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Design of Pseudo Random Number Generator using 
Linear Feedback Shift Register 

Shabbir Hassan, M. U. Bokhari 

Abstract: - Nowadays security has become a great concern in 
the field of computer science and information technology. In 
order to protect data from unintended users and to achieve a 
desirable level of security, several cryptographic algorithms based 
on various technology have been proposed. Linear Feedback 
Shift Register (LFSR) may play an important role in the design 
of such cryptographic algorithms. LFSR based cryptographic 
algorithms are often lightweight in nature and are more suitable 
for resource constraining devices. In this paper we present a 
detailed analysis of LFSR and design of 𝒎 − 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 LFSR 
to implement cryptographic algorithms. 
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Field 𝑮𝑭(𝒑𝒎), Primitive Polynomial 𝒑(𝒙), Primitive Polynomial 
𝒑(𝒙) over 𝑮𝑭(𝒑𝒎), LFSR, 𝒎 − 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆, Run Length, Linear 
Recurrence, NIST. 

I. INTRODUCTION 

The paper is written to represent an introductory into the 
depth concepts of Linear Feedback Shift Registers, 
Primitive Polynomial and Galois Field. Since these branches 
of mathematics have a major contribution in computer 
science and applications. In order to secure data in a 
communication channel we use several encryption 
algorithms, keys and mathematical tools. All these attributes 
can be easily implemented using mathematical concept that 
has been dealt in this paper. Modular arithmetic and 
equivalence classes are widely used to implement a 
cryptosystem, this paper is written to insight all these 
mathematical tools with a suitable example. Due to the 
simple structure and implementation of LFSR, it is widely 
used in network communication and industries for 
generating pseudo random sequences. LFSR has the widest 
implementation in networking and cryptography. Generally 
LFSRs are constructed by D Flip-Flop and two input XOR 
gates. It can be implemented in two ways, first is Fibonacci 
implementation and other is D Flip-Flop implementation. 
An LFSR with maximal length sequence output is called 
𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 LFSR and is widely used in experimental 
design to get magnetic resonance imaging experiments, a 
pioneering non-invasive technology for studying the 
behavior of human brain and to generate Pseudo Noise (PN) 
or a Pseudorandom Sequences (PS). 
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the functional magnetic resonance imaging experiment 
shows that the brain stimuli have correlated with the 
magnetic resonance scanner of the brain to collect functional 
MRI data for statistical analysis. An 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 can 
also be used to justify the order appearance and timing of 
the brain stimuli. Due to this promising work, primitive 
polynomial and 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 LFSRs have gained more 
acceptance in practice. In this paper we present modular 
arithmetic, primitive polynomial over Galois Field, LFSR 
and statistical inference of 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 LFSR along with 
their related attributes.  

II. MOTIVATION 

Leonardo Bonacci known as Fibonacci was an Italian 
mathematician is considered being the most talented western 
mathematician of the middle age. The Fibonacci numbers 
are the sequence of numbers defined by a linear recurrence 
equation: 

𝒔𝒏 = 𝒔𝒏−𝟏 + 𝒔𝒏−𝟐 

 
Figure.  I 

In this series the next number is obtained by adding the 
previous two numbers. By convenience the first two term 
are either (0 or 1) or (1 and 1). Fibonacci numbers are 
closely related to the Lucas numbers. A Fibonacci generator 
is shown in Figure I. Fibonacci numbers are widely used in 
computer science to develop algorithms, Fibonacci Search 
and to implement Fibonacci Heap Data Structure. It is also 
used to interconnect Distributed System themselves. In the 
field of biology, Fibonacci number play a vital role in tree 
branching, arranging leaves on a tree's stem (Phyllotaxis), 
bearing pineapple sprouts, producing uncurling fern and 
many more. These application of Fibonacci number 
motivate us to gather some idea and to correlate Fibonacci 
series with LFSR. 

III.MODULAR ARITHMETIC 

The concept of congruence was first introduced by the 
German mathematician “Karl Friedrich Gauss”. Let 𝑚 be a 
fixed integer, then an integer 𝑎 is said to be congruent to 
another integer 𝑟 𝑚𝑜𝑑𝑢𝑙𝑜(𝑚) if 𝑚|(𝑎 − 𝑟) and is denoted 
as 𝑎 ≡ 𝑟 𝑚𝑜𝑑𝑢𝑙𝑜(𝑚).  
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Where 𝑚 is called modulus and 𝑟 is called residue. If 0 ≤

𝑟 ≤ 𝑚 then 𝑟 is called Least Residue where as if 0 ≤ |𝑟| ≤
𝑚

2
 then 𝑟 is called Minimal Residue. For some variable 𝑎 =

13 and 𝑚 = 9, the value of residue 𝑟 could be 4, −5 and 
many more. Computation of the residue is a very typical 
work in applied cryptography. For the better consideration 
let us take a nice example. ∀𝑎, 𝑟 ∈ ℤ, assume that 𝑎 = 42 
and 𝑚 = 9, few possible values for 𝑟 may be 
−3, −12, 6, 15 … and many more. Hence it ensures that for 
residue 𝑟 infinite many unique residues are possible. Now 
let’s try to compute the residue of 13 ∙ 16 − 8 under 
𝑚𝑜𝑑𝑢𝑙𝑜(5) operation, that is what would be the remainder 
when 13 ∙ 16 − 8 is divided by 5. After doing simple 
arithmetic, obviously the residue will be zero, similarly 
548𝑚𝑜𝑑𝑢𝑙𝑜(24) would leave residue 1.  

However the above approach for finding residue is too 
difficult. For convenience a lucid approach had developed is 
called Equivalence Classes. An equivalence class is nothing 
but it is a set of all possible residue. Let’s assume any 

integer 𝑎 = 12 and 𝑚 = 5, the residue 𝑟 may be 2, 7, −8, 17 
and many more. So the possible presumed set of elements 
that can be a value of residue 𝑟 is an equivalence class of  
𝑚𝑜𝑑𝑢𝑙𝑜(5). In this case {… − 13, −8, 2, 7, 12, 17 … } form 
an equivalence class with 𝑚𝑜𝑑𝑢𝑙𝑜(5). All the elements of 
the class behave equivalent under 𝑚𝑜𝑑𝑢𝑙𝑜(5) operation. 
Let’s see what trick plays when we compute the residue of a 
large value in equivalence classes. There exist 𝑁 distinct 
equivalence classes of 𝑚𝑜𝑑𝑢𝑙𝑜(𝑁). 

