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 

Abstract: The Markov chain Monte Carlo (MCMC) technique 
is applied for estimating the Complementary Exponential Power 
(CEP) distribution's parameters through the analysis of complete 
sample in this article. With the help of the Bayesian and the 
Maximum Likelihood techniques, the unknown parameters of the 
model are estimated. To find Complementary Exponential Power 
distribution's parameters' Bayesian estimates, a new methodology 
is developed, via simulation method of MCMC through the 
application of OpenBUGS platform. To demonstrate under the 
gamma and uniform sets of priors, a real data set is taken. The 
generations of posterior MCMC samples is conducted with 
OpenBUGS software. For analyzing the output of so generated 
MCMC samples, and studying the statistical properties, 
distribution's comparison tools and model validation the 
functions of R have been used. The credible interval and predicted 
of the reliability, hazard and modal parameters' values are also 
estimated. We have shown that Bayesian estimators are more 
efficient than classical estimators for any real data set. 

Keywords: Complementary exponential power model, Markov 
chain Monte Carlo, Bayesian estimation,  Maximum likelihood 
estimation, Gamma Prior.  

I. INTRODUCTION 

Smith & Bain (1975) first developed lifetime model of the 
distribution of exponential power (EP). Several writers 
(Leemis, 1986; Rajarshi & Rajarshi, 1988; Chen, 1999) have 
examined EP distribution. Novel models were developed in 
past years centered on changes of the Exponential Power 
model. Including two shape parameters, Chen (2000) 
presented a novel model. Though the number of shape 
parameters was only two, the new model has some nice 
features. First its capacity to handle two hazard functions 
(bathtub-shaped and increasing) is attractive in the model, and 
second, two shape parameters' joint confidence region and 
confidence interval have a closed form. Yet for the evaluation 
of a number of datasets, it requires a scale parameter for more 
flexibility. A new model known as the model of Weibull 
extension, introduced by (Xie et al., 2002), which has an 
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extra scale parameter to the model proposed by Chen, to 
address such a drawback. This led to the model becoming 
more flexible and the practitioners found it to be more 
persuasive. But the Xie model version, like its predecessors, 
just lodges two hazard functions (bathtub-shaped and 
increasing) Though the distribution of EP and its variants are 
often applied to evaluate survival time data, this distribution 
fails to give a suitable parametric fit in real world situations 
where hazard functions could be unimodal or decreasing 
shaped. The CEP distribution, that is primarily 
associated with (Smith & Bain, 1975)'s distribution that has 
an additional shape parameter, was presented not long ago 
by (Barriga et al., 2011). There are several flexible 
distributions in the survival literature that can handle 
decreasing, unimodal, bathtub-shaped and increasing failure 
rate functions (Mudholkar & Srivastava, 1993; Mudholkar et 
al., 1996; Pham &Lai, 2007; Carrasco et al., 2008). Although 
certain distributions include four parameters, a distribution of 
three parameters is the Complementary Exponential Power 
(CEP). This is practically a benefit, because it would be 
critical to analyze close models in as few parameters as 
feasible. Especially with moderate and small sample sizes, 
which is a typical survival analysis condition, the parameters 
is not calculated precisely (Xie et al., 2002). 
The development of exponentiated distribution is generally 
performed as per the description of (Marshall & Olkin, 2007). 
Based on the observation, a novel CDF 

 baselineF(x)= F (x) 
, 0   can be obtained by taking up an 

arbitrary power 0  to any baseline CDF baselineF (x) , 

however F(x)  can be termed resilience parameter family as  
this extra parameter   is termed resilience parameter.  

Even though this may not be our situation, 
considering   as an integer, word resilience readily emerges. 
We can F(x)  see as cumulative distribution function of a 
concurrent model with independent components  that is less 
prone to failure with increasing no. of components, 
contributing in this case to a resilient design. Many writers 
following this idea have described extensions of survival 
distributions. (Mudholkar et al., 1995) first presented the 
exponentiated Weibull distribution which generalizes the 
Weibull distribution, three-parameter generalized 
exponentiated exponential distribution which is the standard 
exponential distribution generalization, presented by (Gupta 
& Kundu, 1999) , and four additional exponentiated 
distributions which generalized the standard Weibull, 
Gumbel, Fréchet and the gamma 
distributions,  
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presented by (Nadarajah & Kotz,2006),  are some 
examples.  Three-parameter Complementary Exponential 
Power Model is presented in this paper along with analysis of 
maximum likelihood estimate (MLE). Bayesian model for 
proposed distribution is formulated. For Bayesian analysis, 
a real set of data is illustrated.  

