
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1956
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

Design of Pseudo Random Number Generator using
Linear Feedback Shift Register

Shabbir Hassan, M. U. Bokhari

Abstract: - Nowadays security has become a great concern in
the field of computer science and information technology. In
order to protect data from unintended users and to achieve a
desirable level of security, several cryptographic algorithms based
on various technology have been proposed. Linear Feedback
Shift Register (LFSR) may play an important role in the design
of such cryptographic algorithms. LFSR based cryptographic
algorithms are often lightweight in nature and are more suitable
for resource constraining devices. In this paper we present a
detailed analysis of LFSR and design of 𝒎 − 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 LFSR
to implement cryptographic algorithms.

Keywords: Q Array PRNG, FSR, Modular Arithmetic, Galois
Field 𝑮𝑭(𝒑𝒎), Primitive Polynomial 𝒑(𝒙), Primitive Polynomial
𝒑(𝒙) over 𝑮𝑭(𝒑𝒎), LFSR, 𝒎 − 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆, Run Length, Linear
Recurrence, NIST.

I. INTRODUCTION

The paper is written to represent an introductory into the
depth concepts of Linear Feedback Shift Registers,
Primitive Polynomial and Galois Field. Since these branches
of mathematics have a major contribution in computer
science and applications. In order to secure data in a
communication channel we use several encryption
algorithms, keys and mathematical tools. All these attributes
can be easily implemented using mathematical concept that
has been dealt in this paper. Modular arithmetic and
equivalence classes are widely used to implement a
cryptosystem, this paper is written to insight all these
mathematical tools with a suitable example. Due to the
simple structure and implementation of LFSR, it is widely
used in network communication and industries for
generating pseudo random sequences. LFSR has the widest
implementation in networking and cryptography. Generally
LFSRs are constructed by D Flip-Flop and two input XOR
gates. It can be implemented in two ways, first is Fibonacci
implementation and other is D Flip-Flop implementation.
An LFSR with maximal length sequence output is called
𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 LFSR and is widely used in experimental
design to get magnetic resonance imaging experiments, a
pioneering non-invasive technology for studying the
behavior of human brain and to generate Pseudo Noise (PN)
or a Pseudorandom Sequences (PS).

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Shabbir Hassan, Department of Computer Science, Aligarh Muslim

University Aligarh 202002, India
Prof. M. U. Bokhari, Department of Computer Science, Aligarh

Muslim University Aligarh 202002, India

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

the functional magnetic resonance imaging experiment
shows that the brain stimuli have correlated with the
magnetic resonance scanner of the brain to collect functional
MRI data for statistical analysis. An 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 can
also be used to justify the order appearance and timing of
the brain stimuli. Due to this promising work, primitive
polynomial and 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 LFSRs have gained more
acceptance in practice. In this paper we present modular
arithmetic, primitive polynomial over Galois Field, LFSR
and statistical inference of 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 LFSR along with
their related attributes.

II. MOTIVATION

Leonardo Bonacci known as Fibonacci was an Italian
mathematician is considered being the most talented western
mathematician of the middle age. The Fibonacci numbers
are the sequence of numbers defined by a linear recurrence
equation:

𝒔𝒏 = 𝒔𝒏−𝟏 + 𝒔𝒏−𝟐

Figure. I

In this series the next number is obtained by adding the
previous two numbers. By convenience the first two term
are either (0 or 1) or (1 and 1). Fibonacci numbers are
closely related to the Lucas numbers. A Fibonacci generator
is shown in Figure I. Fibonacci numbers are widely used in
computer science to develop algorithms, Fibonacci Search
and to implement Fibonacci Heap Data Structure. It is also
used to interconnect Distributed System themselves. In the
field of biology, Fibonacci number play a vital role in tree
branching, arranging leaves on a tree's stem (Phyllotaxis),
bearing pineapple sprouts, producing uncurling fern and
many more. These application of Fibonacci number
motivate us to gather some idea and to correlate Fibonacci
series with LFSR.

III.MODULAR ARITHMETIC

The concept of congruence was first introduced by the
German mathematician “Karl Friedrich Gauss”. Let 𝑚 be a
fixed integer, then an integer 𝑎 is said to be congruent to
another integer 𝑟 𝑚𝑜𝑑𝑢𝑙𝑜(𝑚) if 𝑚|(𝑎 − 𝑟) and is denoted
as 𝑎 ≡ 𝑟 𝑚𝑜𝑑𝑢𝑙𝑜(𝑚).

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B2912.129219&domain=www.ijeat.org

Design of Pseudo Random Number Generator using Linear Feedback Shift Register

1957
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

Where 𝑚 is called modulus and 𝑟 is called residue. If 0 ≤

𝑟 ≤ 𝑚 then 𝑟 is called Least Residue where as if 0 ≤ |𝑟| ≤
𝑚

2
 then 𝑟 is called Minimal Residue. For some variable 𝑎 =

13 and 𝑚 = 9, the value of residue 𝑟 could be 4, −5 and
many more. Computation of the residue is a very typical
work in applied cryptography. For the better consideration
let us take a nice example. ∀𝑎, 𝑟 ∈ ℤ, assume that 𝑎 = 42
and 𝑚 = 9, few possible values for 𝑟 may be
−3, −12, 6, 15 … and many more. Hence it ensures that for
residue 𝑟 infinite many unique residues are possible. Now
let’s try to compute the residue of 13 ∙ 16 − 8 under
𝑚𝑜𝑑𝑢𝑙𝑜(5) operation, that is what would be the remainder
when 13 ∙ 16 − 8 is divided by 5. After doing simple
arithmetic, obviously the residue will be zero, similarly
548𝑚𝑜𝑑𝑢𝑙𝑜(24) would leave residue 1.

However the above approach for finding residue is too
difficult. For convenience a lucid approach had developed is
called Equivalence Classes. An equivalence class is nothing
but it is a set of all possible residue. Let’s assume any

integer 𝑎 = 12 and 𝑚 = 5, the residue 𝑟 may be 2, 7, −8, 17
and many more. So the possible presumed set of elements
that can be a value of residue 𝑟 is an equivalence class of
𝑚𝑜𝑑𝑢𝑙𝑜(5). In this case {… − 13, −8, 2, 7, 12, 17 … } form
an equivalence class with 𝑚𝑜𝑑𝑢𝑙𝑜(5). All the elements of
the class behave equivalent under 𝑚𝑜𝑑𝑢𝑙𝑜(5) operation.
Let’s see what trick plays when we compute the residue of a
large value in equivalence classes. There exist 𝑁 distinct
equivalence classes of 𝑚𝑜𝑑𝑢𝑙𝑜(𝑁).