𝐴 = { ∙∙∙ −15, −10, −5, 𝟎, 5, 10, 15, ∙∙∙ }  

𝐵 = { ∙∙∙ −14, −9, −4, 𝟏, 6, 11, 16, ∙∙∙ }  

𝐶 = { ∙∙∙ −1, −8, −3, 𝟐, 7, 12, 17, ∙∙∙ }  

𝐷 = { ∙∙∙ −12, −7, −2, 𝟑, 8, 13, 18, ∙∙∙ }  

𝐸 = { ∙∙∙ −11, −6, −1, 𝟒, 9, 14, 19, ∙∙∙ }  

Now let’s try to compute the residue of (13 ∙ 16 −

8)𝑚𝑜𝑑𝑢𝑙𝑜(5) with the help of 𝑚𝑜𝑑𝑢𝑙𝑜(5) equivalence 
classes. In this approach the numeric value of problem is 
replaced by the name of class for which they belongs, then 
reduced the alphabetic expression if possible, and at the end 
we substitute any of the least values corresponding to that 
particular class. Since any of the equivalence classes are not 
a set of integers or real numbers itself. It can be seem that it 
has very less number of elements as of ℤ 𝑜𝑟 ℝ. Obviously it 
will take a small complexity to search an element as 
compared with the complexity required in ℤ 𝑜𝑟 ℝ. e.g. to 
find the value of (13 ∙ 16 − 8) 𝑚𝑜𝑑𝑢𝑙𝑜(5), we must 
substitute character 𝐷 instead of 13 and 8, and 𝐵 instead of 
16 because13 and 8 ∈ 𝐷 and 16 ∈ 𝐵. 

(𝑫 ∙ 𝑩 − 𝑫)𝒎𝒐𝒅𝒖𝒍𝒐(𝟓) ≈  𝑫(𝑩 − 𝟏)𝒎𝒐𝒅𝒖𝒍𝒐(𝟓) 

Now substitute any probably small elements belonging to 
the corresponding class 𝐵 and 𝐷 say 1 and 3. Actually 1 is 

the 𝑚𝑜𝑑𝑢𝑙𝑜(5) of 16, while 3 is the 𝑚𝑜𝑑𝑢𝑙𝑜(5) of both 8 
and 18 so; 

𝟑(𝟏 − 𝟏)𝒎𝒐𝒅𝒖𝒍𝒐(𝟓) = 𝟎𝒎𝒐𝒅𝒖𝒍𝒐(𝟓) 

Hence again the residue is 0, that has been obtained by 
doing the actual paper pencil calculation. In public key 
cryptography’s most asymmetric cryptosystem are based on 
modular arithmetic to compute the residue for a large 
exponent, these are computed in our web browser when we 
make a secure connection with eBay, Amazon, Flip Kart etc. 
by running the HTTPS protocol background. But in such 
cases the number are approx. 2000−bit long. 

IV. GALOIS FIELD 

Galois Field named after “Evariste Galois”, also known as 
Finite Field, refer to a field in which there exist finitely 
many element. It is particularly useful in translating 
computer data as they are represented in the binary vectors. 
Since the elements of vector are the member of the finite 
set 𝑆 = {0, 1}, that are the element of Galois Field having 2 
element, also called Prime Field as shown in the Figure II. 
The Advance Encryption Standard (AES) utilizes the ideas 
of Galois Field. A Galois Field exist if and only if, it has 
𝑝𝑚elements, where 𝑝 ∈  ℙ 𝑎𝑛𝑑 𝑚 ∈ ℤ+, 𝑝 is the 
characteristic of the Field, however order of the Field 𝑝𝑚 
represents the number of elements it contains. For instance, 
a finite Field with 11 elements is 𝐺𝐹(11), and with 81 
elements are 𝐺𝐹(81) 𝑜𝑟 𝐺𝐹(34), however 𝐺𝐹(28) represent 
a Finite Field with 256 elements. Concept of Galois Field is 
used in our web browser to establish a secure connection on 
HTTPS. LFSR perform its multiplication on Galois Field. 
The elements of the Galois Field 𝐺𝐹(𝑝𝑚) is defined as: 

𝐺𝐹(𝑝𝑚) = (0, 1, 2, … , ( 𝑝 − 1))  ∪ 

 𝑝, (𝑝 + 1), (𝑝 + 2), … , (𝑝 + 𝑝 − 1)  ∪ 

 𝑝2, (𝑝2 + 1), (𝑝2 + 2), … , (𝑝2 + 𝑝 − 1)  

∪ 

 . 
. 
. 

 𝑝𝑚−1, (𝑝𝑚−1 + 1), (𝑝𝑚−1 + 2), … , (𝑝𝑚−1

+ 𝑝 − 1) 

The order of the Field is given by 𝑝𝑚 while 𝑝 is called the 
characteristic of the Field. From the above generalization, 
we can say that a Galois Field 𝐺𝐹(5) must have 
(0, 1, 2, 3, 4) elements in it, where each element represent a 
polynomial of degree zero. While the Galois Field 
𝐺𝐹(23) = (0, 1, 2, (2 + 1), 22, (22 + 1), (22 + 2) , (22 +

2 + 1)) yields element (0, 1, 2, 3, 4, 5, 6, 7), each of these 
element represents a polynomial of degree at most two [2, 
3]. Concept of Galois Field is widely used in the field of 
Cryptography. Since each byte represents as a vector of a 
Finite Field, encryption & decryption using mathematical 
arithmetic are very easy [6]. 
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Figure II. PRNG Sequence 

V. CONSTRUCTION OF A GALOIS FIELD 𝑮𝑭(𝒑𝒎) 

An extended Galois Field contain not only the elements 
from its “Ground Field” 𝐺𝐹(𝑝), but also an element 𝛼 such 
that 𝑜𝑟𝑑(𝛼) = 𝑝𝑚 − 1 and the 𝑝𝑚 − 1 consecutive power 

of 𝛼 i.e. {𝛼0, 𝛼1, … , 𝛼𝑜𝑟𝑑(𝛼)−1} are the nonzero elements of 

the Extended Field 𝐺𝐹(𝑝𝑚) or 𝐺𝐹(𝑞) and hold 𝑜𝑟𝑑(𝛼𝑖) =
𝑝𝑚−1

(𝑝𝑚−1,𝑖)
 [1]. Now pretend that the set contains infinite many 

elements, as a set these elements may be represented as: 

