
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1242

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2696129219/2019©BEIESP
DOI: 10.35940/ijeat.B2696.129219
Journal Website: www.ijeat.org

Abstract: A data race is similar to any other bugs in software
application. Data race will result in the execution of the program
unpredictable. There are 46 documented races in Linux kernel.
OpenMP is an Application programming interface for shared
programming model. It is a construct based model which works on
fork join parallelism. OpenMP achieved node level parallelism
and can manage data in single instruction multiple data and
single program multiple data parallelism by executing different
constructs like work sharing and parallel constructs. In any
shared programming model, variables are shared by multiple
threads in the program to execute different tasks by different
threads. OpenMP is used to achieve parallelism by creating shared
variable environment but there are chances to have data races in
OpenMP programs. In this paper we discuss different algorithms
to detect data races in OpenMP programs.

Key words: OpenMP , data race detection ,OMPT, shared
programming model.

I. INTRODUCTION

In a multiprocessor if each and every processor has equal
amounts of time to access a common global address space
which is being shared among all the different multi
processors then such kind of architecture is referred as
symmetric multiprocessor. Shared instructions multiple data
parallelism can be implemented by a shared memory model
in OpenMP. In a heap of processes that are trying to use the
resources, OpenMP uses multiple threads to execute the
parallel processes where the multiple threads communicate
through the shared address space. OpenMP is a shared
memory programming model in which a task is implemented
by a group of threads to achieve parallelism. OpenMP is a
directive or construct based model where the constructs in
OpenMP falls into four major categories, which are parallel,
task, synchronization and work sharing constructs. OpenMP
has several important features like the tasks will be executed
in a shared address space and the variables will be shared
unintendedly to achieve a disciplined access of the data.
Memory access events like read or write will have some
notable changes in memory content and when the changes are
not properly recorded then it will be considered as violation
of concurrency control rule.

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
B. Sai Manvitha Reddy, Pursuing Under Graduation Stream of

Computer Science Engineering, Vellore Institute of Technology, Tamil
Nadu, India.

A. Hari Kishore, Pursuing Under Graduation Stream of Computer
Science Engineering, Vellore Institute of Technology, Tamil Nadu, India.

P.V. S. Krishna Manmayi, Pursuing Under Graduation Stream of
Computer Science Engineering, Vellore Institute of Technology, Tamil
Nadu, India.

Dr. Mahadev A. Gawas, Associate Professor, Department of Computer
Science and Engineering, VIT Vellore India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

When two memory events try to access the same memory
location or same variable to change or update it without
proper synchronization that condition is referred as data race.
Though there are multiple accesses to a variable one must
ensure that they are not conflicting as the resulting situation
will lead to a data race. The output of a program with multiple
accesses of the data will be unpredictable as the write access
will conflict the read access on the same variable. These
conflicts can be avoided by paying close attention to the
shared environment. One of the famous debugger to know
the data conflicts is to add print statements in the code and
this is not feasible when we have large code and especially in
the parallel programs this cannot be identified. As a result the
need of tools to detect the data race is growing. A data race
detector should have the ability to understand the program
and the all the memory access events on a variable. The data
race detector should be able to identify difference between
the mutual exclusion and concurrency, as data race occurs
when there are two different memory access events on the
same variable. When two events exist in a relation known as
happens-before, the order of the execution is defined. Even
though after establishing a happens-before relation between
two events and still they are not in order then they are
concurrent. SPMD (Single Program Multiple Data)
parallelism keeps on being one of the most well known
parallel execution models being used today, as exemplified
by OpenMP for multicore frameworks and CUDA and
OpenCL for quickening agent frameworks. The fundamental
thought behind the SPMD model is that all legitimate
processors (specialist strings) execute a similar program,
with successive code executed repetitively and parallel code
(work sharing builds, obstructions, and so on.) executed
helpfully. In this paper, we center on OpenMP as a model of
SPMD parallelism. The OpenMP parallel develop shows the
production of a fixed number of parallel laborer strings to
execute a SPMD parallel area. The number of strings can be
indicated in the code, or in a domain variable
(OMP_NUM_THREADS), or by means of a runtime work,
set_omp_num_threads() that is called before the parallel
locale begins execution. The OpenMP obstruction build
indicates a boundary activity among all strings in the present
parallel area. Every powerful case of a similar boundary
activity must be experienced by all strings, e.g., it isn't
allowed for a hindrance in a then-condition of a if
proclamation executed by (state) string 0 to be coordinated
with a hindrance in an else-statement of the equivalent if
proclamation executed by string 1. For build demonstrates
that the quickly following circle can be parallelized and
executed in a work-sharing mode by every one of the strings
in the parallel SPMD area. A certain obstruction is performed
following a for circle, while the nowait statement handicaps
this certain obstruction. Further, a hindrance isn't permitted to
be utilized inside a for circle. When the schedule (kind,
chunk_size) proviso is connected to a for develop,