𝐴 = { ∙∙∙ −15, −10, −5, 𝟎, 5, 10, 15, ∙∙∙ }

𝐵 = { ∙∙∙ −14, −9, −4, 𝟏, 6, 11, 16, ∙∙∙ }

𝐶 = { ∙∙∙ −1, −8, −3, 𝟐, 7, 12, 17, ∙∙∙ }

𝐷 = { ∙∙∙ −12, −7, −2, 𝟑, 8, 13, 18, ∙∙∙ }

𝐸 = { ∙∙∙ −11, −6, −1, 𝟒, 9, 14, 19, ∙∙∙ }

Now let’s try to compute the residue of (13 ∙ 16 −

8)𝑚𝑜𝑑𝑢𝑙𝑜(5) with the help of 𝑚𝑜𝑑𝑢𝑙𝑜(5) equivalence
classes. In this approach the numeric value of problem is
replaced by the name of class for which they belongs, then
reduced the alphabetic expression if possible, and at the end
we substitute any of the least values corresponding to that
particular class. Since any of the equivalence classes are not
a set of integers or real numbers itself. It can be seem that it
has very less number of elements as of ℤ 𝑜𝑟 ℝ. Obviously it
will take a small complexity to search an element as
compared with the complexity required in ℤ 𝑜𝑟 ℝ. e.g. to
find the value of (13 ∙ 16 − 8) 𝑚𝑜𝑑𝑢𝑙𝑜(5), we must
substitute character 𝐷 instead of 13 and 8, and 𝐵 instead of
16 because13 and 8 ∈ 𝐷 and 16 ∈ 𝐵.

(𝑫 ∙ 𝑩 − 𝑫)𝒎𝒐𝒅𝒖𝒍𝒐(𝟓) ≈ 𝑫(𝑩 − 𝟏)𝒎𝒐𝒅𝒖𝒍𝒐(𝟓)

Now substitute any probably small elements belonging to
the corresponding class 𝐵 and 𝐷 say 1 and 3. Actually 1 is

the 𝑚𝑜𝑑𝑢𝑙𝑜(5) of 16, while 3 is the 𝑚𝑜𝑑𝑢𝑙𝑜(5) of both 8
and 18 so;

𝟑(𝟏 − 𝟏)𝒎𝒐𝒅𝒖𝒍𝒐(𝟓) = 𝟎𝒎𝒐𝒅𝒖𝒍𝒐(𝟓)

Hence again the residue is 0, that has been obtained by
doing the actual paper pencil calculation. In public key
cryptography’s most asymmetric cryptosystem are based on
modular arithmetic to compute the residue for a large
exponent, these are computed in our web browser when we
make a secure connection with eBay, Amazon, Flip Kart etc.
by running the HTTPS protocol background. But in such
cases the number are approx. 2000−bit long.

IV. GALOIS FIELD

Galois Field named after “Evariste Galois”, also known as
Finite Field, refer to a field in which there exist finitely
many element. It is particularly useful in translating
computer data as they are represented in the binary vectors.
Since the elements of vector are the member of the finite
set 𝑆 = {0, 1}, that are the element of Galois Field having 2
element, also called Prime Field as shown in the Figure II.
The Advance Encryption Standard (AES) utilizes the ideas
of Galois Field. A Galois Field exist if and only if, it has
𝑝𝑚elements, where 𝑝 ∈ ℙ 𝑎𝑛𝑑 𝑚 ∈ ℤ+, 𝑝 is the
characteristic of the Field, however order of the Field 𝑝𝑚
represents the number of elements it contains. For instance,
a finite Field with 11 elements is 𝐺𝐹(11), and with 81
elements are 𝐺𝐹(81) 𝑜𝑟 𝐺𝐹(34), however 𝐺𝐹(28) represent
a Finite Field with 256 elements. Concept of Galois Field is
used in our web browser to establish a secure connection on
HTTPS. LFSR perform its multiplication on Galois Field.
The elements of the Galois Field 𝐺𝐹(𝑝𝑚) is defined as:

𝐺𝐹(𝑝𝑚) = (0, 1, 2, … , (𝑝 − 1)) ∪

 𝑝, (𝑝 + 1), (𝑝 + 2), … , (𝑝 + 𝑝 − 1) ∪

 𝑝2, (𝑝2 + 1), (𝑝2 + 2), … , (𝑝2 + 𝑝 − 1)

∪

 .
.
.

 𝑝𝑚−1, (𝑝𝑚−1 + 1), (𝑝𝑚−1 + 2), … , (𝑝𝑚−1

+ 𝑝 − 1)

The order of the Field is given by 𝑝𝑚 while 𝑝 is called the
characteristic of the Field. From the above generalization,
we can say that a Galois Field 𝐺𝐹(5) must have
(0, 1, 2, 3, 4) elements in it, where each element represent a
polynomial of degree zero. While the Galois Field
𝐺𝐹(23) = (0, 1, 2, (2 + 1), 22, (22 + 1), (22 + 2) , (22 +

2 + 1)) yields element (0, 1, 2, 3, 4, 5, 6, 7), each of these
element represents a polynomial of degree at most two [2,
3]. Concept of Galois Field is widely used in the field of
Cryptography. Since each byte represents as a vector of a
Finite Field, encryption & decryption using mathematical
arithmetic are very easy [6].

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1958
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

Figure II. PRNG Sequence

V. CONSTRUCTION OF A GALOIS FIELD 𝑮𝑭(𝒑𝒎)

An extended Galois Field contain not only the elements
from its “Ground Field” 𝐺𝐹(𝑝), but also an element 𝛼 such
that 𝑜𝑟𝑑(𝛼) = 𝑝𝑚 − 1 and the 𝑝𝑚 − 1 consecutive power

of 𝛼 i.e. {𝛼0, 𝛼1, … , 𝛼𝑜𝑟𝑑(𝛼)−1} are the nonzero elements of

the Extended Field 𝐺𝐹(𝑝𝑚) or 𝐺𝐹(𝑞) and hold 𝑜𝑟𝑑(𝛼𝑖) =
𝑝𝑚−1

(𝑝𝑚−1,𝑖)
 [1]. Now pretend that the set contains infinite many

elements, as a set these elements may be represented as:

𝑮𝑭(𝒒) = {𝟎, 𝟏, 𝜶, 𝜶𝟐, … , 𝜶𝒌, … . }

So an element 𝛼𝑖 is nothing but a root of primitive
polynomial 𝑝(𝑥) ∈ 𝐺𝐹(2)[𝑥] of degree 𝑚, therefore
𝑝(𝛼) = 0 and also 𝑝(𝑥)|𝑥𝑑 − 1 where 𝑑 = 2𝑚 − 1
therefore:

𝒙𝒅 − 𝟏 = 𝒑(𝒙) ∙ 𝒒(𝒙)

𝜶𝒅 − 𝟏 = 𝒑(𝜶) ∙ 𝒒(𝜶) = 𝟎

𝛼𝑑 = 1, so again it generates the same element 1, hence our
postulate becomes false, and we ensure that 𝐺𝐹(𝑞) is a

Finite Field that contains 2𝑑 and a zero that is 2𝑚 elements.
Therefore the set is a Field of 2𝑚 has finite elements and is

of the form of 𝐺𝐹(𝑞) = {0, 1, 𝛼, 𝛼2, … , 𝛼𝑑−1}.

