similar to a linear SVM. Where speed 
is of essence, a Logistic Regression classifier may serve the 
purpose. 

The dimensionality of the data bears on the results of 
decision trees as seen in Column 3 of Table 1. The huge 
number of features slow down the task and gives 
comparatively poorer results (Average area under ROC curve 
values is at 0.73 across all seven subjects). Decision trees 
have high variability, which is mainly caused by their 
acquisitive approach. Each decision split in the first level 
nodes shape the tree differently. Even a single additional data 
point is enough in many cases to get a totally different tree, 
especially if the sample is small or if the data is noisy. 

The interesting observation, however, is that using Tree 
Ensemble models, the classification performance improves 
considerably over those subjects for which the results were 
comparatively less accurate using the other models (even 
Linear SVM and Logistic Regression). The average 
performance increases considerably for dog 1 and patient 2, 

proving the tree ensemble models generalize better. 
However, they do not improve the performance of those 
subjects for which other models already give good results. 
We see that ensemble models prove to be more robust at the 
classification task. Ensemble models are prone to overfitting 
on noisy datasets and in high dimensional spaces (“the curse 

of dimensionality”). For noisy data, boosting tries to enforce 
a hard margin giving higher weight to outliers, this gives rise 
to the dilemma of non-smooth fits and overfitting. AdaBoost, 
in particular, can also suffer in that regard, as it is simply a 
linear combination of classifiers which themselves suffer 
from the problem. For data with large dimensionality, all the 
features do not contribute towards the classification and can 
be considered as noise. Boosting can suffer from overfitting 
on the training data. If the noisy features contribute to poor 
classification, Adaboost may compound the problem as the 
later classifiers maybe emphasizing the noisy samples and 
leading to poorer results. A classifier’s prediction for an 

instance x (having noisy  
 
 

 
Subject 
Details 

SVM 
Generalized 
Regression 

Decision 
Tree 

Tree Ensemble Models 

Linear 
SVM 

Logistic 
Regression 

Decision 
Tree 

Parallel Ensemble 
Models 

Sequential Ensemble 
models 

Random 
Forests 

Extra 
Trees 

Gradient 
Boosting 

AdaBoost 
 

Dog 1 0.86 0.88 0.56 0.87 0.89 0.92 0.94 
Dog 2 0.99 0.99 0.76 0.98 0.97 0.99 0.97 
Dog 3 0.96 0.96 0.68 0.9 0.92 0.95 0.95 
Dog 4 0.96 0.97 0.68 0.9 0.88 0.94 0.93 
Dog 5 0.99 0.99 0.78 0.99 0.99 0.99 0.97 
Patient 1 0.97 0.95 0.78 0.97 0.98 0.97 0.92 
Patient 2 0.96 0.93 0.90 0.93 0.97 0.98 0.96 
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Figure 2: Receiver Operating Characteristic Curves for Canines Subjects on Linear SVM, LogisticRegression and 
AdaBoost 
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Figure 3: Receiver Operating Characteristic Curves for Human Subjects on Linear SVM, Logistic Regression 
and AdaBoost 

 
attributes/outlier instance) may result in a very high positive 
value, but because the actual label is negative, this prediction 
would suffer a large loss/penalty since the penalty is 
exponentiated. This suggests that the classifier arrived at 
using the algorithm might not be the ideal one since it would 
seek to minimize the total exponential loss so this one 
outlier/noisy point ends up having a very strong influence on 
the final model learned. We see from the last column of Table 
1 that though the le approach, its performance is not at par 
with the other classifiers considered. Under Ensemble 
approaches, Regularisation is a good aid. Since we have trees 
as base estimators for boosting ensemble models, they suffer 
from high variance and hence regularisation helps decrease 
that. Often this is done in cases when the problem is ill-posed, 
like ours where the number of parameters is greater than the 
number of samples. Regularisation is performed using model 
hyper-parameter tuning on the loss function, sub sample size 
(for Gradient Boosting), learning Rate (for both AdaBoost 
and Gradient Boosting), i.e. regularisation via shrinkage and 
stochastic gradient descent is carried out.  Regularisation via 
shrinkage for gradient boosting would be, setting the learning 
rate below 1 and increasing the number of estimators which 
improves performance considerably. The learning rate 
parameter in Boosting shrinks the contribution of each new 
base estimator that is added in the series. In combination with 
shrinkage, stochastic gradient boosting produces more 
accurate models by reducing the variance via Bagging 
(Bagging reduces variance by averaging). From Table 2, we 
see the application of regularisation improves the 
performance of each of the classifiers for each of the subjects. 
The effect of regularisation is significant. For subjects dog 1 
and patient 1, analyzing the results in Table 2, we can infer 
that regularisation has been least useful for Adaboost and 
considerably beneficial for ExtraTrees and Gradient 
Boosting. 

 
 

V. CONCLUSION 

From the aforementioned results, we can conclude the 
performance of Gradient Boosting Classifier seems to be the 
best amongst various specified algorithms. Though Gradient 
Boosting outperforms Logistic Regression and SVM, the 
latter two still provide very promising results. The training 
time and complexity is less than an Ensemble model and 
hence can be used when quick results are needed and time is a 
constraint. Deciding a benchmark procedure for seizure 
prediction is not easy as different ap- proaches exist amongst 
researchers. One theory focuses on classification of the clips 
while training the models in a patient-specific manner since 
the variation between the signal of the patients may have a 
big range. The other supports a generalized training manner 
where the signals from all the patients should be taken. But 
since our vision was to look for approaches that will work 
well across different subjects without a considerable drop in 
performance, we find Boosting methods to work best, 
particularly Gradient Boosting Classifier.  

 
In future work, as we discuss in the results section that 

Ensemble methods when regularized out- perform other 
approaches, the follow-up work should constitute better 
regularisation approaches on Ensemble models, using other 
regularized forms of Adaboost (RegBoost, AdaBoostReg, 
LPBoost, QPBoost) should help. Greater insights can be 
gained by using Convolutional Neural Networks as a feature 
extractor over the spectrogram of the EEG signals. Also 
using auto encoders over the raw EEG data for noise removal 
or on extracted features for removing redundant features 
could be highly productive. 
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