
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1361

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2621129219/2019©BEIESP
DOI: 10.35940/ijeat.B2621.129219
Journal Website: www.ijeat.org

Abstract: An important issue incurred by users that limits the

use of internet is the long web access delays. Most efficient way to
solve this problem is to use “Prefetching”. This paper is an

attempt to dynamically monitor the network bandwidth for which
a neural network-based model has been worked upon. Prefetching
is an effective and efficient technique for reducing users perceived
latency. It is a technique that predicts & fetches the web pages in
advance corresponding to the clients’ request, that will be

accessed in future. Generally, this prediction is based on the
historical information that the sever maintains for each web page
it serves in a chronological order. This is a speculative technique
where if predictions are incorrect then prefetching adds extra
traffic to the network, which is seriously negating the network
performance. Therefore, there is critical need of a mechanism that
could analyze the network bandwidth of the system before
prefetching is done. Based on network conditions, this model not
only guides if the prefetching should be done or not but also tells
number of pages which are to be prefetched in advance so that
network bandwidth can be effectively utilized. Proposed control
mechanism has been validated using NS-2 simulator and thus
various adverse effects of prefetching in terms of response time
and bandwidth utilization have been reduced.

Keywords: Network Bandwidth, Neural Network, Prediction,
Prefetching

I. INTRODUCTION

Due to enormous information present on the World Wide
Web, users have been experiencing long delays while
accessing files from World Wide Web. Prefetching is the
solution to render these delays. The intent behind prefetching
is to take benefit of the idle time between two network
accesses i.e. when users are viewing the web pages which are
just downloaded. In this idle period, prefetching estimates
and fetches the additional web pages which will be accessed
in near future based on some intelligence added to the
applications so that users’ waiting time can be reduced and

thus experience of using Internet could be improved. If the
prefetched web pages are indeed requested, these can be
accessed with negligible delay. If the system could exactly

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Sonia Setia, Computer Science, YMCA, Faridabad, India. Email:

setiasonia53@gmail.com
Jyoti, Computer Science, YMCA, Faridabad, India. Email:

justjyoti.verma@gmail.com
Neelam Duhan, Computer Science, YMCA, Faridabad, India. Email:

neelam.duhan@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

predict those web pages which a user will request next, we
will fetch only those web pages in advance and user will
enjoy zero latency. Unfortunately, some prefetched web
pages may never be used which results in wastage of network
bandwidth and adds to the principal cost of prefetching. In
literature, there are a lot of prefetching techniques discussing
prediction algorithms, their accuracy, precision and hit ratio
etc. which are mainly its host aspects. Second aspect is
networking aspect of the prefetching i.e. how to determine
the number of web pages to prefetch to reduce its adverse
effects on the network. Though, prefetching is taking
advantage of users’ idle time, however, it is also necessary to

consider whether network is idle at prefetching time or not.
Based on these two aspects, prefetching scheme basically

consists of two modules:

A. Prediction Module

After a users’ current request is satisfied, prediction

module immediately starts working and predicts the future
requests of the user by computing the probability with which
the web pages will be accessed in near future. Different types
of prediction algorithms have been used in literature for this
module.

B. Threshold Module

Based on network conditions, this module takes decision
for Prefetching. If it allows for prefetching then it computes
value of prefetching threshold i.e. how many numbers of
documents which are to be prefetched to achieve optimum
performance. This module is independent of the prediction
module i.e. same threshold algorithm can be applicable with
different prediction algorithms.

This paper focused on second aspect of prefetching i.e.
Threshold module which determines the prefetch threshold
based on network conditions in real time. In this view, a
control mechanism has been proposed which uses the ping’s

ICMP (Internet control message protocol) messages to
compute the RTT (round trip time) and network bandwidth is
also measured to control the prefetch threshold so that
network performance can be optimized. It employs a Neural
Network model over the RTT and Network Bandwidth basis
which it tells if the system is ready for prefetching or not and
if yes, how many web pages to be prefetched to optimize the
network usage.