TABLE I

Generation of Elements of 𝑮𝑭(𝟐𝟒)

𝛼0 = 1 𝛼8 = 𝑥2 + 1
𝛼1 = 𝑥 𝛼9 = 𝑥3 + 𝑥
𝛼2 = 𝑥2 𝛼10 = 𝑥2 + 𝑥 + 1
𝛼3 = 𝑥3 𝛼11 = 𝑥3 + 𝑥2 + 𝑥
𝛼4 = 𝑥 + 1 𝛼12 = 𝑥3 + 𝑥2 + 𝑥 + 1
𝛼5 = 𝑥2 + 𝑥 𝛼13 = 𝑥3 + 𝑥2 + 1
𝛼6 = 𝑥3 + 𝑥2 𝛼14 = 𝑥3 + 1
𝛼7 = 𝑥3 + 𝑥 + 1 𝛼15 = 1

For instance let us assume that, 𝑝(𝑥) = 𝑥4 + 𝑥 + 1 is a
primitive polynomial over 𝐺𝐹(𝑝𝑚) with 𝑚 = 4 and 𝑝 = 2,
if 𝛼 is a primitive element of 𝑝(𝑥) so the successive power
of 𝛼 will generate all the non−zero elements of the 𝐺𝐹(16)

as shown in Table I [1]. An element 𝛼𝑖 in the Field is
generated by mounting the power of 𝛼under𝑚𝑜𝑑𝑢𝑙𝑜 𝑝(𝑥).
For example the element 𝛼8 is generated as:

𝜶𝟖𝒎𝒐𝒅𝒖𝒍𝒐(𝒙𝟒 + 𝒙 + 𝟏)

𝒙𝟖𝒎𝒐𝒅𝒖𝒍𝒐(𝒙𝟒 + 𝒙 + 𝟏)

Since 𝑥 = 𝛼 therefore 𝛼8 = 𝑥2 + 1, addition and

subtraction of two elements (say 𝛼𝑖 and 𝛼𝑗) in 𝐺𝐹(𝑞) is
quite simple because the result will never jump out of the
Field and can be achieved by polynomial representation.
The summoned result is then transformed as a power of 𝛼.
But multiplication and division are tedious job, because
their end result might jump out of the Field 𝐺𝐹(𝑞). For
instance in 𝐺𝐹(7) if we multiply the elements 3 and 4, it
gives end result 12, and hence 12 is not in the Field. To
resolve this setback we must perform out arithmetic under
𝑚𝑜𝑑𝑢𝑙𝑜(7), so that (3 ∙ 4)𝑚𝑜𝑑𝑢𝑙𝑜(7) ≈ 5 and hence the
end result 5 must recline into the Field. For any two
arbitrary elements 𝑖 & 𝑗, if 𝑖 + 𝑗 < 𝑑, then the Field to be

closed under multiplication operation because 𝛼𝑖 ∙ 𝛼𝑗 < 2𝑑.
But if 𝑖 + 𝑗 > 𝑑 then we may write:

𝒊 + 𝒋 = 𝒅 + 𝒓 ∀ 𝟎 ≤ 𝒓 < 𝑑

𝜶𝒊 ∙ 𝜶𝒋 ≈ 𝜶𝒊+𝒋 ≈ 𝜶𝒅+𝒓 ≈ 𝜶𝒓

This result ensures that the Field is closed under
multiplication operation. On the other hand, for any 𝑖 ∈

ℤ ∀ 0 < 𝑖 < 𝑑, 𝛼𝑑−𝑖 is the multiplicative inverse of 𝛼𝑖 [1].
For instance for 𝑖 = 11, 𝛼4 is the MI of 𝛼11. That
means𝛼4 ∙ 𝛼11 = 1𝑚𝑜𝑑𝑢𝑙𝑜 𝑝(𝑥).

VI. PRIMITIVE POLYNOMIAL OVER 𝑮𝑭(ℙ𝒎)

Consider polynomial 𝑟(𝑥) = 𝑥2 + 1 define over the domain
real number ℝ, but its root does not lie in the domain of ℝ.
However its root lies on the domain of complex number.
Similarly a polynomial 𝑝(𝑥) ∈ 𝐺𝐹(𝑝)[𝑥] doesn’t have its

roots in their Characteristic Field 𝐺𝐹(𝑝) however it has its
root in the Field 𝐺𝐹(𝑝𝑛), this 𝐺𝐹(𝑝𝑛) is called an
“Extension Field” of 𝐺𝐹(𝑝). Galois Field 𝐺𝐹(2𝑚) is the
extension field of prime Field 𝐺𝐹(2). Sometimes 𝐺𝐹(2) is
also referred as binary Field. Binary addition &
multiplication are done by bit wise “XOR” and “AND”
operation under 𝑚𝑜𝑑𝑢𝑙𝑜(2) operation, and they satisfy
commutative, associative and distributive law [3, 8]. Since
XOR operation return 0 if both the operands are similar and
return 1 otherwise, this ensure that the addition &
subtraction are same in Galois Field having Characteristic
Field 𝐺𝐹(2).A polynomial 𝑝(𝑥) of degree 𝑛 over Galois
Field 𝐺𝐹(2) is symbolized as 𝑝(𝑥) ∈ 𝐺𝐹(2)[𝑥] and is
defined as.

𝑝(𝑥)

= 𝑎𝑛𝑥𝑛, 𝑎𝑛−1𝑥𝑛−1, 𝑎𝑛−2𝑥𝑛−2, … 𝑎𝑛−𝑟𝑥𝑛−𝑟 , … 𝑎2𝑥2, 𝑎1𝑥, 𝑎0 ∀ 2

< 𝑟 ≤ 𝑛

Where 𝑎𝑖 ∈ {0, 1}. For any positive integer 𝑚, there are 2𝑚
polynomials are possible each of degree 𝑚. For example the
polynomials of degree 1 and 2 are shows in Table II.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Design of Pseudo Random Number Generator using Linear Feedback Shift Register

1959
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

Table II

Primitive Polynomial of Degree ≤ 𝟐

𝒏 Possible Polynomials

1 𝑥, 𝑥 + 1

2 𝑥2 + 𝑥 + 1, 𝑥2 + 𝑥, 𝑥2 + 1

Now let’s assume that an element 𝑒 of 𝐺𝐹(2), if 𝑝(𝑒) = 0
then 𝑒 is said to be a root of polynomial 𝑝(𝑥) over 𝐺𝐹(𝑞),
therefore we can have:

𝑥 = 𝑒

𝑥 = 𝑒 + 𝑒 − 𝑒

𝑥 + 𝑒 = 2𝑒

Since all the computation are done under 𝑚𝑜𝑑𝑢𝑙𝑜(2)
operation, so 𝑥 + 𝑒 = 0 this ensure that in 𝑚𝑜𝑑𝑢𝑙𝑜(2)
operation 1 is equal to −1. That means 𝑥 + 𝑒 is a factor of
𝑝(𝑥), The criterion for an irreducible polynomial to be a
primitive is that “a polynomial 𝑝(𝑥)over 𝐺𝐹(2)[𝑥] of
degree 𝑚 is irreducible if it has no factor of degree less
than 𝑚, moreover it is a factor of other polynomial 𝑃(𝑥) =

