
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-1, October, 2019

4927

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2079109119/2019©BEIESP
DOI: 10.35940/ijeat.A2079.109119
Journal Website: www.ijeat.org

 Abstract: Failure is something which causes services on the
cloud to go down for some time period. Most of the times instead of
recovery and repair, we opt for virtual machine migration where
failover of the failed service is done on some other running virtual
server so that the service is revived. Virtual migrations and
recovery mechanisms consume a lot of energy and many
approaches are implemented to make them energy efficient.
Failure Detection is a topic of equal importance and comes under
fault tolerance. Failure detection if done properly can be more
effective and energy/cost saving than fault recovery. Heartbeat
strategy is one such failure detection approach where live
processes send an “I am alive” message to the host device at some

pre-defined fixed intervals which ensures that the process is
running fine. In this paper, we propose to mark the nodes whose
processes have failed to send the heartbeat message and prepare a
count (confidence factor, α) for the same. In primary testing, if
this confidence factor reaches a specific threshold then that
particular node is sent for confidence testing (second level failure
detection testing using a different time sequence of heartbeat
message arrival) and later marked for failure recovery (if found
faulty). Fault recovery techniques are then applied to it so that it
can be corrected and reused and the current jobs can be migrated
to the better node during the recovery period. If the confidence
factor, α is below the threshold value then no action is taken and
only network parameters and connections can be rechecked. This
method will re-ensure the trust on heartbeat strategy for fault
detection and save the device from failure.

Keywords: Proactive, reactive fault tolerance, confidence
factor, primary testing, confidence testing, virtual machine.

I. INTRODUCTION

Cloud computing refers to the delivery of computing
resources as a service. Green Computing defines being
environmentally responsible and eco-friendly while using
computers and their resources. Green computing is also
known as Green information technology (Green IT). Green
IT should not only save energy but also reduce operating

Revised Manuscript Received on October 30, 2019.

* Correspondence Author
Shelly Prakash, Ph.D. Scholar, Department of Computer Science,

Banasthali Vidyapith, Tonk, Rajasthan. Email:
shellyprakash.mpsi@gmail.com

Dr. Vaibhav Vyas ,Associate Professor, Department of Computer
Science, Banasthali Vidyapith, Tonk, Rajasthan. Email:
vvaibhav@banasthali.in

Dr. Anup Bhola, Assistant Professor, Department of Computer Science,
Banasthali Vidyapith, Tonk, Rajasthan. Email: banup@banasthali.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

expenditures (OPEX) and capital expenditures (CAPEX).
Data centres with huge data storage support have been
promoting technologies such as data deduplication, storage
virtualization and storage convergence, which helps in both
decreases in carbon footprint and operational costs. This can
be achieved by converging data centres, increasing power
usage efficiency (PUE), recycling, proper disposal of
e-waste, lowering gas emissions, and minimizing water usage
in the cooling process of such devices. As the cloud services
are so dynamic and scalable in nature, there can be
unpredictable faults leading to failure of services. Therefore
there is a need to closely monitor any occurrence of a fault
and prepare the devices and software to handle the fault as
and when it occurs. There are a lot of mechanisms and
models which are built to enhance fault tolerance in cloud
systems. Fault-Tolerant strategies are mainly focussed before
a user agrees for Service Level Agreement (SLA) for
obtaining a virtual server. This paper focuses on enhancing
Heartbeat strategy used for fault detection by adding a
confidence factor in the whole mechanism. Along with the
heartbeat message, this confidence factor is also monitored
and it decides which node is healthy which virtual machine
should be removed and marked for recovery. The time
duration of periodic checking is proposed to be decided by
the machine learning algorithms and not to be based on
previous patterns.

II. FAULT TOLERANCE

Software is judged on both its functional and non-functional
properties. Functional properties include its working and
usage, while, non-functional properties include its reliability,
performance, fault tolerance and availability (Mylara Reddy
Chinnaiah, N. N. 2018). Fault Tolerance means that when a
process/service fails then server must be able to recover from
it and take sufficient steps to ensure Quality of Service and
service availability for the user. It is a technique to make the
devices capable of handling faults on their own to some
extent and continue to provide services to the users without
any hindrance. To increase dependability and trust in cloud
services, it is important to secure the device from failure. To
incorporate this into a device, we need to have a better
understanding of the error, bugs, faults, and failure. An error
or bug in the system causes a fault, and which in turn leads to
failure. Even a single error can cause the failure of the whole
system. The error can be caused in either hardware or
software or both. The various types of faults are:

• Network-based: Data loss, connectivity issue, network
traffic, and data corruption, etc.