The remainder of the paper is organized as follows. Brief
review of literature work has been given in section 2. Section
3 presented the proposed work in which an algorithm has
been developed to determine the prefetch threshold based on
network conditions.

Neural Network Based Prefetching Control
Mechanism

Sonia Setia, Jyoti, Neelam Duhan

http://www.ijeat.org/
mailto:neelam.duhan@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B2621.129219&domain=www.ijeat.org

Neural Network Based Prefetching Control Mechanism

1362

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2621129219/2019©BEIESP
DOI: 10.35940/ijeat.B2621.129219
Journal Website: www.ijeat.org

In section 4, summarized results of evaluation of the
proposed work through trace-driven simulations have been
shown. Finally, conclusion has been presented in section 5.

II. RELATED WORK

Despite the benefits of prefetching, it can increase the
network traffic if not employed in a controlled way. An
aggressive prefetching can prefetch many extra objects which
are never requested by user in future. This can severally
decrease the system’s performance. In literature, few

approaches have been proposed to control the adverse effects
of prefetching.

R. Chen et al. [1] proposed a cache optimization method to
reduce the network traffic usage which utilized data mining
technique with clustering concept. By gathering the current
feedback data from SPN (Smart Protect Network (SPN)),
authors were able to cluster the data in groups based on their
similarity, and by deploying these data to client side, authors
achieved the reduction of traffic usage. In prototyping, this
design for military communications reduced network traffic
by more than 20% and the speed of file scanning time
increased by 12%. Authors tried to reduce the network traffic
by optimizing the cache but it does not help in prefetching.

J. Domenech et al. [2] proposed an intelligent prefetching
mechanism which dynamically adjusted the aggressiveness
of prefetching at server side. Authors calculated the extra
traffic generated by prefetching based on the type of requests
known by the server i.e. prefetch request/user requests not
prefetched. They developed traffic estimation model using
prefetch rate metric which is based on prefetch hits and
prefetch misses. Authors tried to reduce the extra traffic
based on the performance of Prefetching technique but they
didn’t consider the network conditions.

Pingshan liu et al. [3] proposed a prefetching strategy for
peer to peer video on demand system, to offload the servers
effectively. In this paper, authors calculated the server load
by using exponential weighted moving average approach
periodically. Based on this, authors determined which
segment of a movie a peer should prefetch. Authors tried to
reduce the server load based only on the weighted moving
average approach but they too did not consider network
conditions.

Z. chen. et al. [4] derived a centralized solution for
minimum departure misses problem. Due to peer departure,
some chunks only hosted on these peers disappear in the
system. They examined how to allocate extra bandwidth to
decrease departure misses in peer to peer video on demand. In
addition, they also proposed a predictor-based bandwidth
allocation algorithm that reduced departure misses problem
through service differentiation. Authors tried to reduce the
departure misses problem by allocating extra bandwidth but
not considered network conditions.

Divya E et al. [5] proposed an approach to reduce the
server load by using peer to peer network with caching &
replication. The proposed system focused on hybrid caching
including cache prefetching and opportunistic cache update.
In addition, system has been further improved by adding
replication capability to peers. Authors reduced the server
load by using replication of data which is not a good solution.

A Bestavros et al. [6] presented two server-initiated
protocols to improve the performance of World Wide Web.

First protocol is for a hierarchical data dissemination
mechanism which is based on geographic and temporal
locality of reference properties exhibited in client access
patterns. Geographical locality of reference means accessed
objects are likely to be accessed again later on by ‘nearby’

clients. Temporal locality of reference means frequently
accessed objects are likely to be accessed in near future.
Second protocol employed speculative service which means
a user’s request is served by server by sending the requested

document, in addition a number of other documents that are
going to be requested in near future. This speculation reduced
service time by exploiting the spatial locality of reference
property which implies that an object neighboring a recently
accessed object is likely to be accessed again later on.
Authors reduced the user’s service time by exploiting

geographical, temporal and spatial locality but they did not
consider the factors like system load and network conditions
which can greatly affect the network performance.