𝑮𝑭(𝒒) = {𝟎, 𝟏, 𝜶, 𝜶𝟐, … , 𝜶𝒌, … . } 

So an element 𝛼𝑖 is nothing but a root of primitive 
polynomial 𝑝(𝑥) ∈ 𝐺𝐹(2)[𝑥] of degree 𝑚, therefore 
𝑝(𝛼) = 0 and also 𝑝(𝑥)|𝑥𝑑 − 1 where 𝑑 = 2𝑚 − 1 
therefore: 

𝒙𝒅 − 𝟏 = 𝒑(𝒙) ∙ 𝒒(𝒙) 

𝜶𝒅 − 𝟏 = 𝒑(𝜶) ∙ 𝒒(𝜶) = 𝟎 

𝛼𝑑 = 1, so again it generates the same element 1, hence our 
postulate becomes false, and we ensure that 𝐺𝐹(𝑞) is a 

Finite Field that contains 2𝑑 and a zero that is 2𝑚 elements. 
Therefore the set is a Field of 2𝑚 has finite elements and is 

of the form of 𝐺𝐹(𝑞) = {0, 1, 𝛼, 𝛼2, … , 𝛼𝑑−1}. 

TABLE I 

Generation of Elements of 𝑮𝑭(𝟐𝟒) 

𝛼0 = 1 𝛼8 = 𝑥2 + 1 
𝛼1 = 𝑥 𝛼9 = 𝑥3 + 𝑥 
𝛼2 = 𝑥2 𝛼10 = 𝑥2 + 𝑥 + 1 
𝛼3 = 𝑥3 𝛼11 = 𝑥3 + 𝑥2 + 𝑥 
𝛼4 = 𝑥 + 1 𝛼12 = 𝑥3 + 𝑥2 + 𝑥 + 1 
𝛼5 = 𝑥2 + 𝑥 𝛼13 = 𝑥3 + 𝑥2 + 1 
𝛼6 = 𝑥3 + 𝑥2 𝛼14 = 𝑥3 + 1 
𝛼7 = 𝑥3 + 𝑥 + 1 𝛼15 = 1 

For instance let us assume that,  𝑝(𝑥) = 𝑥4 + 𝑥 + 1 is a 
primitive polynomial over 𝐺𝐹(𝑝𝑚) with 𝑚 = 4 and 𝑝 = 2, 
if 𝛼 is a primitive element of 𝑝(𝑥) so the successive power 
of 𝛼 will generate all the non−zero elements of the 𝐺𝐹(16) 

as shown in Table I [1]. An element 𝛼𝑖 in the Field is 
generated by mounting the power of 𝛼under𝑚𝑜𝑑𝑢𝑙𝑜 𝑝(𝑥). 
For example the element 𝛼8 is generated as: 

𝜶𝟖𝒎𝒐𝒅𝒖𝒍𝒐(𝒙𝟒 + 𝒙 + 𝟏) 

𝒙𝟖𝒎𝒐𝒅𝒖𝒍𝒐(𝒙𝟒 + 𝒙 + 𝟏) 

Since 𝑥 = 𝛼 therefore 𝛼8 = 𝑥2 + 1, addition and 

subtraction of two elements (say 𝛼𝑖 and 𝛼𝑗) in 𝐺𝐹(𝑞) is 
quite simple because the result will never jump out of the 
Field and can be achieved by polynomial representation. 
The summoned result is then transformed as a power of 𝛼. 
But multiplication and division are tedious job, because 
their end result might  jump out of the Field 𝐺𝐹(𝑞). For 
instance in 𝐺𝐹(7) if we multiply the elements 3 and 4, it 
gives end result 12, and hence 12 is not in the Field. To 
resolve this setback we must perform out arithmetic under 
𝑚𝑜𝑑𝑢𝑙𝑜(7), so that (3 ∙ 4)𝑚𝑜𝑑𝑢𝑙𝑜(7) ≈ 5 and hence the 
end result 5 must recline into the Field. For any two 
arbitrary elements 𝑖 & 𝑗, if 𝑖 +  𝑗 < 𝑑, then the Field to be 

closed under multiplication operation because 𝛼𝑖 ∙ 𝛼𝑗 < 2𝑑. 
But if 𝑖 +  𝑗 > 𝑑 then we may write: 

𝒊 + 𝒋 = 𝒅 + 𝒓  ∀ 𝟎 ≤ 𝒓 < 𝑑 

𝜶𝒊 ∙ 𝜶𝒋 ≈ 𝜶𝒊+𝒋 ≈ 𝜶𝒅+𝒓 ≈ 𝜶𝒓 

This result ensures that the Field is closed under 
multiplication operation. On the other hand, for any 𝑖 ∈

ℤ  ∀ 0 < 𝑖 < 𝑑, 𝛼𝑑−𝑖 is the multiplicative inverse of 𝛼𝑖 [1]. 
For instance for 𝑖 = 11, 𝛼4 is the MI of 𝛼11.  That 
means𝛼4 ∙ 𝛼11 = 1𝑚𝑜𝑑𝑢𝑙𝑜 𝑝(𝑥). 

VI. PRIMITIVE POLYNOMIAL OVER 𝑮𝑭(ℙ𝒎) 

Consider polynomial 𝑟(𝑥) = 𝑥2 + 1 define over the domain 
real number ℝ, but its root does not lie in the domain of ℝ. 
However its root lies on the domain of complex number. 
Similarly a polynomial 𝑝(𝑥) ∈ 𝐺𝐹(𝑝)[𝑥] doesn’t have its 

roots in their Characteristic Field 𝐺𝐹(𝑝) however it has its 
root in the Field 𝐺𝐹(𝑝𝑛), this 𝐺𝐹(𝑝𝑛) is called an 
“Extension Field” of 𝐺𝐹(𝑝). Galois Field 𝐺𝐹(2𝑚) is the 
extension field of prime Field 𝐺𝐹(2). Sometimes 𝐺𝐹(2) is 
also referred as binary Field. Binary addition & 
multiplication are done by bit wise “XOR” and “AND” 
operation under 𝑚𝑜𝑑𝑢𝑙𝑜(2) operation, and they satisfy 
commutative, associative and distributive law [3, 8]. Since 
XOR operation return 0 if both the operands are similar and 
return 1 otherwise, this ensure that the addition & 
subtraction are same in Galois Field having Characteristic 
Field 𝐺𝐹(2).A  polynomial 𝑝(𝑥) of degree 𝑛 over Galois 
Field 𝐺𝐹(2) is symbolized as 𝑝(𝑥) ∈ 𝐺𝐹(2)[𝑥] and is 
defined as. 