Race Condition Detection Algorithms
B. Sai Manvitha Reddy, A. Hari Kishore, P. V. S. Krishna Manmayi, Mahadev A. Gawas

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B2696.129219&domain=www.ijeat.org

Race Condition Detection Algorithms

1243

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2696129219/2019©BEIESP
DOI: 10.35940/ijeat.B2696.129219
Journal Website: www.ijeat.org

 its parallel emphases are gathered into clusters of piece size
emphases, which are planned on the specialist strings as per
the arrangement determined by kind. In this paper, we
confine our regard for OpenMP parallel circles with kind =
dynamic and piece size = 1, which suggests that every cycle
can be executed by any string in the parallel district.
In this survey we will compare the different techniques in
three aspects. Accuracy,Firmness and ease of use.If a
techniques is completely accurate then it is said to be
complete tool. A complete tool will never give false
positives. The lesser number of false positives we have, the
more accurate the tool. By firmness we mean the level of
promise will be given by the technique.We may say that the
tool is firm when we have some unimportant situations which
will give more false negatives. Ease of use generally means
how difficult or easy the tool is to convert it into a
development process. Since the research tools are often
known for not scaling to larger. In our paper we will also
consider scaling as a factor.

II. STATIC ANALYSIS

There are two approaches for dealing with any data race. One
is static and the other is dynamic. Without executing the set of
instructions or a program code will be analyzed using
dependency graphs and etc., to write the lines of codes
serially in order to examine them, this is known to be a static
approach. There are many race detection tools which follow
static approach. Archer is one of the popular static data race
detectors. ARCHER maintains a list of two separate code
blocks one is race free and the other having dependencies.
Since dependencies may cause a data race the section of the
code having the dependencies will be later examined by an
LLVM inbuilt run time library to eliminate the dependency as
a result race will be eliminated. ARCHER performs
dependency analysis on the tasks of an OpenMP program.
This is done by an existing LLVM, Clang suite tool Polly.
The input of an ARCHER tool will be an OpenMP program
and output will be the intermediate representation of LLVM
by Clang front end. LLVM passes will be analyzed by a
LLVM pass analyzer and LLVM IR will be analyzed to
identify the code regions that are race free and can be
executed sequentially.
The information about race free and possibly dependency
free regions, gathered by the dependence examination, are
taken care of in an once-over in wording of line numbers in
the source code. The summaries containing the line amounts
of race free areas are viewed as blacklists since every one of
the heaps/stores recorded can be neglected during the
dynamic examination performed by Thread Sanitizer. Right
when the static assessment passes are done, the Thread
Sanitizer instrumentation pass instruments the IR code to
insert the limits required for getting data races at runtime. Our
changed Thread Sanitizer instrumentation pass
acknowledges the blacklists as its commitment to keep away
from instrumenting the sans race regions as perceived by
Polly.
Though the static analysis has advantages it has lot more
disadvantages. While the program is getting executed the
tasks which are not dependent may become dependent
depending upon the constructs of the OpenMP and then the
static analysis fails.
When the data races are detected at the compile time then the
approach is static but when the races are detected at run time
that is dynamic. We prefer dynamic race detectors over static