Maximum Likelihood Estimation, corresponding 
model validation and exploratory data analysis have been 
conducted. The independent gamma and uniform set of priors 
of the data set are used for the complete Bayesian analysis 
with the help of MCMC technique using the OpenBugs 
platform. The parameters' Bayes estimates, reliability as well 
as hazard functions have been acquired and their credible 
interval are described. For the set of data, we have also 
addressed the question of model compatibility 

II.  MODEL ANALYSIS 

A.  Cumulative distribution function (cdf): 
(Smith & Bain, 1975) introduced the CDF of the EP 

distribution which is presented in the expression below,        

 
Where,  x > 0,   > 0;   > 0.                                                        
The Cumulative distribution function of the 

Complementary Exponential Power distribution is obtained 
by taking up EPF (x)  to the power of   

namely  EPF(x) F (x) 
 . The distribution function of CEP 

with three parameters is given by, (Barriga et al., 2011) 
                                (2) 

Here, shape parameters are 0  , 0  and scale parameter 
is 0  . If we take 1  , the function (2) diminishes to EP 
distribution. ( , , )CEP     represents CEP distribution. 

B.  Probability density function (PDF):           
The PDF can be expressed as, 

             (3) 

Where,   
When 1, 1   , for different values of  , some typical 

PDF of CEP are portrayed in Figure 1.  In Figure 1, we can 
observe that the Complementary Exponential Power 
distribution's PDF can exhibit various geometry.  

 
 

Fig 1.The PDF of CEP distribution for various values 
of , 1, 1   . 

C.  Reliability/Survival function:           

Reliability function is given by the following expression 
                      (4) 

D.  The Hazard-Rate Function (HRF):           
The expression for HRF is provided below. 

 
Where,  
Based on parameter values lying on the shape 
parameters( 0   and 0  )' domain area, which is 
bounded by 1, 1    and the curve 1  , unimodal, 

bathtub, and various monotone hazard functions including the 
bathtub and unimodal functions are accommodated by the 
CEP distribution. Some of the characteristics of the CEP 
distribution hazard function are as follows: 

(i) h(0) 0 , when h(0)  & 1  ,   when . 

(ii) When  ; , hazard function shows 
decreasing curve. 

(iii) When 1  and 1  , hazard function shows 

increasing curve. 
(iv) When 1  and 1   (or 1  and 1  ), then 

h(x) shows bathtub shaped curve. 

(v) When 1   and 1  , then h(x)  shows 

upside-down bathtub curve. 
Since the function of the hazard rate in (5) is complicated, 
some characteristics of (ii-v) were 
determined mathematically. For several parameter 
varieties of the CEP distribution, the different kinds of failure 
rate function shapes are displayed in Figure 2.  

 
Figure 2. The h(x) of CP distribution for 1, 1    and 

varying values of   

E. The Quantile Function: 

The quantile function is given by, 

  
1/

1/1
ln 1 ln 1 ; 0 1px p p





     
  

             (6) 

F. The Random Deviate Generation 
Consider U denote uniform random variable (0, 1). Also, 
consider F (.) as Cumulative Distribution Function whose 
inverse is F

-1
(.). Next,  F

-1
(u) can be drawn using the 

distribution F (.). Hence, 
from ( , , )CEP    , the random 

deviate can be generated as 
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1
1

1
log 1 log 1 ;1 0e e

x u u






   
        

      

                      (7)                

Here, u belongs to the U(0, 1) distribution 

III. MLE AND ASYMTOTIC INTERVALS 

Here, ( , , )CEP    distribution's MLE is reviewed. Then 
corresponding asymptotic characteristics to achieve 
estimated confidence intervals centered on maximum 
likelihood estimators is examined.   