▪ Most of the work in literature on prefetch uses a fixed
prefetch threshold i.e. a fixed number of web pages to
prefetch.

▪ The problem with these approaches is that they do not
consider either system load or network conditions
which can negatively impact the network
performance.

However, there should be more constraints on prefetching
when network condition is severe. In this work, the
above-mentioned problems have been resolved by computing
the dynamic prefetch threshold based on network conditions.

III. PROPOSED WORK

Our prefetching technique optimizes the trade-off between
latency and system resource usage (network link, server etc.).
It is done by predicting which web pages are likely to be
accessed in future and choosing only some of them to
prefetch to optimize the network performance. The first task
is accomplished by prediction module which can use any of
the prediction algorithms in literature and second one by
threshold module which is the main focus of our work in
which we evaluate the degree to which prefetching must be
effective for both cases i.e. (latency and resource usage).
Also, since this threshold module is independent of the
Prefetch module, it can be easily applicable with any of the
Prediction module.

To optimize the trade-off between resource usage and
latency, a prefetch threshold-based control mechanism has
been proposed. It is the integration of the ping RTT and
network bandwidth measurement to estimate the network
performance so that it can control the prefetching.

Ping [1] is an ICMP echo message used to show the
Round-Trip Time (RTT) with some additional information
such as max/min/avg RTT, number of packets sent and
received and packet drops. Round Trip Time [2] is the time
measured in milliseconds required to get response
corresponding to a request RTT is typically measured using a
ping. Ping RTT has been employed here because:

▪ It is being supported widely.
▪ Do not interface with host aspects.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1363

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2621129219/2019©BEIESP
DOI: 10.35940/ijeat.B2621.129219
Journal Website: www.ijeat.org

In addition, bandwidth is also introduced to control
mechanism as bandwidth measurement tools are becoming
mature these days.

There are a lot of tools available for network bandwidth
measurement such as Bprobe, Nettimer, Pathrate, Sprobe,
Pathchar, Pchar and Pathhead [3]. Bandwidth represents the
amount of data that network can transfer per unit of time.

RTT has been chosen to optimize the network performance
while prefetching because it is easy to get the value of RTT
by using PING messages and low value of RTT indicates the
good indication of network. Current value of RTT can be
taken from the average of latest three measurements. In
addition, bandwidth has also been considered to check the
network conditions because sometimes, even with the high
value of RTT, network could still be in good condition.
Therefore, only RTT is not sufficient to estimate the network
conditions. Based on the network conditions estimated
through Ping RTT and network bandwidth, control
mechanism decides whether to prefetch or not which is based
on the algorithm given below:

▪ Algorithm 1: Network condition-based control
mechanism

Input: Current round trip time(Rcur), Current
Bandwidth(BWcur)

Output: Prefetch Threshold(PT)
Begin
Choose threshold value of round trip time (Rth)and

bandwidth (BWth)
Read round trip time (Rcur) and Bandwidth(BWcur)
If Rcur < Rth || BWcur > BWth
Set Prefetch ON
else
Set Prefetch Off

End
In this algorithm, firstly, threshold value for RTT and

bandwidth has been chosen basis the number of performed
experiments. For normal traffic, average RTT observed in a
study[15] is 168.9 msec. Then, it reads the current RTT if it is
less than threshold RTT then it allows prefetching. Otherwise
it checks on network bandwidth if current bandwidth is
greater than average bandwidth then also it allows prefetch
otherwise it inhibit prefetching.