race detectors as the number of false positives will be more in
the static approach. There are two different approaches to
detect the data races dynamically that are post-mortem or
on-the-fly analysis. Post mortem analysis will check the data
races when the execution of the program terminates whereas,
on the fly race detectors will look after the data races during
the execution of the program itself.
In static approach the code is being analyzed to detect
unserialized access to the shared data but this approach has
some disadvantages. When a data or shared variable is
allocated dynamically on the heap then static analysis could
not distinguish the data allocated on heap, as a result number
of false positives will be increased

III. ON -THE -FLY ANALYSIS

On-the-fly race disclosure techniques rely upon program
assessment. Thus, on-the-fly assessments work at run time,
visit simply possible ways, and have exact points of view on
the estimations of shared data and of other resource state.
These techniques does not rely on assumptions because we
analyze the code when during actually running it. Regardless,
due to their dynamic nature, they power a staggering
computational overhead, making it time consuming to run
tests and tremendous on tasks that have serious arranging
essentials. Hence when compared to the static approaches
dynamic approaches require lot of computational power and
cost high. The term high overhead infers that, while, on a
fundamental level, on-the-fly mechanical assemblies can
figure correct information, according to the dynamic
approach.
Basically they are compelled to what can be enlisted capably
both truly. Moreover, it is problematic or for sure, even hard
to move race conditions by on-the-fly frameworks, as a result
of the non-determinism displayed by schedulers. Besides,
their reliance on instrumentation normally hinders their usage
on low-level code, for instance, OS pieces, contraption
drivers and complex embedded systems. Finally, on-the-fly
contraptions can find bungles just on executed ways, which
depend upon commitment to the system. This not simply
makes dynamic examination irksome yet also sometimes
unfathomable. Along these lines, it is appealing to have an
area segment that can find races on a particular commitment
with a single program execution, i.e., have the Single Input,
Single Execution (SISE) property.
 Everything considered, the SISE property can be
manhandled for ventures that have inside non-determinism.
Thus, the absolute preliminary of such system is generally
not possible. Tragically, the amount of potential ways can
grow exponentially with the size of code. This infers, before
long, testing can simply practice a little part of each
pragmatic way, leaving huge systems with a development of
botches that could take significant lots of execution to appear.
In specific structures it is unmistakably increasingly
abhorrent, i.e., in a working structure some code may never
run. Most of such code lives in contraption drivers,
furthermore, only a little division of these drivers can be
attempted at a customary site, since there are normally few
presented devices.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1244

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2696129219/2019©BEIESP
DOI: 10.35940/ijeat.B2696.129219
Journal Website: www.ijeat.org

IV. DYNAMIC APPROACH

Multithreaded programs have high chances of errors and data
races if the mutual exclusion disciplines of a shared variable
by multiple threads are not well structured. The shared
memory location will have to be analyzed during the
execution of the program and every shared memory reference
will be monitored to understand a dependency. In dynamic
approach the data race will be detected at the run time. There
are several approaches in the dynamic data race detection and
also different tools for race detection like cilkscreen for cilk
programs, happens before analysis and Eraser etc. Two
events can have a happens-before relation if there exists a
synchronization between the events.
Definition 1. Let €i and €j be two events (e.g., a read, write,

or synchronization operation) in a concurrent program. Let
→ denote the happens-before relation between two events. €i