𝑝(𝑥)

= 𝑎𝑛𝑥𝑛, 𝑎𝑛−1𝑥𝑛−1, 𝑎𝑛−2𝑥𝑛−2, … 𝑎𝑛−𝑟𝑥𝑛−𝑟 , … 𝑎2𝑥2, 𝑎1𝑥, 𝑎0 ∀ 2

< 𝑟 ≤ 𝑛 

Where 𝑎𝑖 ∈ {0, 1}. For any positive integer 𝑚, there are 2𝑚 
polynomials are possible each of degree 𝑚. For example the 
polynomials of degree 1 and 2 are shows in Table II. 
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Table II 

Primitive Polynomial of Degree ≤ 𝟐 

𝒏 Possible Polynomials 

1 𝑥,   𝑥 + 1 

2 𝑥2 + 𝑥 + 1,   𝑥2 + 𝑥,   𝑥2 + 1 

Now let’s assume that an element 𝑒 of 𝐺𝐹(2), if 𝑝(𝑒) = 0 
then 𝑒 is said to be a root of polynomial 𝑝(𝑥) over 𝐺𝐹(𝑞), 
therefore we can have: 

𝑥 = 𝑒 

𝑥 = 𝑒 + 𝑒 − 𝑒 

𝑥 + 𝑒 = 2𝑒 

Since all the computation are done under 𝑚𝑜𝑑𝑢𝑙𝑜(2) 
operation, so 𝑥 + 𝑒 = 0 this ensure that in 𝑚𝑜𝑑𝑢𝑙𝑜(2) 
operation 1 is equal to −1. That means 𝑥 + 𝑒 is a factor of 
𝑝(𝑥), The criterion for an irreducible polynomial to be a 
primitive is that “a polynomial 𝑝(𝑥)over 𝐺𝐹(2)[𝑥] of 
degree 𝑚 is irreducible if it has no factor of degree less 
than 𝑚, moreover it is a factor of other polynomial 𝑃(𝑥) =

𝑥𝑑 − 1, where  𝑑 = 2𝑚 − 1 ”. For example the polynomial 

𝑥3 + 𝑥 + 1 is irreducible and have no factor or factor 
polynomial 𝑓(𝑥) of degree less than 3, and also 𝑥3 + 𝑥 + 1 
is a factor of polynomial 𝑃(𝑥) = 𝑥7 − 1 hence it is a 
primitive polynomial [5]. For any degree there must be a 
primitive polynomial. Primitive polynomials are the 
minimal polynomial for the primitive elements in the Galois 
Field. A primitive polynomial 𝑝(𝑥) ∈ 𝐺𝐹(𝑝)[𝑥] is always 
irreducible in 𝐺𝐹(𝑝)[𝑥], however an irreducible polynomial 
need not  always be primitive. For example 𝑥4 + 𝑥3 + 𝑥2 +

𝑥 + 1 is irreducible but it is not primitive because 𝑥4 +

𝑥3 + 𝑥2 + 𝑥 + 1|𝑥5 − 1 instead of 𝑥15 − 1, which violet 
the criteria for a polynomial to be primitive. All irreducible 
polynomial over 𝐺𝐹(2)[𝑥] is primitive if it has degree 2, 3 
or 5. In 𝐺𝐹(2)[𝑥] if the degree of 𝑝(𝑥) is greater than 1 and 
have even number of terms, then it cannot be irreducible, 
because 1 is it’s a root and hence (𝑥 + 1) is a factor. It is 
noted that a binary polynomial that is missing alternate 
terms are not irreducible. Given an irreducible polynomial 
𝑝(𝑥) ∈ 𝐺𝐹(𝑝)[𝑥]of degree 𝑚, to test whether it is primitive 

or not, divide 𝑥𝑖 − 1 ∀ 𝑚 < 𝑖 < 𝑝𝑚 − 1 from 𝑝(𝑥), if no 
such 𝑖 exists, it leaves  remainder zero, then the polynomial 
𝑝(𝑥) is said to be a primitive polynomial. Let us assume that 
𝛼 be a root of 𝑚 degree primitive polynomial 𝑝(𝑥) defined 

over 𝐺𝐹(2)[𝑥] then it must be a root of 𝑥𝑝𝑚−1
− 1 and 

𝑥𝑜𝑟𝑑(𝛼) − 1, and have an order 𝑝𝑚 − 1. The 𝑝𝑚 − 1 
consecutive power of 𝛼 form a multiplicative group of order 
𝑝𝑚 −  1 [4]. Since 𝛼 is a nonzero root of 𝑝(𝑥) therefore 
𝑝(𝑥)|𝑥𝑚 − 1 and this implies that the order of 𝛼 must be a 
factor of 𝑚, so we may have 𝑜𝑟𝑑(𝛼)|𝑚. All of the roots 
have same order hence the set of all roots of 𝑝(𝑥) makes a 

conjugacy class with respect to 𝐺𝐹(𝑞). Furthermore 

𝑝(𝑥)|𝑥𝑜𝑟𝑑(𝛼) − 1 if and only if the 𝑜𝑟𝑑(𝛼) is same as the 
order of any roots of 𝑝(𝑥)[6, 11]. For any prime power 𝑞 
and any positive integer 𝑛, there exists a primitive 
polynomial of degree 𝑛over Galois Field𝐺𝐹(𝑞). There are: 

𝒂𝒒(𝒏) =
𝝋(𝒒𝒏 − 𝟏)

𝒏
 

Primitive polynomials over 𝐺𝐹(𝑞), where 𝜑(𝑛)is the totient 
function. A polynomial of degree 𝑛 over the Finite Field 
𝐺𝐹(2) (i.e., with coefficients either 0 or 1) is primitive if it 
has polynomial of order 2𝑛 − 1. For example, 𝑥2 + 𝑥 +

1 has order 3 since. 