Here, major implementation issue was to build up a
threshold module that has the ability of self-learning. There
are various methodologies available for this issue. One of
them is Neural Networks. The Neural Network methodology
has been around since late 1950s and came into practical use
for all-purpose applications since mid-1980s. Because of its
flexibility against distortions in the input data and its ability
of self-learning, neural network methodology is often good at
answering problems which cannot be solved algorithmically
[14]. Based on the discussed control algorithm, Threshold
module employs Neural Network to optimize the network
performance which takes RTT and network bandwidth as
input. Main advantage of using Neural Network here is that it
could not only make predictions but it is also able to adjust
itself according to the situation.

In the next subsection, we present neural network basics
and neural network based proposed model.

A. Neural Network

A Neural Network is a collection of artificial neurons. Fig.
1 represents architecture of a simple NN that has been used
for this paper. It contains an input, output and one hidden
layer. Nodes of input layer are connected to the nodes of
hidden layer and nodes of hidden layer are connected to the
nodes of output layer. Initially, random weights have been
assigned to every connection of the network which are
adjusted during network training. Input layer represents raw
information which is fed to the network. In our case, it is set
of RTT and Network Bandwidth. The advantage of using
Hidden layer is that it permits neural network to develop its
own representation and specifies the network condition
whether network condition is severe or normal. Output layer
receives information from the hidden layer and after
processing on it, produces an output whether to prefetch or
not. The output from the neuron is computed by using the
Activation Function. The purpose of the activation function is
to introduce non-linearity into the output of a neuron.
Because most real-world data are nonlinear so, neurons must
learn these nonlinear representations.

Fig. 1. Graphical representation of neural network

Every activation function takes a single number and
performs mathematical operation on it as presented by J.
Márquez et al.[2]. Following are major activation functions
used in literature:

▪ Sigmoid: takes a real-valued input and compresses
it to range between 0 and 1

σ(x) = 1 / (1 + exp(−x))
▪ tanh: takes a real-valued input and compresses it to

the range [-1, 1]
tanh(x) = 2σ(2x) − 1
▪ ReLU: ReLU stands for Rectified Linear Unit. It

takes a real-valued input and thresholds it at zero means
replaces negative values with zero.

f(x) = max (0, x)
The activation function is used to turn an unbounded input

into a fine predictable output. Sigmoid function is commonly
used in literature. The sigmoid function outputs in the range
of (0,1) means compress (−∞, +∞) to (0,1) i.e. big negative
numbers become ~0, and big positive numbers become ~1.

http://www.ijeat.org/

Neural Network Based Prefetching Control Mechanism

1364

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2621129219/2019©BEIESP
DOI: 10.35940/ijeat.B2621.129219
Journal Website: www.ijeat.org

For classification, it is typical for the output to be a
sigmoid function of its inputs (because there is no point in
predicting a value outside of [0,1]). Therefore, in this work,
we are using sigmoid function to classify the input either in
‘Prefetch’ or in ‘No Prefetch’.

Further, in proposed work, Neural Network has been
trained using ‘Backpropagation’ training algorithm. During

training, the input vector is fed to the input layer, after which
it spreads through the network from layer to layer. As a
result, output signals are generated corresponding to the
provided input. The intent behind the ‘Backpropagation’

algorithm is pretty simple i.e. output of network is evaluated
against targeted output. Weights to the connection are
modified and outputs are calculated in repetitive manner until
error is small enough to be ignored.

In Backpropagation training algorithm, training process of
the network involves two passes- forward pass and backward
pass. In the forward pass, outputs are evaluated and compared
with targeted outputs. Then, errors from targeted and actual
outputs are calculated. During the forward pass, all weights to
the connections of the network are fixed. During the
backward pass, all weights are adjusted according to the error
correction rule. Forward and backward passes are repeated
until the error is low enough.

Backpropagation algorithm finds the minimum value of
error function in weight space using a technique called delta
rule or gradient descent. The weights that minimize the error
function are finally considered to be a solution for the given
problem. Concept of Backpropagation is illustrated in Fig. 2

Fig. 2. Concept of Backpropagation

Here, with the help of Backpropagation training algorithm,
Neural Network model has been proposed which takes RTT
and Bandwidth as its input to check the network conditions
and then classify them into two categories i.e.