𝑥𝑑 − 1, where 𝑑 = 2𝑚 − 1 ”. For example the polynomial

𝑥3 + 𝑥 + 1 is irreducible and have no factor or factor
polynomial 𝑓(𝑥) of degree less than 3, and also 𝑥3 + 𝑥 + 1
is a factor of polynomial 𝑃(𝑥) = 𝑥7 − 1 hence it is a
primitive polynomial [5]. For any degree there must be a
primitive polynomial. Primitive polynomials are the
minimal polynomial for the primitive elements in the Galois
Field. A primitive polynomial 𝑝(𝑥) ∈ 𝐺𝐹(𝑝)[𝑥] is always
irreducible in 𝐺𝐹(𝑝)[𝑥], however an irreducible polynomial
need not always be primitive. For example 𝑥4 + 𝑥3 + 𝑥2 +

𝑥 + 1 is irreducible but it is not primitive because 𝑥4 +

𝑥3 + 𝑥2 + 𝑥 + 1|𝑥5 − 1 instead of 𝑥15 − 1, which violet
the criteria for a polynomial to be primitive. All irreducible
polynomial over 𝐺𝐹(2)[𝑥] is primitive if it has degree 2, 3
or 5. In 𝐺𝐹(2)[𝑥] if the degree of 𝑝(𝑥) is greater than 1 and
have even number of terms, then it cannot be irreducible,
because 1 is it’s a root and hence (𝑥 + 1) is a factor. It is
noted that a binary polynomial that is missing alternate
terms are not irreducible. Given an irreducible polynomial
𝑝(𝑥) ∈ 𝐺𝐹(𝑝)[𝑥]of degree 𝑚, to test whether it is primitive

or not, divide 𝑥𝑖 − 1 ∀ 𝑚 < 𝑖 < 𝑝𝑚 − 1 from 𝑝(𝑥), if no
such 𝑖 exists, it leaves remainder zero, then the polynomial
𝑝(𝑥) is said to be a primitive polynomial. Let us assume that
𝛼 be a root of 𝑚 degree primitive polynomial 𝑝(𝑥) defined

over 𝐺𝐹(2)[𝑥] then it must be a root of 𝑥𝑝𝑚−1
− 1 and

𝑥𝑜𝑟𝑑(𝛼) − 1, and have an order 𝑝𝑚 − 1. The 𝑝𝑚 − 1
consecutive power of 𝛼 form a multiplicative group of order
𝑝𝑚 − 1 [4]. Since 𝛼 is a nonzero root of 𝑝(𝑥) therefore
𝑝(𝑥)|𝑥𝑚 − 1 and this implies that the order of 𝛼 must be a
factor of 𝑚, so we may have 𝑜𝑟𝑑(𝛼)|𝑚. All of the roots
have same order hence the set of all roots of 𝑝(𝑥) makes a

conjugacy class with respect to 𝐺𝐹(𝑞). Furthermore

𝑝(𝑥)|𝑥𝑜𝑟𝑑(𝛼) − 1 if and only if the 𝑜𝑟𝑑(𝛼) is same as the
order of any roots of 𝑝(𝑥)[6, 11]. For any prime power 𝑞
and any positive integer 𝑛, there exists a primitive
polynomial of degree 𝑛over Galois Field𝐺𝐹(𝑞). There are:

𝒂𝒒(𝒏) =
𝝋(𝒒𝒏 − 𝟏)

𝒏

Primitive polynomials over 𝐺𝐹(𝑞), where 𝜑(𝑛)is the totient
function. A polynomial of degree 𝑛 over the Finite Field
𝐺𝐹(2) (i.e., with coefficients either 0 or 1) is primitive if it
has polynomial of order 2𝑛 − 1. For example, 𝑥2 + 𝑥 +

1 has order 3 since.

𝑥 + 1

𝑥2 + 𝑥 + 1
=

𝑥 + 1

𝑥2 + 𝑥 + 1
(𝑚𝑜𝑑2)

𝑥2 + 1

𝑥2 + 𝑥 + 1
= 1 +

𝑥 + 1

𝑥2 + 𝑥 + 1
(𝑚𝑜𝑑2)

𝑥3 + 1

𝑥2 + 𝑥 + 1
= 𝑥 + 1(𝑚𝑜𝑑2)

Putting 𝑞 = 2 in equation 𝑎𝑞(𝑛) =
𝜑(𝑞𝑛−1)

𝑛
 the numbers of

primitive polynomials over 𝐺𝐹(2) are: 𝑎2(𝑛) =
𝜑(𝑞𝑛−1)

𝑛

giving 1, 1, 2, 2, 6, 6, 18, 16, 48 ... for 𝑛 =1, 2, 3.... The
following Table III list of all possible primitive polynomials
𝑚𝑜𝑑𝑢𝑙𝑜(2) of orders 1 through 5 is shown in Table III.

Table III

Primitive Polynomial over 𝑮𝑭(𝟐) of Degree ≤ 𝟓

𝑛 Primitive Polynomials

1 1 + 𝑥

2 1 + 𝑥 + 𝑥2

3 1 + 𝑥 + 𝑥3, 1 + 𝑥2 + 𝑥3

4 1 + 𝑥 + 𝑥4 , 1 + 𝑥3 + 𝑥4

5
1 + 𝑥2 + 𝑥5, 1 + 𝑥3 + 𝑥5, 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥5,
1 + 𝑥 + 𝑥3 + 𝑥4 + 𝑥5, 1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5,
1 + 𝑥 + 𝑥2 + 𝑥4 + 𝑥5

Primitive polynomials are widely used in Field element
representation, Pseudo-random bit generation and CRC
codes. Primitive polynomials over 𝐺𝐹(2) is used for
pseudorandom bit generation. In fact, every linear feedback
shift register with maximum cycle length (which is 2𝑛 − 1,
where 𝑛 is the length of the linear feedback shift register)
may be built from a primitive polynomial. For example,
given the primitive polynomial 𝑥10 + 𝑥3 + 1, we start with
a user specified 10−bit seed occupying bit positions 1
through 10, starting from the least significant bit. We then
take the 10𝑡ℎ and 3𝑟𝑑 bits, and create a new 0𝑡ℎ bit, so that
the XOR of the three bits is 0. The seed is then shifted left
one position so that the 0𝑡ℎ bit moves to position 1 in each
clock pulse.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1960
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

This process can be repeated to generate 210 − 1 = 1023
pseudo-random bits. In general, for a primitive polynomial
of degree 𝑛 over 𝐺𝐹(2), this process will generate a
maximum of 2𝑛 − 1 pseudo random bits before repeating
the same sequence, while non−primitive polynomial
produces sequence < 2𝑛 − 1. One important property is to
note that their reciprocal also form primitive polynomial
(i.e., they come in pair). Example 1 + 𝑥3 + 𝑥4 is degree 4,
its reciprocal 1 + 𝑥 + 𝑥4 i.e., 10011 and 11001, both are
primitive. Technically, one can define primitive polynomial
using concepts better than Finite Field Theory.