Proactive Fault Tolerance using Heartbeat
Strategy for Fault Detection

Shelly Prakash, Vaibhav Vyas, Anup Bhola

http://www.ijeat.org/
mailto:banup@banasthali.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.A2079.109119&domain=www.ijeat.org

Proactive Fault Tolerance using Heartbeat Strategy for Fault Detection

4928

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2079109119/2019©BEIESP
DOI: 10.35940/ijeat.A2079.109119
Journal Website: www.ijeat.org

• Software-based: Operating System Corruption,
application/software performance issue, unexpected
crash/errors or software update failure, disk space
failure, etc.

• Hardware-based: Device failure, hardware aging,
CPU, disk failure or excess heat generation, etc.

III. FAULT TOLERANCE APPROACHES

We follow 2 distinct approaches to faults in cloud computing.
These are reactive fault tolerance and proactive fault
tolerance approaches.

A. Reactive Fault Tolerance

This is the kind of approach that we follow when the failure
has actually occurred and the system still should continue its
processes without any hindrance. Some of the reactive
approaches are:

• Check pointing

A method in which checkpoints are created in the
application so that it can be monitored in those
suspected or vulnerable situations.

• Retry
If an application fails to start or has some error while

running then it can be made to retry to restart its
process after recovering from the fault that had
occurred.

• Replication
The applications running on the server are replicated

on other servers so as to increase resource utilization
and to prevent any denial of service in case of server
failure.

• S Gaurd
It is a rollback and recovery strategy. In this process

in case of failure, the processes are rolled back to a
safe checkpoint and then recovered back to running
state.

• Task resubmission
If a subtask caused the whole process to fail, then we

try to resubmit that task and assign a new set of
resources to it to eliminate the chances of failure this
time.

• User-defined exception handling
In such a strategy, a server monitoring team decides

what action has to be taken if a failure has occurred.
Also, the exception handling schedules defined at the
time of development are brought to action when a
failure occurs.

HAProxy is reactive fault tolerance architecture. According
to this system, we have two servers. If server1 fails, then the
other server, server2 which has redundant data of server1
emerges as a backup system for entire server1 operations, and
vice versa. HAProxy uses job migration and replication
techniques.

B. Proactive Fault Tolerance

This approach works to predict or presume the failure that
may likely occur according to the periodic system checks and
thus prevents a failure.

• Self-healing:

The ability of the server to tolerate and rectify failures to
some extent is self-healing.

• Software rejuvenation :
After some periodic instances of time, the server has to be

restarted so that it starts fresh, eliminating all blocked,
deadlocked states of processes that may cause failure
later.

• Pre-emptive migration:
When a failure is detected, the crucial running applications

from a virtual server are migrated to another virtual
server to avoid failover.

IV. FAILURE METRICS

Fault Tolerance is based on analyzing the occurrence and
timing of faults so that we are ready in our approach to
handling it. For this, we have the following essential terms
related to time instances in failure detection and recovery.

• Mean Time To Recovery (MTTR): It is the amount of
time consumed in repairing the system, testing it and
resuming processes after the failure has occurred. It is
measured exactly after the first notification of failure
is received. It is calculated as:

MTTR = total maintenance time/ total no. of repairs

Fig.1. Pictorial representation of MTTR

• Mean Time Between Failure (MTBF): It is the time

elapsed between the previous failure and the next
failure occurred. It is calculated as:

MTBF = total operational time/ total number of failures.

Fig.2. Pictorial representation of MTBF

• Mean Time To Failure (MTTF): It depicts the lifetime
of a device where it is expected to work in that period
until it fails. It is used to refer to non- repairable
devices. It is collectively calculated for similar
devices:

MTTF = total hours of operation/ total number of
units

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-1, October, 2019

4929

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2079109119/2019©BEIESP
DOI: 10.35940/ijeat.A2079.109119
Journal Website: www.ijeat.org

Fig.3. Pictorial representation of MTTF

IV. HEARTBEAT STRATEGY

Heartbeat strategy is a failure detection approach where live
processes send an “I am alive” message to the host device at
fixed intervals which ensures that the node is working fine. If
the message arrives late, then that process is removed from
the suspected processes list otherwise it remains suspected.