Consider a random sample x=(x1, . . . , xn) from ( , , )CEP    , 

having size 'n'; then the log-likelihood function ( , , | )x    

is given by the following expression 

 

   
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(8) 
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(10) 
Using MLE's standard asymptotic normality, the  

 fudicial intervals for and  ,   and 

 are found with  ˆ var  ,    ˆˆvar ,  var    and determined 

using the the observed Fisher information matrix's inverse, 
i.e., the the second-order derivatives of the log-likelihood 

function's matrix inverse locally at ̂ , ̂ and ̂ . 
Therefore,using the MLE's asymptotic normality, the 
formulation for the approximate 100(1 )%  

fudicial intervals for  ,  , and  are shown below 
1/2

/2
ˆ ˆ[ ( )]var z


  ; 1/2

/2
ˆ ˆ[ ( )] ( )var z  and

1/2
/2ˆ ˆ[ ( )] ( )var z                                                        (11) 

Here /2z  denotes usual normal variate's upper percentile. 

IV. BAYESIAN MODEL FORMULATION 

There are three ingredients of the Bayesian model:  
(i) Probability Model :  ( | , , )f x     ; 

(ii) The prior distribution of model parameters : 
( , , )p     ; and 

(iii) Data : 1( , , )nx x x  

The Bayesian model can be created by multiplying the prior 
distributions of model parameters  ,   and  , with the 
likelihood function  L , , | x    for the provided data set 

1( , , )nx x x  to get the posterior distribution function 

using Bayes theorem.  
For a provided data set 1( , , )nx x x  from ( , , )CEP    , 

likelihood function can be defined as 
                 

 
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The prior distribution of ,   and   is be represented 
by ( , , )p    . The expression used for defining the joint 

posterior is presented below: 
( , , | ) ( , , ) ( , , | )p x p L x          

Prior distributions: 
Denote independent uniform priors for 1 1~ U(a ,  b ) , 

 2 2~ ,  U a b and gamma prior for   3 3~ ,  G a b  by 

1 1
1 1

1
( ) ;p where b a a

b a
   


 

2 2
2 2

1
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Posterior distribution: 
The posterior up to proportionality is produced after 
integrating prior distribution with the likelihood function 
using the Bayes' theorem, which is given below 

 

11
2 3

1

2
1

3
13 3 3

3 1
1 1 2 3

( , , | ) . .

      where  T   =   exp 1 exp

1 1
                T  = 

2

n
xi nn n n i

i
i

n

i
i

a
b a

p x e x T T

x

b
e T

b a b a a


 





     





 
 
 

 





 


 

  
 

           

   
   

     

 

 
or 



 
Bayesian Estimation and Prediction of Three-Parameter Complementary Exponential Power Distribution 

using MCMC Technique 

167 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication  
© Copyright: All rights reserved. 
 

Retrieval Number: 100.1/ijeat.B20931210220 
DOI:10.35940/ijeat.B2093.1210220 
Journal Website: www.ijeat.org 
 

 

 

1 113 3

1

1 exp
1

1

, , |

n
xi na n bn n i

i
i

n
xi

i

p x e e x

e T


 




     

 
 
     



 
  
   

 


 

  
 

 
 

 
 
 
  

 
The posterior can be very complex and inferences of close 
form doesn't seem probable. We suggest using MCMC for 
simulating samples from the posterior, in order to easily make 
inferences based on the sample. By operating a Markov chain 
that ultimately approaches to target distribution (called 
equilibrium or stationary), the MCMC methods 
creates samples, which for this situation, can be used as the 
posterior distributio n  x). These chains can be built 

in several ways, however every way, including the MCMC 
method developed by (Geman & Geman, 1984; Gelfand & 
Smith, 1990), which is known as Gibbs sampler, are particular 
cases of the Monte Carlo integrations over configuration 
space (Metropolis et al., 1953; Hastings, 1970), which is the 
general method. 
CEP probability model in OpenBUGS 
Authors have the corresponding code 
Since OpenBUGS doesn't contain the CEP distribution, the 
integration of ReliaBUGS module, which is a CEP 
OpenBUGS subsystem, is necessary. In Component Pascal 
for Complementary Exponential Power, a module 
dCEP(alpha, lambda, theta) is developed to conduct complete 
Bayesian approach in OpenBUGS with the help of  the 
technique given by (Thomas et al., 2006; Thomas, 2010; 
Kumar et al., 2010 & Lunn et al., 2013). Authors have the 
corresponding code 