VII. CLOCK

Clock is a signal that is generated when a sequential circuit
works. A clock can transmit high signal if and only if the
circuit works. The time interval for which a clock is high is
same as the time for which it is low. The number of
complete cycle emitted in a second is called frequency of the
clock and is denoted by 𝜐, while the time taken by clock to
complete a cycle is called their time period and is denoted
by T. Figure III shows the working principal of a clock. The
ratio of the “time for which signal reaches at high to the
total time” is called their duty cycle. Every clock has their
duty cycle exactly equal to 50%.

Figure III

VIII. Q-ARY FSR SEQUENCE

A sequence𝑠 = 𝑠0, 𝑠1 …. is called a 𝑞-ary Feedback Shift
Register (FSR) sequence generated by a 𝑛 stage FSR, with a
feedback function 𝑓: 𝔽𝑞𝑛 → 𝔽𝑞 with initial state

𝑠0, 𝑠1, … , 𝑠𝑛−1, if it satisfy the recursion 𝑠𝑘+𝑛 = 𝑠𝑘 + 𝑠𝑘−1 +

⋯ + 𝑠𝑘+𝑛−1 ∀ 𝑘 ∈ ℤ+. The sequence 〈𝑠〉𝑖∈𝑁 said to be a 𝑞-
ary FSR sequence if there exist an 𝑟 ∈ ℕ such that 𝑠𝑖+𝑟 =

𝑠𝑟∀ 𝑖 ∈ ℤ+, and the sequence is said to be periodic with
period 𝑟. An FSR sequence with feedback function 𝑓(𝑥) is
called LFSR, if 𝑓(𝑥) is linear, i.e., of the form of

𝑓(𝑠𝑛−1, … , 𝑠1, 𝑠0)

= 𝑠𝑛−1𝑘𝑛−1, 𝑠𝑛−2𝑘𝑛−2, … , 𝑠1𝑘1, 𝑠0𝑘0 ∀ 𝑘𝑖 ∈ 𝔽𝑞

IX. LINEAR FEEDBACK SHIFT REGISTERS

A Mealy machine, Autonomous Linear Feedback Shift
Registers (LFSR), Pseudo Random number Generator,
Polynomial Sequence Generator, Pseudo Random Pattern
Generator or simply an LFSR comprises of two parts: (i) a
clock storage elements (Flip-Flop or 𝐹𝐹) and (ii) a feedback
path. The number of storage elements gives us the degree of
the LFSR. In other words, an LFSR with 𝑚 Flip-Flop is said

to be of degree 𝑚.The possible 𝑚 feedback paths compute
the input for the left most 𝐹𝐹 as XOR or XNOR sum of
certain Flip-Flop in the shift register. The internal value of
LFSR is called initial fill, initial vector or a seed (in
mathematical terminology) and because the operation of the
register is deterministic, the stream of values produced by
the register is completely determined by its current or
previous states. The output of the LFSR is one bit at each
clock. Likewise the register has a finite number of possible
states, it must eventually enter a repeating cycle excluding
all zeroes pattern, i.e., once it reaches its final state; it will
traverse the sequence exactly as before. However, an LFSR
with a well-chosen feedback function can produced a
sequence of bits which appears random and has a very long
cycle. An LFSR 〈𝑚|𝑝(𝑥)〉 is singular (i.e., connection
polynomial 𝑝(𝑥) has degree less than 𝑚) then not all output
sequence are periodic with period 𝑚. However the output
sequence is ultimately periodic; that is the sequence
obtained by ignoring a certain finite number of terms at the
beginning are periodic. The internal state bits are denoted by
𝑠𝑖 and are shifted by one unit right with each clock pulse.
The rightmost bit gives the current output whereas the
leftmost bit is to be computed by a feedback function 𝑓(𝑥),
which is a XOR sum of some 𝐹𝐹 values in previous state.
Since XOR is a linear operation hence the circuit is called a
linear recurrence. Whether a feedback path is active or not
is determine by a feedback coefficients 𝑓𝑚−1, … , 𝑓1, 𝑓0. If
𝑓𝑖 = 0 meaning there is no feedback at 𝐹𝐹𝑖 and if a feedback
exists at location 𝑖 then we set 𝑓𝑖 = 1.The value of feedback
coefficients 𝑓𝑖 play a crucial role for the output sequence
produced by the LFSR. Application of LFSR include Test
Pattern Generator (TPG), Output Response Analyzers
(ORA), Pseudo Random Number (PRN), Error Correcting
Code, Pseudo Random Pattern Generation and Signature
Analysis in logic Built In Self-Test (BIST), Test Data
Decompression and Test Data Compaction in Scan

Compression, Cyclic Redundancy Codes (CRC), shut off
the screen if no one touched the keyboard for 2𝑛 − 1
seconds, Sends an input to control the computer at every
100ms, reboot if no response, Cycling through the addresses
for refreshing a Dynamic Random Access Memory

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Design of Pseudo Random Number Generator using Linear Feedback Shift Register

1961
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

(DRAM) and many more. However it has some Problems
for TPGs [10].

X. TERMINOLOGY RELATED WITH LFSR

Taps, period, internal state, initialization vector IV, lockup
state etc. are the essential terminology associated with LFSR
that are very important to discuss.

A. Taps
Lines that run from the output of one register within the

LFSR into the XOR gates that determine input to the
register within the LFSR. Taps are chosen on the basis of
primitive polynomials. Only certain combination of taps will
produced a maximal length.

B. Period
An 𝑚 degree LFSR can produce a maximum of 2𝑚 − 1

distinct sequence of random number, and then it repeats the
same sequence. The number of count for which it generates
distinct sequence without repetitions is called their period.
The LFSR’s period depends on the seed value, the tap

positions and the feedback type, OR if 𝑟 is the smallest
positive integer such that 𝑝(𝑥)|𝑥𝑟 + 1, then integer 𝑟 is
called the period of LFSR [9].

C. Internal State
At each clock pulse, all the bit are shifted towards MSB

from LSB, and then XOR bit is fed into the LSB register of
LFSR. Hence it results to change the bit pattern. Each of bit
patterns is known as their internal states. The order of states
is depend upon your choice to choose the seed value.

D. Seed or Initialization Vector
The initial value of the LFSR is called a seed or

Initialization Vector (IV). If the feedback function 𝑓(𝑥)
involve XOR operation to compute feedback bit, then the
registers should be seeded to none zero value.