Fig. 4. Heartbeat arrival by Bertier, Marin(2002)

Here in fig., process p sends heartbeat signals in fixed time
intervals to process q, If they are not received then the Fault
detection mechanism (FD) declares that node to be down(not
working).

V. LITERATURE SURVEY

(Mylara Reddy Chinnaiah, N. N. 2018) proposed
fault-tolerant techniques which are based upon the frequency
of interaction requests and all the configurations supported
by the software systems. Configurations are differentiated
into critical and noncritical; therefore, two parameters,
frequency of configuration interactions (IFrFT) and
characteristics and frequency of interactions (ChIFrFT) are
introduced. IFrFT technique uses interaction values of
configurations to measure the reliability and performance of
software. ChIFrFT technique monitors critical operations of
specific software such as payment transactions. It is then
proved that a large number of interaction requests or failed
critical requests both can cause software failure.

Fig.5. The system architecture of proposed work in

(Mylara Reddy Chinnaiah, N. N. 2018).

(Sudha, 2013) proposed a model FTC, fault tolerance in
cloud computing for real-time applications running on cloud.
It starts with creating a variant of the virtual machine which is
named as an adjudicator node here. The virtual machine has
to pass the acceptance testing while the adjudicator acts as a

time checker and is used in reliability test and decision
making. A virtual machine is chosen for processing only if it
passes the reliability test or otherwise it can be removed. It is
a proactive fault tolerance model and it has good forward
recovery methods.

Fig.6. FTC model proposed by (Sudha, 2013)

(Jialei Liu, OCTOBER-DECEMBER 2018), proposed a
PCFT approach that is proactive in nature and based on
particle swarm optimization (PSO). It targets IaaS cloud
structure employed on fat-tree topology architecture. The
objective is to detect and monitor a deteriorating physical
machine (PM) and then this system searches for optimal
physical machine so that the Virtual machine(VM) from the
defected PM can be migrated to this new PM. CPU
temperature model is used here for fault prediction in PM.

Fig.7. PCFT approach proposed by (Jialei Liu,

OCTOBER-DECEMBER 2018)

(Kalanirnika G R, 2015)proposed a VM-µ Checkpoint
mechanism that follows CoW-PC(Copy on Write- Presave in
Cache) algorithm. It is a reactive technique in which after the
occurrence of failure in a VM, it is saved and then the service
is recovered from the last checkpoint marked in cache
memory. It also follows memory exclusion technique to
optimize performance of check pointing in memory.
(Zeeshan Amin, April 2015)used Heartbeat strategy along
with Artificial Neural Network as a proactive fault tolerance
mechanism. This algorithm proposes an arrival time of the
next heartbeat message along with the safety margin, α. The

equation formulated in this approach is:
TO = ET + α ,

Where, TO: Time interval between two heartbeat messages,
ET: Estimated time of arrival of next heartbeat message.

http://www.ijeat.org/

Proactive Fault Tolerance using Heartbeat Strategy for Fault Detection

4930

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2079109119/2019©BEIESP
DOI: 10.35940/ijeat.A2079.109119
Journal Website: www.ijeat.org

(Ghamdan Mohammed Qasem, 2018) proposed a Fuzzy
min-max Neural Network (FMNN) approach based on
proactive fault tolerance. It predicts if a virtual machine will
fail or not depending upon its resource usage. The
overlapping data from the FMNN classifier is then fed as
input to KNN (K nearest neighbour algorithm) classifier
which then tells whether it is failure or success. (Sam
Goundar, July-September 2018) studied various fault
tolerance techniques and addressed four different fault cases.
These were: if the end-user is not able to log in and access the
cloud service, or if the end user’s request to the cloud server

is lost or if the server has crashed after receiving the user’s

request and the last fault case studied is if the end-user loses
the server reply.

Fig.8. Fault Tolerance Cloud architecture proposed by

(Sam Goundar, July-September 2018)

(A. Marahatta, 2018)proposed an energy-aware proactive
fault-tolerant scheduling scheme for cloud data centres.
Firstly they used a machine learning prediction method to
learn to differentiate between failure-prone tasks and
non-failure prone tasks so that the failure rate can be
predicted. After this vector reconstruction method is used to
reconstruct failure-prone tasks and project both corrected
failure-prone tasks (called super tasks here) and
non-failure-prone tasks to most appropriate host.
(Mohd Noor, 2010) proposed an extended heartbeat
mechanism for fault detection in which index server and
pinging service for each unindexed process are implemented
to prove that node has failed and that the fresh time interval is
too long to realize this.