▪ Prefetch: Prefetching should be done
▪ No Prefetch: Prefetching should not be done

The proposed Neural Network model takes the desired
output which has been calculated by using Algorithm 1. Basis
Algorithm 1, our model is validated. Initially, it initializes the
maximum permissible error and learning rate. Learning rate
is a hyper-parameter which controls how much weights are
updated during training process. Its value varies between 0-1.
The simplest learning rate schedule is to decrease the learning
rate linearly from a large initial value to a small value. This
allows large weight updations in the beginning of training

and small or fine updations in the end of training. The
training algorithm for the proposed Neural network model is
as follows:

▪ Algorithm 2: Neural network model
Step 1: Input rtt and bandwidth to the network are defined

as follows:
 [x1 x2]
Step 2: Initialize learning rate (α) and max. error=0.25
Step 3: Assign weights to the hidden layer and output layer

(initially random small values are taken in the range of 0-1)
Step 4: For each hidden unit zj, j=1,2,..p, calculate net input

of each hidden layer

 (Zin)j=

Step 5: Calculate hidden layer output using sigmoidal
activation function over (Zin)j

 Zj= f((Zin)j)
This will become the input for output layer.
Step 6: For each output unit yk, k=1,2,…m, calculate net

input

 (yin)k=

Step 7: Find the results of output layer by using sigmoidal
activation function

 Yk= f((yin)k)
Step 8: For each output unit yk, k=1,2,..m, get a target

value w.r.t. the input training pattern and computes the delta
error

 δk = (tk – yk) f’((yin)k)
Step 9: If calculated error δk is greater than max. error goto

step 10 for weight updation otherwise goto step 16.
Step 10: On the basis of calculated delta error δk, update

weights of output layer
 Δwjk= α δk zj

Step 11: Also, send δk backward to the hidden layer
 (δin)j = δk wjk And
 δj = (δin)j f’((zin)j)
Step 12: On the basis of calculated delta error δj, update

weights of hidden layer
 Δvij= α δj xi

Step 13: Based on the change in weights, update weights
for output layer units

 Wjk(new)= wjk(old) + Δwjk
Step 14: Based on the change in weights, update weights

for hidden layer units
 vij(new)= vij(old) + Δvij

Step 15: Goto step 4 with new weights and repeat the
process until error is permissible.

Step 16: return o/p in the form of Prefetch or No Prefetch.
Flow diagram depicted in Fig. 3 demonstrates the

complete flow of this neural network model.
The uniqueness of this Threshold module is that it is a

generalized model. As a result, it can be picked up by any of
the prediction modules which employ different techniques
available in literature. Our threshold module proposes a
control mechanism that helps in optimizing the network load
by determining if prefetching should be done or not.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1365

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2621129219/2019©BEIESP
DOI: 10.35940/ijeat.B2621.129219
Journal Website: www.ijeat.org

Then, it computes Prefetch Threshold i.e. how many pages
should be prefetched which is equal to ‘T/PR’ where T is the

time between the end of previous request and the next
request, P is the number of packets necessary to transfer a
web page, R is the round trip time between client and server.
According to http archive [16], average web page size is
3MB.

Fig. 3. Flow diagram for Neural Network model

▪ Algorithm 3: Neural Network based Prefetch
Threshold Control Mechanism

Input: RTT, Bandwidth
Output: Prefetch Threshold (PT)
Begin
O/p Apply Neural Network model on the I/p patterns
If(O/p==Prefetch)
PT= T/P*R
Else
PT=0
End
This way, the proposed Prefetching control mechanism

controls the adverse effects of prefetching. In severe network
conditions, it will not allow for prefetching and in normal
conditions also, it decides how much prefetching should be
done based on the network conditions. Thus, network
bandwidth can be effectively utilized because if traffic is too
less, it can allow more prefetching of web pages to be done
otherwise less prefetching. Thereby, considerably reducing
the network load.