V. REAL DATA ANALYSIS 

We have used the set of data, obtained from real-life sample, 
to demonstrate the Classical and Bayesian analysis for CEP 
distribution. Data given below shows a sample of n=100, 
containing the values of carbon fibre's tensile strength (in 
GPa) (Nichols & Padgett, 2006) where they used the 
parametric bootstrap technique for building the limits of 
control chart to monitor this data. 
0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 
1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 
1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 
2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 
2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 
2.81, 2.81, 2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 
2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 
3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 
3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 
5.56 
(1) Classical Analysis 

A. MLE Computation 

The ML estimates and standard error are generated directly 
through the log-likelihood function's maximization, 
shown in equation (8) from the Newton-Raphson technique 
using the platform of R. In parentheses, the Maximum 
Likelihood Estimates and their respective Standard Errors 

and the log-likelihood values (after maximization) are given 
by 

 ˆ 0.9237 0.2305  ,  ˆ 0.3938 0.0716    ˆ 3.579 1.6234    

and ˆ ˆˆ( , , ) -141.376      

B. Model Validation 
When parameters measured by the MLE method is 0.0646 
and their p-value is 0.7983, we determine the 
Kolmogorov-Smirnov (KS) distance between the empirical 
and the fitted distribution functions to validate the model.   In 
Fig. 3, we have graphed the fitted and empirical distribution 
function. From the higher p-value and fig. 3, we can observe 
the fitted CEP distribution is well fitted to the real data set that 
we have taken 

 

Fig 3.  Empirical and Fitted distribution function's graph 
 
Probability-probability (P–P) and Quantile-quantile (Q–Q) 
diagrams can be studied to further evaluate model 
validation.For the fitted model, P-P plots and Q-Q are 
illustrated in Fig. 4 and 5. We can see that, relative to the 
presented data, CEP distribution is good fitted.  

 
Fig.4. (P-P) plot with the use of MLEs as estimate 
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Fig.5. (Q-Q) plot with the use of MLEs as estimate 

 
Define abbreviations and acronyms the first time they are 

used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 
and rms do not have to be defined. Do not use abbreviations in 
the title or heads unless they are unavoidable. 
(2) Bayesian Analysis 
Independent uniform priors for  1 1~ ,  U a b ,  2 2~ ,  U a b  

and gamma prior for  3 3~ ,  G a b  are assumed with hyper 

parameter 
values

1 1 2 2 3 3(a 0.0, b 5.0), (a 0.0, b 2.0)  and  (a 0.001, b 0.001)      . 

The model is operated for the creation of two Markov Chains 
with a variation in the parameters' starting points, at a length 
of 40,000. For the first chain, we picked the initial values 

 1.1,  0.1, 1.5      and for the second chain, we pick 

the initial value  0.5,  0.5, 0.5     . Through the 

application of ergodic, as well as, trace mean plots, the 
convergence is tracked and after about 2000 observations, we 
observe that the Markov Chain approaches together. So to 
remove the impact of the initial values, the burn-in of 5000 
samples is substantially adequate.  Finally, sample sizes 
of 7000 can be produced from the posterior distribution by 
taking up every 5th outcome equally gapped for minimizing 
the auto-correlation between the generated deviates i.e. 
thin=5, beginning at 5001.  
Thus, we get posterior samples 

 ( ) ( ) ( )
1 1 1, , ; 1, ,7000j j j j     using chain 1 and 

 ( ) ( ) ( )
2 2 2, , ; 1, ,7000j j j j     using chain 2.  

We have used chain 1 for convergence diagnostics and 
posterior analysis. 

A.  Convergence diagnostics 

Before performing inferences such as the examination of 
parameter estimates, we need to observe graphs of the 
parameter estimates' the sequential (dependent) realizations. 
History (Trace) plot 
Fig.6 demonstrates model parameters' sequential 
realizations.The parameter's graphs are similar to horizontal 
band, without showing long downward or upward trends, then 
it has been proven that the chain has converged and hence, 
samples are expected to draw from the equilibrium 
distribution. 