→ €j if: i) €i and €j occur in the same thread and €i precedes
€j in program order, or ii) there exists a directed

synchronization from €i to €j , or iii) there exists an event k

such that €i → €k and €k → €j (transitivity) .In happens
before relations events that occur before will have less time
stamp than the events that occur later. The events having
happens-before relation can be established with transitivity.
The main disadvantage of happens before analysis is, In
happens before analysis one has to note all the memory
access events that occurs on a single variable.
In all the existing data race detection algorithm, the algorithm
works on thread level scheme to find data concurrency or
data races. In such approaches when the memory access
events try to access a shared variable then the events are
mapped to the same threads but they can be considered as
concurrent events then there are chances of missing a race, In
other cases for example if the task that can lead to a data race
are running on different number of threads then also there are
chances to miss a data race so a data race detector should
have the capability of understanding the construct of
OPENMP and shared variables in the program while the
program is executing.
ROMP supports, on-the-fly race detection in parallel
program execution. Many data race detection tools employee
hybrid approach or a hybrid algorithm that combines two or
more approaches to detect a data race and the approch will be
choosen based on data or switches the algorithm while the
algorithm proceeds,like happens before ordering and lockset
analysis for data race detection.
On the fly analysis is something which analyses the code
during the execution of the program. On the fly analysis uses
the standard happens-before relation. In ROMP happens
before relation is not used instead happens before serial
relation is considered. For example if the events in the history
, current and future are €’ , € and € ‘’ then if there exists a

happens before relation between current and history events
and happens before relation between history and future
events and if € || €’’ then there exists happens before relation r

between current and history events but not happens before
serially.
For example there exists two concurrent events that can be
executed in parallel say a, a’ and the access history of

memory location (l) contains a’, before executing a, any
future access all that is concurrent to a is also concurrent to a’

, if the events can be related by happen before relation then
they can be transitive . But parallel events cannot be
transitive. This is a contradiction. All sets analysis establishes
a pseudo transitivity between parallel events which can miss

a data race. But in ROMP, pseudo transitivity of parallel
events is not considered, maintaining access history of
memory location is an important aspect of ROMP. By
maintaining an access history of events races cannot be
missed. For example, if two events a and a’ are concurrent or

parallelly executed by the tasks t and t’, and if t’ is still

executing a’ without having a to the access history would
miss a race and is a false positive .If t’ performs write

operation that would conflict a.
Before having an access history there should be a note on
mutual exclusion entries that should be held on a memory
location. A data race will be found by considering four
factors. They are 1.memory location being accessed[1] 2. An
access record of l which contains {memory access event, type
of the event whether read or write and mutual exclusion
entities on a memory location}[€, a, h]. Apart from these

history will be maintained for each memory location .The
access history can be pruned after successful revision
whether they have any use in detecting race and can be
decided whether it can be pruned or not because on basis of
the access history, if we can find a data race our goal is
completed. Multiple data races on a memory location are
efficient and practically feasible. Data races are detected by
pruning the access history.
That is for every current memory access record [€, a, h] if
their concurrent record [€’ , a’ ,h’] exists in the access history

of l then there are high chances of a data race , if access event
€ is parallel to €’ , lock sets of each record h and h’ does not

have any intersection either one of the events are write then it
is a data race. If both of the events are write and the event
parallel to the previous event is read and h is super set of h’
there exists happens before relation between € and €’. Then

the record [€’ , a’ ,h’] can be pruned from the history[l] .In
another case if both the events are read and other parallel
events is write then h is superset or equal to h’, then no
change in the access history. In none of the above cases,
current record [€, a, h] can be added to the access history[l].
 Every parallel program can be expressed in the form of
directed acyclic graph to represent the dependencies.
OpenMP works on fork join parallelism. OpenMP has several
constructs which is a thread based model can not explain the
logical concurrency between the events. Open task graph can
be visualized and analyzed using Intel flow graph analyzer.
In OpenMP task graph every vertex is labelled with certain
procedure. In ROMP, OpenMP task graphs are labelled with
a methodical approach. A task dependency graph gives the
relation between different regions of the code and in the
OpenMP programs as the code executes and different
constructs are executing the dependency between each thread
should be understood for detecting data race.
#pragma omp task depend (type: list items) is the construct
used to establish the dependencies between different list
items of different type. This can be understood by the
following example:
void task_dependency_example
{
int a, b, c;
#pragma omp task depend(out : a, b)
a=b=1;
#pragma omp task depend(int : a) depend (out :c)
c=a;
#pragma omp task depend(in : b)
depend (out : d)
d=b;

http://www.ijeat.org/

Race Condition Detection Algorithms

1245

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2696129219/2019©BEIESP
DOI: 10.35940/ijeat.B2696.129219
Journal Website: www.ijeat.org