E. Lockup State
If seed contains all zero initial values, then the LFSR

will mire up and will never come in recoverable state, and
also won’t leave this state. Note that it is possible to design
an LFSR that have its lockup state with all ones instead of
all zeroes.

XI. WHY LFSR

There are several reasons for which we can prefer Linear
Feedback Shift Register (LFSR) than any other registers,
some of them are:

• Flip-Flops can be connected by few XOR gates.

• Required less gate consumption.

• Work better than a counter.

• Can be used as a fast counter [1].

• Internal circuit is very fast, Max delay is 1 XOR Delay
plus 1 D FF Delay [8].

• Takes less area than any other common counter except
a ripple counter [12]

• Much faster than any other common counters except the
Mobius counter [10]

• It does not count in binary. It counts 𝑚𝑜𝑑𝑢𝑙𝑜(2𝑚 − 1),
while binary counter counts 𝑚𝑜𝑑𝑢𝑙𝑜(2𝑚) [16].

• Provides 2𝑚 patterns for 𝑛 input combinational logic
circuit.

• Provides higher clock frequency [2].

• Very little latency and independent of n!.

• Obeys approx. 15 of 25 Standard Statistical Tests [2].

XII. TYPES OF LFSR

Finally for every primitive polynomial there are in fact 4
linear feedback shift register which may be implemented
either by using XOR gated in series with each FF output, or
with the XOR gate external to the shift register in the
feedback path. The external XOR LFSR is called Standard
LFSR or Type-I LFSR or External LFSR as shown in the
Figure IV. The internal XOR LFSR is called Modular LFSR
or Type-II LFSR or Internal LFSR. Each form of LFSR can
be made into a signature analyzer by addition of the XOR
input to the first D-Type FF [13].

A. Standard LFSR
Following Figure IV shows 𝑛 stage standard LFSR. It

consists of 𝑛 FF and a number of XOR gates. Since XOR
gate are placed on the external feedback path, hence it is
also referred as external XOR LFSR as shown in Figure IV
[14].

Figure IV. External LFSR

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1962
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

B. Modular LFSR
Similarly, an 𝑛 stage modular LFSR with each XOR gate

placed between two adjacent FF are shown in Figure V, is
called an internal XOR LFSR, because each stage introduces
at most one XOR gate delay. It has higher clock frequency
than Standard LFSR as shown in Figure V [14].

Figure V. Internal LFSR
The sequence generated by the Type-1 and Type-2 LFSR
are totally different even if they are seeded with the same
initialization vector as shown in the Figure below.

XIII. DESIGN OF 𝒎 − 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆 LFSR

An LFSR of size 𝑚 can result in producing each feasible
state throughout the period 𝑝 which is equal to 2𝑚 − 1 shift,
but it will achieve this period only when appropriate
feedback paths have been chosen. For example, an 8 stage
LFSR would probably possess a widest possible
combination of 1s and 0s after reaching at 255 shifts. Each
sequence produced in this shift is a maximal sequence, in

general a maximum length sequence. These sequence is
usually referred as 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 or a Pseudo Noise (PN)
or a Pseudorandom Sequences (PS). Maximal length
generators can in fact produce two sequences. The first has a
length of one, and occurs when the initial state of the
generator is set to all zero. The other one has a length of
2𝑚 − 1. Together, both of these two sequence keep track of
all 2𝑚 state of a 𝑚-bit state register. Once the feedback taps
of an LFSR are non-maximal, the length of the generated
sequence relies on the initial state of the LFSR. Each of
these sequences is called a State Space of the LFSR.
Mathematical Definition of Galois Field and 𝑚 −
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

To achieve the 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 of LFSR, Galois Field are
widely used to obtain feedback taps. If a polynomial 𝑝(𝑥) of
variable 𝑥 represent as a LFSR, such polynomial is termed
as the generator polynomial.

𝐺(𝑥) = 𝑓𝑚𝑥𝑚 + 𝑓𝑚−1𝑥𝑚−1 +, … , 𝑓𝑚−𝑟𝑥𝑚−𝑟 , … . , 𝑓2𝑥2

+ 𝑓1𝑥 + 𝑓0

∀ 2 ≤ 𝑟 < 𝑚

The coefficients 𝑓𝑖 ∈ {0, 1} signifies the tap weight, 1 for
the tap that is connected and 0 otherwise. The order of the
polynomial 𝑚 signifies the number of LFSR stages. Rules
of linear algebra apply to the polynomial, however all
mathematical operations are performed in 𝑚𝑜𝑑𝑢𝑙𝑜(2). For
example the generator polynomial 𝑥3 + 𝑥 + 1 represents a
LFSR with feedback taps at 3 and 1 denoted as 〈1, 3〉. Now,
the second problem is to select feedback taps so that the m-
sequences can be produced. The generator polynomial G(x)
is said to be primitive if and only if it can't be factored. In
order to find such polynomial, it must be a prime number. In
this case, when the generator polynomial 𝐺(𝑥) is a factor of
𝑥𝑝 + 1, where 𝑝 = 2𝑚 − 1, it may represent that the LFSR
generate a maximal length sequence. Let's take the example
of LFSR 〈1, 3〉.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Design of Pseudo Random Number Generator using Linear Feedback Shift Register

1963
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

Figure VI. PRNG Sequence

Figure VII. LFSR 〈𝟐, 𝟓〉

In this case we will check whether the LFSR produce an
𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 or not. Initially we keep in mind that 𝑚 = 3
and 𝑝 = 2𝑚 − 1 which is equivalent to 7. It can be shown
that its polynomial 𝑥3 + 𝑥 + 1 can never be factored; it is
also found that the polynomial is a factor of 𝑥7 + 1. Hence,
for any primitive polynomial 𝑝(𝑥) will really produce a
maximal length sequence if and only if;

𝒑(𝒙)[𝒎] | 𝒑(𝒙)[𝟐𝒎 − 𝟏] and,

𝒑(𝒙)[𝒎] ∤ 𝒑(𝒙)[𝒊] ∀ 𝟏 ≤ 𝒊 ≤ (𝟐𝒎 − 𝟐)

During this demonstration, we went through the procedure
for identifying whether the given set of feedback taps would
produce a maximal length sequence or not. Normally, we
are required to do just the opposite. That is, we are normally
required to find all sets of feedback taps that will produce
m−sequences for a given register size 𝑚. For instance, we
may be asked to find all sets of maximal-length feedback
taps for an LFSR with 𝑚 = 3. We accomplish this as
follows: The length of the 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 will be 7. The
solution of this problem resides in the primitive factor of
polynomial 𝑥7 + 1 under 𝑚𝑜𝑑𝑢𝑙𝑜(2) operation. The prime
factorization of 𝑥7 + 1 is something like:

 𝒙𝟕 + 𝟏 = (𝒙 + 𝟏)(𝒙𝟑 + 𝒙 + 𝟏)(𝒙𝟑 + 𝒙𝟐 + 𝟏)