VI. METHODOLOGY

• Primarily, a detailed study is carried out to understand the
existing strategies for fault tolerance and figure out their
execution and energy analysis.
• To enhance the Heartbeat strategy, a simple track, called
confidence factor, α, has to be maintained that how many
times a node has been marked as suspected and how many
times it has been recovered. This simple tracker will keep
count of a node’s accessibility and reliability over the
network.
If a node is marked as suspected then its network parameters
can be studied and monitored so that it can be identified that
whether a network fault has occurred and how to recover
from it. This will help the fault tolerance units in real-time
fault localization and fault detection.

If the confidence factor rises above a certain threshold then
that node is escalated and passed for confidence testing or in
some specific cases, marked for fault recovery and its
services need to be migrated to a more suitable host.
• Confidence testing: If the output from primary testing
indicates node failure, then that node is checked for its
overload. If it has some major crucial processes running over
then instead of node escalation, node has to pass another
single step of primary testing, executed for only one
confidant time interval. If node fails this last time then Failure
recovery and immediate job migration are done.
This mechanism follows a proactive fault tolerance strategy.
The physical machine can be hardcoded to keep only a fixed
number of past reports, only for comparison purposes.
Even after the load is removed from the faulty node, it should
continue preparing and sending the parameters so that it can
be monitored and recovered.
This method relatively supports Energy efficiency as the
proactive failure detection method is simple and learns and
heals itself. User intervention is least needed in this strategy.
If we reduce the number of failures and correct our practices
by learning from this report then we can increase hardware
life and reduce the use of further fault recovery and repair
methods, thus saving energy. Energy efficiency leading to
fewer carbon footprints eventually supports Green Cloud
Computing. The following algorithm describes this process
in brief:

Algorithm 1: Primary and confidence testing of nodes.
1: Begin.
2: Initialization:
3: T(d) –Set the time interval of heartbeat message

arrival
4: α – Set the confidence factor
5: T(h) – Set the initial threshold value
6: H(n) – Set the heartbeats (per T(d)) counter
7: n – number of time slots per T(d)
8: Step 1: Collect relevant data.
9: If Heartbeat is received for time T(d)
10: Then α = 1, H(n)= H(n) + 1
11: Step 2: Create sampled data for each H(n)
12: After a specific time,
13: If α > T(h)
14: Then check for node overload and start

confidence testing.
15: Step 3: Initiate Fault recovery.
16: After n consecutive T(d), analyze sampled data

collected in step 2 and after that decrease the delay
for even time slots and increase the delay for odd
time slots and vice versa

17: Repeat from step 5.
18: End.

Using this algorithm, we can ensure that our tool will be
able to detect node failure or a smaller network connectivity
issue. Fault detection is completely dependent here on
heartbeats. Decreasing time of arrival of heartbeats will
increase frequency of heartbeats received, which is good. But
it will also cause overheads.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-1, October, 2019

4931

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2079109119/2019©BEIESP
DOI: 10.35940/ijeat.A2079.109119
Journal Website: www.ijeat.org

Analyzing confidence factor here and executing confidence
testing, along with changing time delays will improve energy
consumption and brings accuracy in fault localization.

VII. ANALYSIS OF FAULT DETECTION

TECHNIQUE

After analysis of fault detection, proactive fault tolerance
tools and strategies, it is observed that the heartbeat strategy
is used in some of them and we have enhanced it to a certain
limit. We have analyzed the current techniques, refer table-I.
Its intervals of message arrival are altered, indexing is done,
its frequency is optimized, and the focus is to minimize the
energy and resource wastage at the time of failure. Therefore,
in this paper, a tool is organized which will efficiently detect
failure in nodes, by analysing the frequency of failed
processes. Confidant failure detection reduces energy
wastage.

1. In the analysis we found that the fault detection

models using heartbeat mechanism only focussed on
heartbeat messages and little attention was paid
towards its energy efficiency factor.

2. Some of the fault detection methods are bulky and do
not contribute towards green computing.

3. Some of the fault prediction models focus on only one
cause of failure such as Fuzzy min-max Neural
Network (FMNN) approach proposed by (Ghamdan
Mohammed Qasem, 2018) where only resource
usage is focussed to predict failure.

4. Some of the failure prediction techniques are used
only to select a proper working virtual machine
before assigning load to it. Although failure
prediction should be an ongoing strategy even after
the correct virtual machine is chosen.