 

Fig.6 ,   and  's Sequential realization 

Ergodic mean Plot 

Fig. 7 demonstrates the ergodic mean's time series plot for the 
chain's every model parameter. The convergence pattern 
based on running means   shows that the chain has converged 
and hence samples are likely to generate from the stationary 
distribution. 

 
Fig.7.  ,   and 's plot of Ergodic mean 

Brooks-Gelman-Rubin(BGR) diagnostic: 
 Convergence of the model is determined by using the BGR 
convergence diagnostics. (Gelman & Rubin,1992; Brooks & 
Gelman,1998). Using their methods, from Fig. 8, we conclude 
that chain has converged and hence posterior samples are 
likely to generate from the equilibrium distribution from 
which we can get posterior summary statistics. 

 
Figure 8 clearly demonstrates the achievement of 

convergence. Thus, the summary statistics (posterior) can 
now be determined. 
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B.  Posterior Analysis 

(a) Numerical Summary  
 Centered on the MCMC samples of CEP distribution's 
posterior features, different quantities of interest as well as 
corresponding numerical values have been 
observed.  Various numerical summaries of the CEP 
distribution's MCMC posterior samples are shown in Table 
1.  

Table 1: Numerical summaries on the basis of MCMC 
samples under uniform and gamma priors 

Characteristics alpha lambda theta 

Mean 0.9345 0.4299 4.4753 

Median 0.9089 0.3965 3.627 

Mode 0.8691 0.3604 2.7112 

Maximum 2.464 1.908 36.17 
97.5th 

Percentile(P97.5) 1.5011 0.7698 12.3908 

Third Quartile (Q3) 1.101 0.4673 5.2893 

First Quartile (Q1) 0.7483 0.3491 2.595 
2.5th 

Percentile(P2.5) 0.4863 0.2951 1.558 

Standard  Deviation 0.2607 0.1355 3.1915 

Skewness 0.508 3.3479 3.4112 

Minimum 0.303 0.2476 0.7943 
Highest probability density (HPD): Based on the 
postulation of the Unimodal-Marginal-Posterior distribution, 
Chen & Shao(1999) defined the algorithm which is applied to 
calculate the HPD intervals.  
Table 2 given below displays Credible and HPD intervals for 
model parameters ,  and   

Table 2. Credible and Highest Probability Density 
Intervals 

 
(b) Visual summary 
We presented the visual summary of the for the model 
parameters by constructing histogram, the box plot, rug plots, 
marginal posterior density estimate, and plot of density strip. 
The 95% HPD intervals have also been superimposed. These 
graphs give the nearly entire depiction of the model 
parameters' posterior uncertainty.The density strip is a shaded 
monochrome strip which demonstrates univariate distribution 
and its darkness at a point is in proportion to the PDF of the 
quantity at that point (Jackson, 2008). 
Histogram provides information into multi-modal behavior 
involvement, outliers of data, skewness, tail's behavior and 
can be contrasted to fundamental shapes related to 
symmetrical distributions 

 
Fig. 9.  Histogram, marginal posterior density and 95% 
Highest probability density interval for    centered on 

posterior sample 

 
Fig. 10. density strip and Box plot of  , centered on the 

posterior sample 

 

 
Fig .11 Upper panel: 95% Highest Probability Density 
interval, marginal posterior density, and Histogram; 

Lower panel:  's Box plot and density strip, centered on the 
posterior sample 

Parameter HPD C. I. Credible 
Interval 

  (0.4547, 
1.453) 

(0.4863, 
1.5010) 

  (0.2758, 
0.6595) 

(0.2951, 
0.7698) 