𝑥 + 1

𝑥2 + 𝑥 + 1
=

𝑥 + 1

𝑥2 + 𝑥 + 1
(𝑚𝑜𝑑2) 

𝑥2 + 1

𝑥2 + 𝑥 + 1
= 1 +

𝑥 + 1

𝑥2 + 𝑥 + 1
(𝑚𝑜𝑑2) 

𝑥3 + 1

𝑥2 + 𝑥 + 1
= 𝑥 + 1(𝑚𝑜𝑑2) 

 

Putting 𝑞 = 2 in equation 𝑎𝑞(𝑛) =
𝜑(𝑞𝑛−1)

𝑛
 the numbers of 

primitive polynomials over 𝐺𝐹(2) are: 𝑎2(𝑛) =
𝜑(𝑞𝑛−1)

𝑛
 

giving 1, 1, 2, 2, 6, 6, 18, 16, 48 ... for 𝑛 =1, 2, 3.... The 
following Table III list of all possible primitive polynomials 
𝑚𝑜𝑑𝑢𝑙𝑜(2) of orders 1 through 5 is shown in Table III. 

Table III 

Primitive Polynomial over 𝑮𝑭(𝟐) of Degree ≤ 𝟓 

𝑛 Primitive Polynomials 

1 1 + 𝑥 

2 1 + 𝑥 + 𝑥2 

3 1 + 𝑥 + 𝑥3, 1 + 𝑥2 + 𝑥3 

4 1 + 𝑥 + 𝑥4 , 1 + 𝑥3 + 𝑥4 

5 
1 + 𝑥2 + 𝑥5, 1 + 𝑥3 + 𝑥5, 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥5, 
1 + 𝑥 + 𝑥3 + 𝑥4 + 𝑥5, 1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5,  
1 + 𝑥 + 𝑥2 + 𝑥4 + 𝑥5 

Primitive polynomials are widely used in Field element 
representation, Pseudo-random bit generation and CRC 
codes. Primitive polynomials over 𝐺𝐹(2) is used for 
pseudorandom bit generation. In fact, every linear feedback 
shift register with maximum cycle length (which is 2𝑛 − 1, 
where 𝑛 is the length of the linear feedback shift register) 
may be built from a primitive polynomial. For example, 
given the primitive polynomial 𝑥10 + 𝑥3 + 1, we start with 
a user specified 10−bit seed occupying bit positions 1 
through 10, starting from the least significant bit. We then 
take the 10𝑡ℎ and 3𝑟𝑑 bits, and create a new 0𝑡ℎ bit, so that 
the XOR of the three bits is 0. The seed is then shifted left 
one position so that the 0𝑡ℎ bit moves to position 1 in each 
clock pulse.  
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This process can be repeated to generate 210 − 1 = 1023 
pseudo-random bits. In general, for a primitive polynomial 
of degree 𝑛 over 𝐺𝐹(2), this process will generate a 
maximum of 2𝑛 − 1 pseudo random bits before repeating 
the same sequence, while non−primitive polynomial 
produces sequence < 2𝑛 − 1. One important property is to 
note that their reciprocal also form primitive polynomial 
(i.e., they come in pair). Example 1 + 𝑥3 + 𝑥4 is degree 4, 
its reciprocal 1 + 𝑥 + 𝑥4 i.e., 10011 and 11001, both are 
primitive. Technically, one can define primitive polynomial 
using concepts better than Finite Field Theory. 

VII. CLOCK 

Clock is a signal that is generated when a sequential circuit 
works. A clock can transmit high signal if and only if the 
circuit works. The time interval for which a clock is high is 
same as the time for which it is low. The number of 
complete cycle emitted in a second is called frequency of the 
clock and is denoted by 𝜐, while the time taken by clock to 
complete a cycle is called their time period and is denoted 
by T. Figure III shows the working principal of a clock. The 
ratio of the “time for which signal reaches at high to the 
total time” is called their duty cycle. Every clock has their 
duty cycle exactly equal to 50%. 

 
Figure III 

VIII. Q-ARY FSR SEQUENCE 

A sequence𝑠 = 𝑠0, 𝑠1 …. is called a 𝑞-ary Feedback Shift 
Register (FSR) sequence generated by a 𝑛 stage FSR, with a 
feedback function 𝑓: 𝔽𝑞𝑛 → 𝔽𝑞 with initial state 

𝑠0, 𝑠1, … , 𝑠𝑛−1, if it satisfy the recursion 𝑠𝑘+𝑛 = 𝑠𝑘 + 𝑠𝑘−1 +

⋯ + 𝑠𝑘+𝑛−1 ∀ 𝑘 ∈ ℤ+. The sequence 〈𝑠〉𝑖∈𝑁 said to be a 𝑞-
ary FSR sequence if there exist an 𝑟 ∈ ℕ such that 𝑠𝑖+𝑟 =

𝑠𝑟∀ 𝑖 ∈ ℤ+, and the sequence is said to be periodic with 
period 𝑟. An FSR sequence with feedback function 𝑓(𝑥) is 
called LFSR, if 𝑓(𝑥) is linear, i.e., of the form of  

𝑓(𝑠𝑛−1, … , 𝑠1, 𝑠0)

= 𝑠𝑛−1𝑘𝑛−1, 𝑠𝑛−2𝑘𝑛−2, … , 𝑠1𝑘1, 𝑠0𝑘0  ∀ 𝑘𝑖   ∈  𝔽𝑞 

IX. LINEAR FEEDBACK SHIFT REGISTERS 

A Mealy machine, Autonomous Linear Feedback Shift 
Registers (LFSR), Pseudo Random number Generator, 
Polynomial Sequence Generator, Pseudo Random Pattern 
Generator or simply an LFSR comprises of two parts: (i) a 
clock storage elements (Flip-Flop or 𝐹𝐹) and (ii) a feedback 
path. The number of storage elements gives us the degree of 
the LFSR. In other words, an LFSR with 𝑚 Flip-Flop is said 