IV. EXPERIMENTAL RESULTS

As the World Wide Web is basically a dynamic
environment, its fluctuating network traffic and server-load
generate experimental evaluation challenge. Usually, two
major evaluation methodologies are available to describe
user access behaviour for Prefetching:

▪ Simulation based on user access traces and
▪ Parallel evaluation with real-time access.

In this paper, trace based simulation has been opted for
evaluation because it works upon a parameterized testing

environment with variable network traffic and workload. By
doing so, prefetching in different network conditions can be
analysed and it is also a common approach to receive
repeatable effects.

The proposed control mechanism has been implemented
using NS-2 network simulator [10], where for simulations of
TCP, both interactive sources and bulk data are available.
Additionally, it also includes a Web Cache component which
is required for our experiments. NS-2 simulator is quite
flexible because new traffic models can be easily added to it.
Most important to us, there is a Ping Agent in NS-2
framework. We added a variable ‘rtt’ in the source code that

stores the latest RTT value in the Ping Agent class. Ping calls
are generated between two nodes every l ms. Therefore, we
can get current RTT value at any time. In addition, available
network bandwidth has been obtained through analyzing the
trace file [11] generated by the simulator which is used for
viewing network simulation traces and real-world packet
trace data. We first calculate the bandwidth consumed in
every 10 seconds. Then, available bandwidth can be obtained
by subtracting the bottleneck bandwidth by the consumed
bandwidth.

To run any simulation, we first adjust the RTT value in the
simulation to a realistic level. To test the efficiency of the
algorithm we adjusted the network load using Pareto models
[12] by generating background traffic. We used AOL search
logs trace to get a multi-user and multi-server accesses
pattern which are collected for a period of three months
spanning from 01 March 2006 to 31 May 2006. This
collection consists of 20M web queries collected from 650k
users over a three-month period. The dataset is divided into
two sub-sets, one for training and another for testing in the
proportion of 80:20. Training set has been used to train the
neural network while testing set comprising of various input
sets which has been used to run multiple test cases. We have
implemented an improved prediction algorithm developed by
Setia et al. in [13]. We run the simulations over a 2.67 Ghz
Intel Core i5 processor with 4 GB RAM running the
Windows operating system. To test and validate our control
mechanism multiple testing experiments were run using our
proposal having three main agendas ‘without prefetch’,

‘prefetch’, ‘controlled prefetch’. From Table 1 and 2, we can

observe that prefetch has great effect on the network and
controlled prefetch method reduces the adverse effect of
prefetching on RTT as well as bandwidth utilization
compared to prefetch without control.

It is because controlled prefetching avoids a large number
of retransmissions due to packet timeouts when RTT is high.

Table 1: RTT comparison (time in ms)

Without
Prefetch

Prefetch Controlled
Prefetch

Improveme
nt

123.0287 144.424 127.435 13%
103.744 137.456 110.3478 24%

107.0043 133.056 115.0435 15%

113.786 142.5643 121.0346 17%

101.0056 128.056 113.6732 13%

http://www.ijeat.org/

Neural Network Based Prefetching Control Mechanism

1366

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2621129219/2019©BEIESP
DOI: 10.35940/ijeat.B2621.129219
Journal Website: www.ijeat.org

Table 2: Bandwidth utilization comparison (in KB/s)
Without
Prefetch

Prefetch Controlled
Prefetch

Improvement

1023.287 1044.424 1027.435 1.6%
1014.744 1037.456 1020.348 1.7%
987.043 1023.056 1005.045 1.8%

1031.786 1072.564 1045.036 2.5%
1042.005 1108.056 1063.672 4.2%

V. CONCLUSION

This paper proposed a prefetch threshold-based control
mechanism to prefetching. The integration of ping RTT and
network bandwidth measurements has been used to
determine the condition of network at the time of usage. In
addition, an algorithm has been developed to compute the
dynamic prefetch threshold based on network conditions.
Neural network-based model has been deployed to check the
network conditions i.e. whether it is appropriate for
prefetching or not. By employing the proposed mechanism,

▪ The overall prefetch system performance is improved by
utilizing the available bandwidth effectively without
overloading the network.