#pragma omp task depend(in : c, d)
Computation(c, d);
}
For the above example the task graph will be:

Fig1.task graph of a sample openmp program.

Dynamic data race deectors (including ROMP tool) cannot
be able to support the race detection for OpenMP Single
Instruction Multiple Data develops with the present
compilers.
A compiler either or not replaces scaler version of code with
vector code,Scalar code which is marked with an OpenMP
Single Instruction Multiple Data directive. Without the first
scalar code as a guide a dynamic race detector cannot decide
whether the vectorizer changes the program semantics by
overlooking an data race related with data reliance.

V. ROMP TASK LABELLING

To understand the synchronization between the tasks in the
task graph of the OpenMP model each task will be assigned
with a label. Each order of the event can be understood by the
access history of the location. The serial execution of the
multiple parallel programs is feasible keeping logical
concurrency into consideration. For each shared variable in
the shared address space the access history is maintained. The
label of a task depends on the history ,therefore when a new
task is created the labelling depends upon the nesting level of
the OpenMP tasks. Task label segments have different fields
and will be updated accordingly.They are
{offset,span,iteration id,taskwait count,task create count,loop
count, phase , task waited, task group info ,segment type}.
The offset will be the relative id of the worker thread in a
team of threads forked when parallel construct is invoked.
Span will be the total number of threads forked other than the
master thread for each fork join loop. Iteration id will be the
relative id of the work share construct if any exixts in the
program. Task wait count will be the number of taskwait
encountered in the current task construct. Task create count
will be the enumber of explicit tasks . loop count will be the
number of work share loops ended by the current task in
execution. Phase will the number of time the task under
execution is entering or leaving the critical .task waited will
be a boolean which will be set to true if the task is waited by
the parent.
Task group info will the information of the orderings of the
tasks. Segment type will be the type of the task , it can
explicit ,implicit and logical. For an implicit task offset and
span will be 0 and team size respectively. For an explicit task
offset and span will be 0 and 1 respectively. Each current
label will be the nested label of its parents . That is for every
current task its label will be appended to the parent tasks

label. There are a notable advantages of this labelling
scheme. Two queries can be compared by comparing their
labels. Multiple queries can be executed in parallel.

VI. CONCLUSION

Static or dynamic investigations can improve each other by
giving data that would somehow or another be inaccessible.
Performing initial one investigation, at that point the other
(and maybe repeating) is more dominant than performing it is
possible that one in separation. Then again, various
examinations can gather various assortments of data for
which they are most appropriate. This notable collaboration
has been and keeps on being misused by specialists and
experts the same. As one straightforward model,
profile-coordinated arrangement [1] uses indications about
every now and again executed methodology or code ways, or
usually watched qualities or types, to change code. The
change is significance saving, and it improves execution
under the watched conditions yet may debase it in divergent
conditions (the right outcomes will at present be processed,
just devouring additional time, memory, or power). As
another model, static examination can forestall the gathering
of certain data by ensuring that gathering a littler measure of
data is satisfactory; this makes dynamic examination
increasingly productive or exact.
ROMP is a hybrid data race detector in OpenMP programs
which is dependent on several LLVM run time libraries and
several binaries. ROMP has more performance when
compared to other dynamic data race detectors and also static
analyzers. ROMP follows the same algorithm as ARCHER
but the precision is increased by taking the logical
concurrency in to consideration. The numbers of false
positives are decreased. ROMP has almost the capability of
understanding a code semantically for race detection.