VIII. CONCLUSION

After analysing various fault tolerance techniques, we felt
a need to improve it. More precisely, fault prediction strategy
needs improvement because if a fault is predicted and
prevented earlier then a lot of energy, time and cost can be
saved and thus our cloud will become greener. The algorithm
followed here will improve the efficiency of heartbeat
mechanism (a fault prediction strategy). It is easy to be
implemented in cloud. It will not only detect failed processes
but can also recognise a virtual machine which may fail soon.
Thus failure prediction for nodes is made efficient and simple
using this approach.

1. Proactive fault tolerance strategy using Heartbeat

mechanism will prove to be efficient in fault localization
and fault detection method.

2. In heterogeneous clouds, fault localization is the biggest
hurdle; this mechanism will be efficient in detecting the
fault in virtual machines in such clouds.

3. In the era of HPC (High-Performance Computing),
where the cloud is dynamic, scalable and resources are
virtualized, this mechanism will record each heartbeat of
the system and maintain a
consistent close watch on
virtualized servers.

http://www.ijeat.org/

Proactive Fault Tolerance using Heartbeat Strategy for Fault Detection

4932

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: A2079109119/2019©BEIESP
DOI: 10.35940/ijeat.A2079.109119
Journal Website: www.ijeat.org

4. This fault prediction system will work even for
Real-time applications running on virtual servers as we
are continuously keeping a log of virtual server and its
dynamic services.

REFERENCES “

1. Amin, Z., Sethi, N., & Singh, H. (April 2015). Review of Fault
Tolerance Techniques in Cloud Computing. International Journal of
Computer Applications, 11-17.

2. Bertier, Marin & Marin, Olivier & Sens, Pierre. (2002).
Implementation and Performance Evaluation of an Adaptable Failure
Detector. 354-363. 10.1109/DSN.2002.1028920.

3. Bertier, Marin & Marin, Olivier & Sens, Pierre. (2004). Performance
Analysis of a Hierarchical Failure Detector.
10.1109/DSN.2003.1209973.

4. Bhardwaj, Akashdeep & Goundar, Sam. (2018). Efficient Fault
Tolerance on Cloud Environments – A Survey. International Journal of
Computers and Applications. 7.

5. Cui, Xiaoqing & Ma, Zhifeng. (2019). Dynamic heartbeat detection
algorithm based on RBFNN. The Journal of Engineering.
10.1049/joe.2019.0050.

6. Garraghan, Peter & Moreno, Ismael & Townend, Paul & Xu, Jie.
(2014). An Analysis of Failure-Related Energy Waste in a Large-Scale
Cloud Environment. Emerging Topics in Computing, IEEE
Transactions on. 2. 166-180. 10.1109/TETC.2014.2304500.

7. Ghamdan Mohammed Qasem, D. M. (2018). A Classification
Approach for Proactive Fault Tolerance in Cloud Data Centers.
International Journal of Applied Engineering Research ISSN
0973-4562 Volume 13, Number 22, 15762-15765.

8. Guo-jian, Peng & Ze-hua, Liu & Guo-min, Chen & Chen-hui, Luo.
(2013). A novel self-regulatory failure detection algorithm for
distributed storage systems. 674-678. 10.1109/IMSNA.2013.6743366.

9. Haider, S., &Nazir, B. (2016). Fault tolerance in computational grids:
perspectives, challenges, and issues. SpringerPlus, 5(1),1991.
doi:10.1186/s40064-016-3669-0

10. Hayashibara, Naohiro & Défago, Xavier & Yared, Rami & Katayama,
Takuya. (2004). The φ accrual failure detector.

10.1109/RELDIS.2004.1353004.
11. Hosseini, Seyyed&Ghobaei-Arani, Mostafa. (2015). Fault-Tolerance

Techniques in Cloud Storage: A Survey. International Journal of
Database Theory and Application. 8. 183-190.
10.14257/ijdta.2015.8.4.19.

12. https://limblecmms.com/blog/mttr-mtbf-mttf-guide-to-failure-metrics/
13. Jan Seeger, Arne Br¨oring, and Georg Carle. 2016. Optimally

Self-Healing IoT Choreographies. 1, 1, Article 1(January 2016), 18
pages.DOI: 10.1145/

14. Jialei Liu, S. W. (OCTOBER-DECEMBER 2018). Using Proactive
Fault-Tolerance Approach to Enhance Cloud Service Reliability. IEEE
TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4,
1191-1202.

15. Kalanirnika G R, V. (2015). Fault Tolerance in Cloud Using Reactive
and Proactive. International Journal of Computer Science and
Engineering Communications, 1159-1164.