▪ As a result, trade-off between user’s waiting time and

bandwidth usage has been optimized.

REFERENCES

1. R. Chen et al., "Cache Optimization Method to Reduce Network Traffic
in Communication Systems," 2018 9th International Symposium on
Parallel Architectures, Algorithms and Programming (PAAP), Taipei,
Taiwan, 2018, pp. 122-125.

2. J. Márquez, J. Domènech, J. A. Gil and A. Pont, "An Intelligent
Technique for Controlling Web Prefetching Costs at the Server Side,"
2008 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, Sydney, NSW, 2008, pp. 669-675.

3. P. Liu, G. Huang, Y. Zhou, D. Qin and S. Liu, "Server load based
prefetching strategy for P2P VoD streaming," Proceedings of 2013 3rd
International Conference on Computer Science and Network
Technology, Dalian, 2013, pp. 721-725.

4. E. Divya, R. Sivakoumar and P. Anandhakumar, "Reduction of server
load using caching and replication in peer-to-peer network," 2012
International Conference on Recent Trends in Information Technology,
Chennai, Tamil Nadu, 2012, pp. 458-462.

5. Z. Chena, K. Xue, P. Hong and H. Lu, "Differentiated Bandwidth
Allocation for Reducing Server Load in P2P VOD," 2009 Eighth
International Conference on Grid and Cooperative Computing,
Lanzhou, Gansu, 2009, pp. 31-36.

6. A. Bestavros, “Speculative data dissemination and service to reduce

server load, network traffic and service time for distributed information
systems”, in Proc. ICDE’96:1996 Int. Conf. Data Eng. , New Orleans,

LA, Mar.1996.
7. B. Chandrasekaran "Survey of network traffic models" IEEE Commun.

Mag. Mar. 1994.
8. Setia Sonia, Verma Jyoti and Duhan Neelam “A novel approach for

semantic web prefetching using semantic information and semantic
association”,big data analytics, 471-479,2018.

9. H. Hassoun, Fundamentals of Artificial Neural Networks. The MIT
Press, 1995.

10. P. Sessini, A. Mahanti, Observations on round-trip times of TCP
connections. Society for Computer Simulation, vol. 38 (2006), pp.
347-353.

AUTHORS PROFILE

 Sonia Setia is a research scholar in YMCAUST,
Faridabad. She completed her M.Tech. in CSE from
YMCAUST, Faridabad in 2012 and B.Tech in IT from
Kurukshetra University in 2007. She is currently an
Assistant Professor with the School of Computer Science
And Engineering, Lingayas University, Faridabad, where

she has taught and conducted research since August 2017. His current areas

of research are Web prediction, data mining, Information Retrieval and
natural language processing.

Dr. Jyoti is presently working as Assistant Professor in
Department of Computer Engineering, J. C. Bose
University of Science and Technology, Faridabad, India.
She received her Ph.D in Computer Science Engineering
from Maharishi Dayanand University, Rohtak in 2011.

She has broad research interests in Data Mining, Information Retrieval. She
has published more than 30 papers in refereed journals at national and
international level.

Dr. Neelam Duhan is presently working as Assistant
Professor in Department of Computer Engineering, J. C.
Bose University of Science and Technology, Faridabad,
India. She received her Ph.D in Computer Science
Engineering from Maharishi Dayanand University,

Rohtak in 2011. She has broad research interests in Data Mining,
Information Retrieval and Databases. She has published more than 40 papers
in reputed conferences and refereed journals.

http://www.ijeat.org/