to be of degree 𝑚.The possible 𝑚 feedback paths compute 
the input for the left most 𝐹𝐹 as XOR or XNOR sum of 
certain Flip-Flop in the shift register. The internal value of 
LFSR is called initial fill, initial vector or a seed (in 
mathematical terminology) and because the operation of the 
register is deterministic, the stream of values produced by 
the register is completely determined by its current or 
previous states. The output of the LFSR is one bit at each 
clock. Likewise the register has a finite number of possible 
states, it must eventually enter a repeating cycle excluding 
all zeroes pattern, i.e., once it reaches its final state; it will 
traverse the sequence exactly as before. However, an LFSR 
with a well-chosen feedback function can produced a 
sequence of bits which appears random and has a very long 
cycle. An LFSR 〈𝑚|𝑝(𝑥)〉 is singular (i.e., connection 
polynomial 𝑝(𝑥) has degree less than 𝑚) then not all output 
sequence are periodic with period 𝑚. However the output 
sequence is ultimately periodic; that is the sequence 
obtained by ignoring a certain finite number of terms at the 
beginning are periodic. The internal state bits are denoted by 
𝑠𝑖 and are shifted by one unit right with each clock pulse. 
The rightmost bit gives the current output whereas the 
leftmost bit is to be computed by a feedback function 𝑓(𝑥), 
which is a XOR sum of some 𝐹𝐹 values in previous state. 
Since XOR is a linear operation hence the circuit is called a 
linear recurrence. Whether a feedback path is active or not 
is determine by a feedback coefficients 𝑓𝑚−1, … , 𝑓1, 𝑓0. If 
𝑓𝑖 = 0 meaning there is no feedback at 𝐹𝐹𝑖 and if a feedback 
exists at location 𝑖 then we set 𝑓𝑖 = 1.The value of feedback 
coefficients 𝑓𝑖 play a crucial role for the output sequence 
produced by the LFSR. Application of LFSR include Test 
Pattern Generator (TPG), Output Response Analyzers 
(ORA), Pseudo Random Number (PRN), Error Correcting 
Code, Pseudo Random Pattern Generation and Signature 
Analysis in logic Built In Self-Test (BIST), Test Data 
Decompression and Test Data Compaction in Scan 

Compression, Cyclic Redundancy Codes (CRC), shut off 
the screen if no one touched the keyboard for 2𝑛 − 1 
seconds, Sends an input to control the computer at every 
100ms, reboot if no response, Cycling through the addresses 
for refreshing a Dynamic Random Access Memory 
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(DRAM) and many more. However it has some Problems 
for TPGs [10]. 

 

X. TERMINOLOGY RELATED WITH LFSR 

Taps, period, internal state, initialization vector IV, lockup 
state etc. are the essential terminology associated with LFSR 
that are very important to discuss.  

A. Taps 
Lines that run from the output of one register within the 

LFSR into the XOR gates that determine input to the 
register within the LFSR. Taps are chosen on the basis of 
primitive polynomials. Only certain combination of taps will 
produced a maximal length. 

B. Period 
An 𝑚 degree LFSR can produce a maximum of 2𝑚 − 1 

distinct sequence of random number, and then it repeats the 
same sequence. The number of count for which it generates 
distinct sequence without repetitions is called their period. 
The LFSR’s period depends on the seed value, the tap 

positions and the feedback type, OR if 𝑟 is the smallest 
positive integer such that 𝑝(𝑥)|𝑥𝑟 + 1, then integer 𝑟 is 
called the period of LFSR [9]. 

C. Internal State 
At each clock pulse, all the bit are shifted towards MSB 

from LSB, and then XOR bit is fed into the LSB register of 
LFSR. Hence it results to change the bit pattern. Each of bit 
patterns is known as their internal states. The order of states 
is depend upon your choice to choose the seed value. 

D. Seed or Initialization Vector 
The initial value of the LFSR is called a seed or 

Initialization Vector (IV). If the feedback function 𝑓(𝑥) 
involve XOR operation to compute feedback bit, then the 
registers should be seeded to none zero value. 

E. Lockup State 
If seed contains all zero initial values, then the LFSR 

will mire up and will never come in recoverable state, and 
also won’t leave this state. Note that it is possible to design 
an LFSR that have its lockup state with all ones instead of 
all zeroes. 

XI. WHY LFSR 

There are several reasons for which we can prefer Linear 
Feedback Shift Register (LFSR) than any other registers, 
some of them are: 

• Flip-Flops can be connected by few XOR gates. 

• Required less gate consumption. 

• Work better than a counter. 

• Can be used as a fast counter [1]. 

• Internal circuit is very fast, Max delay is 1 XOR Delay 
plus 1 D FF Delay [8]. 

• Takes less area than any other common counter except 
a ripple counter [12] 

• Much faster than any other common counters except the 
Mobius counter [10] 

• It does not count in binary. It counts 𝑚𝑜𝑑𝑢𝑙𝑜(2𝑚 − 1), 
while binary counter counts 𝑚𝑜𝑑𝑢𝑙𝑜(2𝑚) [16]. 

• Provides 2𝑚 patterns for 𝑛 input combinational logic 
circuit. 

• Provides higher clock frequency [2]. 

• Very little latency and independent of n!. 

• Obeys approx. 15 of 25 Standard Statistical Tests [2]. 

XII. TYPES OF LFSR 

Finally for every primitive polynomial there are in fact 4 
linear feedback shift register which may be implemented 
either by using XOR gated in series with each FF output, or 
with the XOR gate external to the shift register in the 
feedback path. The external XOR LFSR is called Standard 
LFSR or Type-I LFSR or External LFSR as shown in the 
Figure IV. The internal XOR LFSR is called Modular LFSR 
or Type-II LFSR or Internal LFSR. Each form of LFSR can 
be made into a signature analyzer by addition of the XOR 
input to the first D-Type FF [13]. 

A. Standard LFSR 
Following Figure IV shows 𝑛 stage standard LFSR. It 

consists of 𝑛 FF and a number of XOR gates. Since XOR 
gate are placed on the external feedback path, hence it is 
also referred as external XOR LFSR as shown in Figure IV 
[14]. 

 
Figure IV. External LFSR 
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B. Modular LFSR 
Similarly, an 𝑛 stage modular LFSR with each XOR gate 

placed between two adjacent FF are shown in Figure V, is 
called an internal XOR LFSR, because each stage introduces 
at most one XOR gate delay. It has higher clock frequency 
than Standard LFSR as shown in Figure V [14]. 