It should be noted that the size of registers is same as of the
order of the primitive polynomials which is equal to 𝑚. Out
of the three prime factors, the last two meet this criterion.
Thus we see that there are exactly two sets of m−sequence
feedback taps 〈1, 3〉 and 〈2, 3〉 that exists for degree 3. It
should be noted that, there always exist an even number of
feedback tap set that produce 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 however the
size of LFSR may be. For more approval, we can say that
for any feedback tap set that produce 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 such
as 𝐹 = {𝑓1, 𝑓2, . . . 𝑓𝑖}, there must exist a set containing mirror
image of the feedback taps of set 𝐹 which is equivalent to
𝐹′ = {𝑓1, 𝑛 − 𝑓𝑛−1, . . . , 𝑛 − 𝑓0} ∀ 1 ≤ 𝑖 ≤ 𝑚. Here both 𝐹
and 𝐹′ are complement to each other under the size of LFSR
𝑚. Form this observation we can say that, on subtracting
feedback taps number from the size of LFSR i.e., 𝑚, one
can obtain the set of reverse order taps of all the
corresponding elements of 𝐹 that guarantees to achieve 𝑚 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. Hence we can conclude that, for any set of 𝑚 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 feedback taps, their mirror image feedback taps
also produce the mirror image 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, and this
mirror image sequence is also a 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. An astute
reader may have noticed that, the 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 feedback
taps 〈1, 3〉 and 〈2, 3〉 are mirror image to one another, and
hence they both produced the same 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. PN
sequence have advantageous feature from the computational
viewpoint [15]. Due to only these structural properties, PN
sequence have enormous applications like Direct Sequence
Spread Spectrum (DSSS), Built-In-Self Test (BIST),
Decryption Encryption System (DES) and many more [12,
16].
Figure VI shows pattern produced by the LFSR 〈2, 5〉 shown
in Figure VII. Assume that the LFSR is initially seeded with
vector 11111, we observing that each PN sequence 𝑠𝑖 has
same period 𝑝 = 31, and hold the same properties as
illustrated below. To understand properties of PN sequence,
please refer to Figure VIII.
Property I: In every period 𝑝 = 2𝑚 − 1, the sequence
contains exactly 2𝑚−1 number of ones.
Property II: In every period 𝑝 = 2𝑚 − 1, the sequence
contain exactly 2𝑚−1 − 1 number of zeroes. This means the
total number of one’s is equal to the total number of zeroes
+1, this is called there

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1964
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

Balance Property.

Property III: In every period 𝑝 = 2𝑚 − 1, the sequence has
an occurrence of one’s exactly 𝑚 times in succession.

Property IV: In every period 𝑝 = 2𝑚 − 1, the sequence
does not have any occurrence of zeroes exactly 𝑚 times in
the succession.

Property V: In every period 𝑝 = 2𝑚 − 1, the sequence does
not have any occurrence of one’s exactly 𝑚 − 1 times in the
succession.

Property VI: In every period 𝑝 = 2𝑚 − 1, the sequence has
an occurrence of total number of zeroes exactly 𝑚 − 1 times
in succession.

Property VII: Sum of two cycle shifted upto 𝑚 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 is another cycle shift, of the same 𝑚 −
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. This property is also called Shift and adds
property.

Property VIII: If a window of width 𝑤 slides along a PN
sequence for 2𝑚 − 1 shift, each 𝑤 tuple except all zeroes 𝑤
tuple will appear exactly once as shown below.

1𝑠𝑡 phase shift 6𝑡ℎ phase shift

𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏

𝟎 𝟏 𝟏 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏 𝟏 𝟏 …

0𝑡ℎ phase shift 7𝑡ℎ phase shift, same as 0𝑡ℎphase

Four windows of same size 𝑤 slides along the PN
sequences; at each phase shift it shows a unique sequence of
bits, each sequence is a PN sequence.

Property IX: As we can observe that the sequence has a
Jigsaw Fit of pattern. The upper triangular bit pattern of
ones from clock 0 to 4 have a clear Jigsaw Fit with the
lower triangular bits pattern of ones from clock 27 to 30
(refer to Figure VI)

Property X: We define a term RUN of 𝒓 consecutive
identical bits. It is a succession of items of the same class
enclosed within distinct bits. In a PN sequence we have;
Figure VIII shows the different runs of LFSR 〈4|3, 4〉.

Following observation has been made:

• A run of one’s of length 𝒓.

• A run of zeroes of length 𝒓 − 𝟏.

• A run of one’s & a run of zeroes of length 𝒓 − 𝟐.

• Two run of 𝟏’s & two run of 𝟎s of length 𝒓 − 𝟑.

• Four run of 𝟏’s & four run of zeroes of length 𝒓 − 𝟒.

….

• 𝟐𝒓−𝟑 run of one’s and 𝟐𝒓−𝟑 run of 𝟎s of length 1 [2].

PS PN
Sequences 0𝑡ℎ 0010111

1𝑡ℎ 0101110

2𝑡ℎ 1011100

3𝑡ℎ 0111001

4𝑡ℎ 1110010

5𝑡ℎ 1100101

6𝑡ℎ 1001011

7𝑡ℎ 0010111

PS: Phase Shift, PN: Pseudo Number

Synthesis: From the above ideas, we can synthesize that a

PN sequence of length 2𝑚 − 1 contain 2𝑖−1 run of 𝑚 − 𝑖 −

1 one’s as well as zeroes ∀ 1 ≤ 𝑖 ≤ 𝑚 − 2 as provide in
Table IV below.

Table IV.

#R
u

n

S
uc

ce
ss

i
on

R
un

s

S
yn

th
es

i
s

P
ro

pe
rt

y

1 4
on
e’

s

1111 No 3

N
o

4
ze
ro
es

0000 No 4

N
o

3
on
e’

s

111 No 5

1 3
ze
ro
es

000 No 6

1 2
on
e’

s

11 Yes No

1 2
ze
ro
es

00 Yes No

2 1
on
e’

s

1 Yes 10.6

2 1
ze
ro
es

0 Yes 10.6

Number of 𝟏’𝒔 = 𝟖, and 𝟎’𝒔 = 𝟕 𝒎 = 𝟒

On the basis of above properties, some conclusions are
drawn for an ideal PN sequence as given below. Every PN
sequence must hold;

A. Balance Property
A PN sequence must have equal number of one’s and

zeroes, and should have no DC component to avoid a
spectral spike at DC or biasing the noise in dispreading.

B. Run Length Property
The run lengths are generally short, and it is observed

that half of the runs are of length 1. A fraction
1

2𝑛 of all runs

are of length 𝑛. Long runs reduce the BW spreading and it’s

an advantage over PN
sequence.

Figure VIII

𝑚
𝑜

𝑑
𝑢

𝑙𝑜
(2

𝑚
−

1
)

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Design of Pseudo Random Number Generator using Linear Feedback Shift Register

1965
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2912129219/2019©BEIESP
DOI: 10.35940/ijeat.B2912.129219
Journal Website: www.ijeat.org

C. Shift Property
If the sequence are shifted by a non-zero number of

elements/bits, the resulting sequence will have half of its
sequence exactly same as of the original sequence, while the
half of it is totally different from the original sequence.