  (1.213, 10.1) (1.5580, 
12.3908) 
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Fig 12. Upper panel: 95% Highest Probability Density 

interval,marginal posterior density, Histogram 
Lower panel: density strip of (bottom) and box plot(top), 
centered on the posterior sample 
The marginal posterior density, histogram, and 95% percent 
Highest Probability Density interval are represented in Fig. 9, 
and for a  the box whisker plot and density strip plot centered 
on the posterior sample are represented in Figure 10.   In 
Figure 11 and 12, for   and , the related graphs have been 
illustrated.   Kernel density estimates were graphed with the 
help of R, assuming the Gaussian kernel and the 
bandwidth values choosen properly.  and  indicate 
positive skewed distribution while     is observed to be 
symmetrical.  
Comparison with Maximum Likelihood Estimation 
We have illustrated three graphs to compare to Maximum 

likelihood Estimate. The PDF ˆ ˆˆf(x; , , )   , with the help 

of Maximum Likelihood  Estimates and Bayesian 
estimates, calculated by MCMC samples are illustrated in 
Fig. 13.   uses gamma prior, and   and uses  the uniform 
priors The figure shows that the estimates of the Maximum  
likelihood and Bayes are very similar and show good fit. It is 
possible to gain more evidence with this observation by 
examining Fig.14. We have illustrated the 97.5th, 50th , 2.5th 
quantiles of the approximate density in Figure 14, which can 
be viewed as a model fit assessment centered on the posterior 
sample. 

 

 
Fig 14   Density estimates 

With the help of logical function density( ) in OpenBUGS, the 
PDF at every observed data point  posterior samples with 
7000 observations, has been calculated. The PDF associated 
with Maximum Likelihood Estimate is drawn with the help of 
"plug-in" parameter estimates. This indicates that the 
purposed model is reasonably good for the provided set of 
data. 
Reliability function estimate 
The reliability feature estimation utilizing posterior samples 
using the MCMC method is conducted to illustrate the 
proposed methodology's efficacy. Moreover 
Kaplan-reliability Meier's function calculation is used to add 
further significance in comparing the effectiveness.. Fig. 15 
displays the estimations of  reliability functions with the 
application of Bayes estimate derived from Markov chain 
Monte Carlo outcome and the empirical reliability function 
(Kaplan Meier SF). 
Fig.15 demonstrates that MCMC estimate of reliability 
closely matches the empirical reliability estimates 
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Fig 15 estimate of Reliability function via Kaplan-Meier and 

MCMC estimate Reliability and Hazard Estimation at 

 30 :    2.X t 0  

The posterior samples entirely explains posterior uncertainty 

of the parameters  ,     and  using the posterior 
distribution's kernel estimate which is valid for any parameter 
function, such as hazard and reliability 
functions. Consider giving interval and point estimates 
at  t=2.0 (X30) for hazard and reliability functions. In 
OpenBUGS with the help of reliability() and logical function 
hrf() as per (Kumar et al., 2010), at mission time t=2.0, we 
calculated the hazard and reliability functions for 7000 
posterior samples. We can calculate with the help of the 
equations in (4) and (5) at t=2.0. 

 ( ) ( ) ( )
1 1 12.0; , , ; 1, ,7000j j jR x j    And, 

 ( ) ( ) ( )
1 1 12.0; , , ; 1, ,7000j j jh x j     

 

 
Fig. 16 Visual presentation of hazard(left side) and 

reliability(right side) at t=2 

Fig. 16 illustrates the hazard (left side) and reliability functions 
(right side) marginal posterior density estimates as well as their 
histograms centered on sample sizes of 7000 with the help of 
the Gaussian Kernel. In Fig. 16 The estimates show that the 
marginal reliability distribution shows negative 
skewness while the hazard distribution shows positive 
skewness. 
In Table 3, the posterior summary for Reliability and Hazard 
function at mission time t=2.0 using MCMC method are 
presented.The MLEs can be calculated with the help of the 
invariance feature of the Maximum Likelihood estimates.  

Hence, MLEs  R̂ t = 2.0 0.7097  and  ĥ t 2.0 0.5264   

Figure 17 shows trash plot of 7000 chain values, with 
respective 90% Highest probability density and posterior 
median, for the reliability functions and hazard functions 
Table 3: Hazard and Reliability functions' posterior summary 

when t=2.0 

Statistics Hazard Reliability 

Mean 0.5047 0.7043 

Median 0.5013 0.7054 

Mode 0.4893 0.7083 
 Standard 
Deviation 0.0669 0.0376 

Skewness 0.2992 -0.1501 

Maximum 0.8423 0.8259 

97.5th 

0.6451 0.7755 Percentile(P97.5) 
Third Quartile 

(Q3) 0.5484 0.7299 
First Quartile 

(Q1) 0.4567 0.6791 
2.5th 

Percentile(P2.5) 0.3846 0.6272 

Minimum 0.3041 0.5607 

95% HPD (0.3770, 
0.6356) 