 
 

Figure V. Internal LFSR 
The sequence generated by the Type-1 and Type-2 LFSR 
are totally different even if they are seeded with the same 
initialization vector as shown in the Figure below. 

 
 

XIII. DESIGN OF 𝒎 − 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆 LFSR 

An LFSR of size 𝑚 can result in producing each feasible 
state throughout the period 𝑝 which is equal to 2𝑚 − 1 shift, 
but it will achieve this period only when appropriate 
feedback paths have been chosen. For example, an 8 stage 
LFSR would probably possess a widest possible 
combination of 1s and 0s after reaching at 255 shifts. Each 
sequence produced in this shift is a maximal sequence, in 

general a maximum length sequence. These sequence is 
usually referred as 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 or a Pseudo Noise (PN) 
or a Pseudorandom Sequences (PS). Maximal length 
generators can in fact produce two sequences. The first has a 
length of one, and occurs when the initial state of the 
generator is set to all zero. The other one has a length of 
2𝑚 − 1. Together, both of these two sequence keep track of 
all 2𝑚 state of a 𝑚-bit state register. Once the feedback taps 
of an LFSR are non-maximal, the length of the generated 
sequence relies on the initial state of the LFSR. Each of 
these sequences is called a State Space of the LFSR. 
Mathematical Definition of Galois Field and 𝑚 −
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 

To achieve the 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 of LFSR, Galois Field are 
widely used to obtain feedback taps. If a polynomial 𝑝(𝑥) of 
variable 𝑥 represent as a LFSR, such polynomial is termed 
as the generator polynomial. 

𝐺(𝑥) = 𝑓𝑚𝑥𝑚 + 𝑓𝑚−1𝑥𝑚−1 +, … , 𝑓𝑚−𝑟𝑥𝑚−𝑟 , … . , 𝑓2𝑥2

+ 𝑓1𝑥 + 𝑓0  

∀ 2 ≤ 𝑟 < 𝑚 

The coefficients 𝑓𝑖 ∈  {0, 1} signifies the tap weight, 1 for 
the tap that is connected and 0 otherwise. The order of the 
polynomial 𝑚 signifies the number of LFSR stages. Rules 
of linear algebra apply to the polynomial, however all 
mathematical operations are performed in 𝑚𝑜𝑑𝑢𝑙𝑜(2). For 
example the generator polynomial 𝑥3 + 𝑥 + 1 represents a 
LFSR with feedback taps at 3 and 1 denoted as 〈1, 3〉. Now, 
the second problem is to select feedback taps so that the m-
sequences can be produced. The generator polynomial G(x) 
is said to be primitive if and only if it can't be factored. In 
order to find such polynomial, it must be a prime number. In 
this case, when the generator polynomial 𝐺(𝑥) is a factor of 
𝑥𝑝 + 1, where 𝑝 = 2𝑚 − 1, it may represent that the LFSR 
generate a maximal length sequence. Let's take the example 
of LFSR 〈1, 3〉.  
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Figure VI. PRNG Sequence 

 
Figure VII. LFSR 〈𝟐, 𝟓〉 

In this case we will check whether the LFSR produce an 
𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 or not. Initially we keep in mind that 𝑚 =  3 
and 𝑝 = 2𝑚 − 1 which is equivalent to 7. It can be shown 
that its polynomial 𝑥3 + 𝑥 + 1 can never be factored; it is 
also found that the polynomial is a factor of 𝑥7 + 1. Hence, 
for any primitive polynomial 𝑝(𝑥) will really produce a 
maximal length sequence if and only if; 

𝒑(𝒙)[𝒎] | 𝒑(𝒙)[𝟐𝒎 − 𝟏] and, 

𝒑(𝒙)[𝒎] ∤ 𝒑(𝒙)[𝒊] ∀ 𝟏 ≤ 𝒊 ≤ (𝟐𝒎 − 𝟐) 

During this demonstration, we went through the procedure 
for identifying whether the given set of feedback taps would 
produce a maximal length sequence or not. Normally, we 
are required to do just the opposite. That is, we are normally 
required to find all sets of feedback taps that will produce 
m−sequences for a given register size 𝑚. For instance, we 
may be asked to find all sets of maximal-length feedback 
taps for an LFSR with 𝑚 = 3. We accomplish this as 
follows: The length of the 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 will be 7. The 
solution of this problem resides in the primitive factor of 
polynomial 𝑥7 + 1 under 𝑚𝑜𝑑𝑢𝑙𝑜(2) operation. The prime 
factorization of  𝑥7 + 1 is something like: 

 𝒙𝟕 + 𝟏 = (𝒙 + 𝟏)( 𝒙𝟑 + 𝒙 + 𝟏)(𝒙𝟑 + 𝒙𝟐 + 𝟏 ) 

It should be noted that the size of registers is same as of the 
order of the primitive polynomials which is equal to 𝑚. Out 
of the three prime factors, the last two meet this criterion. 
Thus we see that there are exactly two sets of m−sequence 
feedback taps  〈1, 3〉 and 〈2, 3〉 that exists for degree 3. It 
should be noted that, there always exist an even number of 
feedback tap set that produce 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 however the 
size of LFSR may be. For more approval, we can say that 
for any feedback tap set that produce 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 such 
as 𝐹 = {𝑓1, 𝑓2, . . . 𝑓𝑖}, there must exist a set containing mirror 
image of the feedback taps of set 𝐹 which is equivalent to 
𝐹′ = {𝑓1, 𝑛 − 𝑓𝑛−1, . . . , 𝑛 − 𝑓0} ∀ 1 ≤ 𝑖 ≤ 𝑚. Here both 𝐹 
and 𝐹′ are complement to each other under the size of LFSR 
𝑚. Form this observation we can say that, on subtracting 
feedback taps number from the size of LFSR i.e., 𝑚, one 
can obtain the set of reverse order taps of all the 
corresponding elements of 𝐹 that guarantees to achieve 𝑚 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. Hence we can conclude that, for any set of 𝑚 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 feedback taps, their mirror image feedback taps 
also produce the mirror image 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒,  and this 
mirror image sequence is also a 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. An astute 
reader may have noticed that, the 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 feedback 
taps 〈1, 3〉 and 〈2, 3〉 are mirror image to one another, and 
hence they both produced the same 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. PN 
sequence have advantageous feature from the computational 
viewpoint [15]. Due to only these structural properties, PN 
sequence have enormous applications like Direct Sequence 
Spread Spectrum (DSSS), Built-In-Self Test (BIST), 
Decryption Encryption System (DES) and many more [12, 
16]. 
Figure VI shows pattern produced by the LFSR 〈2, 5〉 shown 
in Figure VII. Assume that the LFSR is initially seeded with 
vector 11111, we observing that each PN sequence 𝑠𝑖 has 
same period 𝑝 = 31, and hold the same properties as 
illustrated below. To understand properties of PN sequence, 
please refer to Figure VIII. 
Property I: In every period 𝑝 = 2𝑚 − 1, the sequence 
contains exactly 2𝑚−1 number of ones. 
Property II: In every period 𝑝 = 2𝑚 − 1, the sequence 
contain exactly 2𝑚−1 − 1 number of zeroes. This means the 
total number of one’s is equal to the total number of zeroes 
+1, this is called there  
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Balance Property. 