Note: A deterministic sequence that holds Balance, Run
Length and Shift grows Asymptotically Large, this property
is referred to as a Pseudo Noise or Noiselike signals. 𝑚 −

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, Quaternary sequence, Gold Codes, Walsh
functions and Kasami sequence are the examples of PN
sequences.

XIV. CONCLUSION

The paper presented a brief analysis and design of LFSR
based 𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 PRNG that are very useful to
implement cryptographic primitives. Some important
mathematical tools such as Field, Galois Field, Primitive
Polynomial and Primitive Polynomial over Galois Field and
LFSR have been discussed. The paper provide a design of
𝑚 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 PRNG that follows the security measures as
described by NIST Standard. In future work, it is proposed
to implement LFSR based cryptographic primitives that are
used in Key Exchange and Data Encryption by using the
said mathematical tools.

REFERENCES

1. National Institute of Standards and Technology, Advanced Encryption
Standard, FIPS 197 (2011).

2. Fernandes, Rebecca Angela, and Niju Rajan. "Power Optimization of
Linear Feedback Shift Register (LFSR) using Power
Gating." Power 5.05 (2018).

3. D. A. Cox, Galois Theory, 2nd ed., Wiley, Hoboken, 2012.
4. D. A. Cox, Evariste Galois and Solvable Permutation

Groups,http://www.cs.amherst.edu/∼dac/lectures/bilbao.pdf.
5. G. Frei, The Unpublished Section Eight: On the Way to Function

Fields over a Finite Field, pp. 159–198 in “The Shaping of Arithmetic

after C. F. Gauss’s Disquisitiones Arithmeticae,” ed. C. Goldstein, N.

Schappacher, J. Schwermer, Springer-Verlag, Berlin, 2007.
6. E. H. Moore, A Doubly-Infinite System of Simple Groups, pp. 208–

242 in “Mathematical papers read at the International Mathematical

Congress held in connection with the World’s Columbian Exposition,
Chicago, 1893,” Macmillan & Co., New York, 1896.

7. Mashhadi, Samaneh, and Massoud Hadian Dehkordi. "Two verifiable
multi secret sharing schemes based on nonhomogeneous linear
recursion and LFSR public-key cryptosystem." Information
Sciences 294 (2015): 31-40.

8. Tan, Zuxiong, et al. "A New Pseudo-Random Number Generator
Based On The Leap-Ahead LFSR Architecture." 2018 IEEE
International Conference on Integrated Circuits, Technologies and
Applications (ICTA). IEEE, 2018.

9. Mo, Hongjia, and Michael Peter Kennedy. "Influence of Initial
Conditions on the Fundamental Periods of LFSR-Dithered MASH
Digital Delta–Sigma Modulators with Constant Inputs." IEEE
Transactions on Circuits and Systems II: Express Briefs64.4 (2016):
372-376.

10. Tzanakis, Georgios, et al. "Constructing new covering arrays from
LFSR sequences over Finite Fields." Discrete Mathematics 339.3
(2016): 1158-1171.

11. Panda, Amit Kumar, Praveena Rajput, and Bhawna Shukla. "FPGA
implementation of 8, 16 and 32 bit LFSR with maximum length
feedback polynomial using VHDL." 2012 International Conference on
Communication Systems and Network Technologies. IEEE, 2012.

12. Ahmad, Afaq, Sayyid Samir Al-Busaidi, and Mufeed Juma Al-
Musharafi. "On Properties of PN Sequences generated by LFSR a

Generalized Study and Simulation Modeling." Indian Journal of
Science and Technology 6.10 (2013): 5351-8.

13. Tsoi, Kuen Hung, K. H. Leung, and Philip Heng Wai Leong. "Compact
FPGA-based true and pseudo random number generators." 11th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines, 2003. FCCM 2003.. IEEE, 2003.

14. Arnault, François, and Thierry P. Berger. "Design and properties of a
new pseudorandom generator based on a filtered FCSR
automaton." IEEE Transactions on Computers 54.11 (2005): 1374-
1383.

15. Tsalides, Ph, T. A. York, and A. Thanailakis. "Pseudorandom number
generators for VLSI systems based on linear cellular automata." IEE
Proceedings E (Computers and Digital Techniques) 138.4 (1991): 241-
249.

16. Deepthi, P. P., and P. S. Sathidevi. "Design, implementation and
analysis of hardware efficient stream ciphers using LFSR based hash
functions." Computers & Security 28.3-4 (2009): 229-241.

AUTHORS PROFILE

 Shabbir Hassan is a Research Scholar at the
Aligarh Muslim University, Aligarh. He holds
Master in Computer Science and Applications
(MCA) and currently pursuing Ph.D at Department
of Computer Science, Aligarh Muslim University.
His thrust area is “Analysis and Design of

Lightweight Stream Cipher” and area of interest
includes Applied Mathematics, Analysis and

Design of Algorithms, Dynamic Programming, Network Security and
Cryptography. He has qualified UGC-National Eligibility Test (NET) and
has availed Junior Research Fellowship (JRF) during the Research Work.
Throughout his career, he has been involved in innovative Software
Development and Academic Teaching of Computer Science subjects like C,
JAVA, Python, Data Structure, Operating System, Automata Theory and
Computer Networks. He has presented his research work in several
National and International IEEE Conferences and marked his active
participation in many Conferences, Workshops and Symposia. His research
papers have published in many reputed peer reviewed Journals of
International repute like Springer, Elsevier, JASRAE, InderScience and
Scopus Indexed Database. Apart from the Academic Research and
Software Development, he is enriched with the passion of poetry and
philosophy and engages himself in Social Works.

 Prof. Mohammad Ubaidullah Bokhari is
presently working as Professor in the
Department of Computer Science, AMU,
Aligarh, (INDIA) and Principal Investigator
(PI) of the ambitious project, NMEICT ERP
Mission Project (Govt. of India). He has also
worked as an Associate Professor and
Director of Studies in Australian Institute of
Engineering & Technology, Victoria,

Melbourne (Australia). Prof. Bokhari has a vast teaching experience of
more than twenty three years. Under his guidance more than 700 students
of PG level has completed projects/Dissertations as well as more than 200
projects at UG level.
Prof. Bokhari obtained his doctorate in the field of Software Reliability and
Master's degree in computer science from Aligarh Muslim University.
During his academic pursuit he has visited different countries like
Australia, France, Canada, South Africa, etc. for research purpose and
acquiring academic excellence. He is the recipient of many scholarships
throughout his career. He is recipient of Merit Scholarship from high school
to graduation level. He was awarded prestigious Australian Postgraduate
Award (Industry) Scheme Scholarship in 2004. He is lifetime member of
Computer Society of India (C.S.I.) and member of IEEE. He has published
more than 100 research papers in reputed National and International
Conferences.

http://www.ijeat.org/