16. Kaur, S., & Singh, G. (2017). Review of Fault Tolerance Techniques in
Cloud Computing. International Journal of Engineering and
Management Research, 69-71.

17. Kenga Mosoti Derdus, Vincent Oteke Omwenga, Patrick Job Ogao,
"Causes of Energy Wastage in Cloud Data Centre Servers: A Survey ",
International Journal of Scientific Research in Computer Science,
Engineering and Information Technology (IJSRCSEIT), ISSN:
2456-3307, Volume 5 Issue 3, pp. 416-430, May-June 2019. Available
at doi: https://doi.org/10.32628/CSEIT1953139 Journal URL:
http://ijsrcseit.com/CSEIT1953139

18. Kumari, P., & Kaur, P. (2018). A survey of fault tolerance in cloud
computing. Journal of King Saud University - Computer and
Information Sciences.

19. Madani, S. S., & Jamali, S. (2018). A comparative study of fault
tolerance techniques in cloud computing. International journal of
research in computer applications and robotics, 7-15.

20. Marahatta, C. C. (2018). Energy-aware Fault-tolerant Scheduling
Scheme based on Intelligent Prediction Model for Cloud Data Center.
2018 Ninth International Green and Sustainable Computing
Conference (IGSC), Pittsburgh, PA, USA, 1-8.

21. Mohamed, S., & Hemayed, E. (2015). Fault tolerance in cloud
computing - a survey. 11th International Computer Engineering
Conference (ICENCO). Cairo, Egypt: IEEE.

22. Mohd Noor, Ahmad Shukri & Mat Deris, Mustafa. (2010). Extended
Heartbeat Mechanism for Fault Detection Service Methodology.
10.1007/978-3-642-10549-4_11.

23. Mylara Reddy Chinnaiah, N. N. (2018). Fault-tolerant software
systems using software configurations for cloud computing. Journal of
Cloud Computing volume 7, Article number: 3.

24. NazariCheraghlou, Mehdi & Khadem-Zadeh, Ahmad & Haghparast,
Majid. (2015). A Survey of Fault Tolerance Architecture in Cloud
Computing. Journal of Network and Computer Applications. 61.
10.1016/j.jnca.2015.10.004.

25. Sudha Lakshmi S. Fault tolerance in cloud computing.International
Journal of Engineering Sciences Research-IJESR, Vol 04, Special
Issue 01, (ACICE) 2013.

26. Tian, Dong & Chen, Shuyu & Chen, Feng. (2006). A Dynamic Fault
Detection Algorithm under Grid Environments. Journal of Computer
Research and Development. 43. 1870-1875.

27. Tomsic, Alejandro & Sens, Pierre & Garcia, João & Arantes, Luciana
& Sopena, Julien. (2015). 2W-FD: A Failure Detector Algorithm with
QoS. 885-893. 10.1109/IPDPS.2015.74.

28. Turchetti, Rogerio & Duarte Jr, Elias & Arantes, Luciana & Sens,
Pierre. (2016). A QoS-configurable failure detection service for
internet applications. Journal of Internet Services and Applications. 7.
9. 10.1186/s13174-016-0051-y.

29. Zang, Xiuhuan & Chen, Wei & Zou, Jing & Zhou, Sheng & Lisong,
Huang & Ruigang, Liang. (2018). A Fault Diagnosis Method for
Microservices Based on Multi-Factor Self-Adaptive Heartbeat
Detection Algorithm. 1-6. 10.1109/EI2.2018.8582217.”

AUTHORS PROFILE

Shelly Prakash has completed Master in Computer
applications and is a research scholar at present in
Department of Computer Science, Banasthali
Vidyapith. Her research is based on efficient Fault
tolerance techniques for greener clouds.

Dr Vaibhav Vyas has done his Doctral from Banasthali
Vidyapith. His research areas are Data Analytics, Cloud
Computing, Software Engineering and Programming
languages. Currently wokring as Associate Proessor in
Department of Computer Science, Banasthali
Vidyapith.

Dr. Anoop Kumar has done his Ph.D. from Banasthali
Vidyapith,Rajasthan Currently he is working as Assistant
Professor of Computer Science, Engineering and IT
department, Banasthali Vidyapith

http://www.ijeat.org/
https://limblecmms.com/blog/mttr-mtbf-mttf-guide-to-failure-metrics/
http://ijsrcseit.com/CSEIT1953139