Property III: In every period 𝑝 = 2𝑚 − 1, the sequence has 
an occurrence of one’s exactly 𝑚 times in succession. 

Property IV: In every period 𝑝 = 2𝑚 − 1, the sequence 
does not have any occurrence of zeroes exactly 𝑚 times in 
the succession. 

Property V: In every period 𝑝 = 2𝑚 − 1, the sequence does 
not have any occurrence of one’s exactly 𝑚 − 1 times in the 
succession. 

Property VI: In every period 𝑝 = 2𝑚 − 1, the sequence has 
an occurrence of total number of zeroes exactly 𝑚 − 1 times 
in succession. 

Property VII: Sum of two cycle shifted upto 𝑚 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 is another cycle shift, of the same 𝑚 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. This property is also called Shift and adds 
property. 

Property VIII: If a window of width 𝑤 slides along a PN 
sequence for 2𝑚 − 1 shift, each 𝑤 tuple except all zeroes 𝑤 
tuple will appear exactly once as shown below. 

1𝑠𝑡  phase shift            6𝑡ℎ phase shift 

 

𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏  
 
 
 

𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 …  

 

     

0𝑡ℎ phase shift             7𝑡ℎ phase shift, same as 0𝑡ℎphase 

 

 

 

Four windows of same size 𝑤 slides along the PN 
sequences; at each phase shift it shows a unique sequence of 
bits, each sequence is a PN sequence. 

Property IX: As we can observe that the sequence has a 
Jigsaw Fit of pattern. The upper triangular bit pattern of 
ones from clock 0 to 4 have a clear Jigsaw Fit with the 
lower triangular bits pattern of ones from clock 27 to 30 
(refer to Figure VI) 

Property X: We define a term RUN of 𝒓 consecutive 
identical bits. It is a succession of items of the same class 
enclosed within distinct bits. In a PN sequence we have; 
Figure VIII shows the different runs of LFSR 〈4|3, 4〉. 

Following observation has been made: 

• A run of one’s of length 𝒓. 

• A run of zeroes of length 𝒓 − 𝟏. 

• A run of one’s & a run of zeroes of length 𝒓 − 𝟐. 

• Two run of 𝟏’s & two run of 𝟎s of length 𝒓 − 𝟑. 

• Four run of 𝟏’s & four run of zeroes of length 𝒓 − 𝟒. 

…. 

• 𝟐𝒓−𝟑 run of one’s and 𝟐𝒓−𝟑 run of 𝟎s of length 1 [2]. 

 
 

PS PN 
Sequences 0𝑡ℎ 0010111 

1𝑡ℎ 0101110 

2𝑡ℎ 1011100 

3𝑡ℎ 0111001 

4𝑡ℎ 1110010 

5𝑡ℎ 1100101 

6𝑡ℎ 1001011 

7𝑡ℎ 0010111 
 

 
PS: Phase Shift, PN: Pseudo Number 

Synthesis: From the above ideas, we can synthesize that a 

PN sequence of length 2𝑚 − 1 contain 2𝑖−1 run of 𝑚 − 𝑖 −

1 one’s as well as zeroes ∀ 1 ≤ 𝑖 ≤ 𝑚 − 2 as provide in 
Table IV below. 

Table IV. 
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1 4 
on
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1111 No 3 

N
o 

4 
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es 

0000 No 4 

N
o 

3 
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111 No 5 

1 3 
ze
ro
es 

000 No 6 

1 2 
on
e’

s 

11 Yes No 

1 2 
ze
ro
es 

00 Yes No 

2 1 
on
e’

s 

1 Yes 10.6 

2 1 
ze
ro
es 

0 Yes 10.6 

Number of 𝟏’𝒔 =  𝟖, and 𝟎’𝒔 =  𝟕 𝒎 = 𝟒 

On the basis of above properties, some conclusions are 
drawn for an ideal PN sequence as given below. Every PN 
sequence must hold; 

A. Balance Property 
A PN sequence must have equal number of one’s and 

zeroes, and should have no DC component to avoid a 
spectral spike at DC or biasing the noise in dispreading. 

B. Run Length Property 
The run lengths are generally short, and it is observed 

that half of the runs are of length 1. A fraction 
1

2𝑛 of all runs 

are of length 𝑛. Long runs reduce the BW spreading and it’s 

an advantage over PN 
sequence. 

Figure VIII 
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C. Shift Property 
If the sequence are shifted by a non-zero number of 

elements/bits, the resulting sequence will have half of its 
sequence exactly same as of the original sequence, while the 
half of it is totally different from the original sequence. 

Note: A deterministic sequence that holds Balance, Run 
Length and Shift grows Asymptotically Large, this property 
is referred to as a Pseudo Noise or Noiselike signals. 𝑚 −

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, Quaternary sequence, Gold Codes, Walsh 
functions and Kasami sequence are the examples of PN 
sequences. 

XIV. CONCLUSION 

The paper presented a brief analysis and design of LFSR 
based 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 PRNG that are very useful to 
implement cryptographic primitives. Some important 
mathematical tools such as Field, Galois Field, Primitive 
Polynomial and Primitive Polynomial over Galois Field and 
LFSR have been discussed. The paper provide a design of 
𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 PRNG that follows the security measures as 
described by NIST Standard. In future work, it is proposed 
to implement LFSR based cryptographic primitives that are 
used in Key Exchange and Data Encryption by using the 
said mathematical tools. 
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