REFERENCES

1. Yizi Gu, John Mellor-Crummey ‘’Dynamic Data Race Detection for
OpenMP Programs’’.

2. OpenMP Language Committee,
“OpenMPApplicationProgrammingInterface,version4.5,”http://www.

openmp.org/wp-content/uploads/ openmp-4.5.pdf, November 2015.
3. https://contribute.llnl.gov/tutorials/openmp/(online)
4. ‘’An Efficient Algorithm for On-the-Fly Data Race Detection Using an

Epoch-Based Technique’’.
5. R. H. B. Netzer and B. P. Miller, “What are race conditions?: some

issues and formalizations,” ACM Letters on Programming Languages
and Systems, vol. 1, no. 1, pp. 74–88, 1992.

6. Vineet Kahlon1 , Yu Yang2 , Sriram Sankaranarayanan1 , and Aarti
Gupta1 .’’ Fast and Accurate Static Data-Race Detection for
Concurrent Programs’’.

7. “Eraser: A Dynamic Data Race Detector for Multithreaded Programs’’
8. A Survey of Methods for Preventing Race Conditions by Nels E.

Beckman; May 10, 2006
9. ‘’RaceTrack: Efficient Detection of Data Race Conditions via

Adaptive Tracking’’ Yuan Yu, Tom Rodeheffer, Wei Chen.
10.] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable

and precise dynamic datarace detection for structured parallelism,” in
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’12. New York, NY,
USA: ACM, 2012, pp. 531–542.

11. R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient

data race detection for async-finish parallelism,” in Proceedings of the
First International Conference on Runtime Verification, ser. RV’10.

Berlin, Heidelberg: Springer-Verlag, 2010, pp. 368–383. [Online].
Available: http://dl.acm.org/citation.cfm?id=1939399.1939430

http://www.ijeat.org/
https://contribute.llnl.gov/tutorials/openmp/(online)
http://www.cs.washington.edu/homes/tom/pubs/eraser.pdf
http://www.cs.cmu.edu/~nbeckman/papers/race_detection_survey.pdf
http://dl.acm.org/citation.cfm?id=1939399.1939430

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1246

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2696129219/2019©BEIESP
DOI: 10.35940/ijeat.B2696.129219
Journal Website: www.ijeat.org

12. A Review of Race Detection Mechanisms, Aoun Raza.
13. Flanagan, C., Freund, S.N.: Type-Based Race Detection for Java. In:

Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, Vancouver,
British Columbia, Canada, pp. 219–232 (2000).

14. Helmbold, D.P., McDowell, C.E.: A taxonomy of race detection
algorithms. Technical Report UCSC-CRL-94-35 (1994).

15. Static and dynamic analysis: synergy and duality. Michael D. Ernst.

AUTHORS PROFILE

B.Sai Manvitha Reddy,She is pursuing under
graduation in the stream of Computer science
and Engineering at Vellore Institute of
Technology, Tamil Nadu, India.

A.Hari Kishore, He is pursuing under graduation
in the stream of Computer science and
Engineering at Vellore Institute of Technology,
Tamil Nadu, India.

P.V.S.Krishna Manmayi , She is pursuing

under graduation in the stream of Computer
science and Engineering at Vellore Institute of
Technology, Tamil Nadu, India.

Dr. Mahadev A. Gawas, is currently working

as an Associate Professor in the Department of
Computer Science and Engineering, VIT Vellore
India. He completed his Ph.D. from the
Department of Computer Science & Information
Systems, BITS Pilani, India. He has authored
several research papers in refereed international
conferences and journals. His research interests

include wireless communications, multimedia communications, cross-layer
architecture, vehicular ad hoc networks. He has received a number of
awards, such as the Asia Pacific Advanced Network Fellowship, and
Microsoft Research Travel Grant fellowship.

http://www.ijeat.org/