(0.6313, 
0.7788) Credible Interval 

95% Credible (0.3846, 
0.6451) 

(0.6272, 
0.7755) Interval 

 

 

Solid lines(-)-90% Highest Probability density 
Dashed line(...)=Posterior Median 
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Fig 17. Hazard function(upper panel) and Reliablity 
function(Lower panel) at t=2 sec Markov Chain Monte 

Carlo Outcomes 

VI. MODEL COMPATIBILITY 

Posterior Predictive Checks: 
For examining model fit, (Gelman et al.,1996; Gelman et 
al.,2004)'s posterior predictive checks has proven to be one of 
the superior approach where the model is considered to have a  
good fit, when the data obtained by simulation from posterior 
predictive distribution in comparison is close to observed 
data.Figure 18 displays predicted vs. observed quantiles Q-Q 
plot of 1000 replication of each MCMC generated samples 
sizes 2000 from the posterior distribution for the model 
parameter ( , , )    .In Fig.18 as stimulated data is very 

close to the observed data of the predicted vs. observed Q-Q 
plot that, the conclusion that, complementary exponential 
power model is compatible with the given real dataset where  
equation of replication is  

rep
ix     ; 1, ,100i        for each    , can be derived.  

 
Fig. 18.  predictive vs empirical Q-Q plot based on 1000 

MCMC generated samples 
 
 
 
 
 

 

 

Fig 19. Estimates of density of largest  (100)X , 

smallest  (1)X  and the (30)X order future observation 

We can get more clarification on model compatibility by 
plotting density estimates of replicated future data. With the 
help of MCMC methodology, 1000 samples have been 
plotted from the posterior and then from simulation predictive 
future data of the same size is obtained. The posterior model's 
replicated future observation can be superimposed with the 
corresponding data obtained through observation. We have 

plotted density estimates of  (1) (100) (30),X X and X  in 

Figure 19. Corresponding observed values is represented by 
vertical lines. As shown in Fig 19, the posterior predictive 
distributions are centered over the observed data, which 
signifies that the model has a good fit. The Markov Chain 
Monte Carlo results of posterior 
characteristics are displayed in 
Table 4 
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Table 4:  Posterior characteristic 

 
 

 
Fig.  20 Graphical posterior predictive check for the model 

adequacy 
Figure 20 shows a model adequacy's posterior predictive 
check in a graphical manner, where, data observed is 
superimposed. As a whole, the simulation outcomes of the 
posterior predictive model show that the data demonstrates 
good fit with the model.  Model fit evaluations are far too 
liberal only centered on posterior predictive checks, 
thus posterior predictive checks alone is not suitable for 
selection of model (Ntzoufras 2009) 

VII. CONCLUSION 

In classical approach, we have plotted P-P and Q-Q diagrams 
for validation of model and found that CEP distribution is 
good fitted to the given real data set but this approach does not 
give entire pictures of posterior distribution. Bayesian 
approach uses prior knowledge about model parameters as 
well as for the available real data set and it gives posterior 
distribution's entire summaries for the model parameters on 
the basis of the posterior MCMC samples technique. We have 
applied exploratory data analysis procedures for the posterior 
analysis. We have performed convergence diagnostic using 
trace plot, erogodic mean plot and BGR diagnostic and found 
that Markov chain has converged and posterior MCMC 
samples are likely to draw from stationary posterior 
distribution. It has been shown that MCMC procedure is true 
for model parameters every function including hazard and 
reliability function. Credible intervals for model parameters, 
hazard and reliability function, etc. can be estimated. The 
posterior predictive check method has been applied to present 
model compatibility. The developed techniques are applied 
on a real data set under uniform and gamma priors. We have 
that Bayesian estimators are more efficient than classical 
estimators for any real data set. Therefore, the MCMC 

method is used for performing complex Bayesian modeling 
relating to the CEP model 
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