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Abstract- In Multi-core systems the applications co-execute in 

Multi-programmed mode, have interfere with each other during 
execution, which creates resource bottleneck affecting the 
performance. To reduce the interference in a given set of 
resources some conventional approaches don't give guarantee of 
performance in a conflicting application environment. In this 
paper, we make an in-depth analysis of benchmark applications 
interference for shared resources and find out application set 
which could be executed adopting a designated policy to mitigate 
the interference effects. In this work, we have performed profiling 
and analysis of applications on the state-of-the-art simulator 
gem5. Finally, we conclude the possibility of performance 
improvement through the designated policy. The simulation 
results show the scope to have a new scheduler for performance 
improvement in such systems.  

 
Keywords: Interference, Multi-core, analysis, performance, 

policy, co-schedule. 

I. INTRODUCTION 

Multi-core systems execute a diverse set of applications. The 
diversity is due to the distinct characteristics of the 
applications which exit in its virtue. The diversity causes 
conflicts among the applications, which further create the 
issue of interference effects in the Multi-programmed 
environment [1]. The interference, in turn, affects the system 
behavior, due to the activities ordered by the applications 
running on various cores. In other words, interference is an 
undesired phenomenon that alters the system performance.  
To reduce the interference effects, it is essential to find the 
behavior of the applications, which would cause this [2]. To 
find the behavior of the application, some profiling based 
approaches are available, where the applications are run in a 
reference environment [3]. Knowing the essential 
characteristics of applications in terms of system parameters 
like latency could help in finding a suitable approach to 
execute the application in the said conflicting environment. 
To find the behavior of different applications running in 
isolation, a lot of research has been carried out in literature 
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[4] [5]. However, to find the application's behavior (in 
totality some intended combination), few attempts are made 
to some extent [6] [7]. The behavior of the applications 
becomes more unpredictable when executed in some 
intended "combinations," which is termed here as 
co-schedule [8]. Co-schedule is a group of independent 
applications/benchmarks which get executed in the cores 
simultaneously.  The behavior of application also depends on 
the application would be mapped to a processor core. 
However, the decision of the core mapping solely depends on 
the scheduler of the host machine. The performance of the 
system also depends on the number of threads in a 
benchmark. In general, increasing the number of threads in a 
benchmark may increase the system throughput, but it also 
affects the performance adversely after a saturation stage. 
The concurrent execution of benchmarks is also a possibility 
to improve the performance.  
The benchmarks of co-schedules might be single-threaded or 
multi-threaded. Single-threaded benchmarks, in general, do 
not require specific scheduling policy, and they are bound to 
a core as per the order specified in the simulation script, and 
they could not switch to other cores in run time. However, 
multi-threaded benchmarks threads could switch from one 
core to another core as per the scheduling policy. 
It is known that, in general, increasing the number of cores, 
can increase the possibility of performance improvement in 
terms of throughput. However, it is not always valid as 
Multi-core systems shares some common elements like last 
level cache, bus, DRAM controller, etc. which create the 
resource conflicting issues at run time. 
To increase the performance of Multi-core systems, it is 
essential to quantify the behavior of the applications and 
interference effects. The analysis is a useful tool to find out 
the causes, factors in terms of parameters responsible for 
performance degradation [9]. There are various performance 
factors which stand latent and show their effect when 
multiple co-scheduled applications interact with each other. 
It is vital to find such factors which require in-depth intended 
simulations and their analysis.  
One such concealed factor is memory access latency. 
Memory access latency is a critical factor for the performance 
of Multi-core systems. Memory Access latency becomes 
vital when applications/benchmarks conflicts/interfere with 
the shared resources like bus and Last level cache. The 
conflicts mainly influence memory access latency in Last 
level cache and contention in the bandwidth [10]. Hence, it is 
required to have an in-depth understanding of the behavior of 
benchmarks/applications in combination; to diminish the 
effect of memory latency effects.  
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Analysis of system parameters like miss rate, bandwidth 
utilization, the total numbers of branches committed, etc 
Are proved to be beneficial to find out the hidden causes of 
the performance degradation in Multi-core systems, [11]. 
However, the system parameters behavior is observed to be 
different from different application combinations, which 
calls for an in-depth approach precisely interpret the outcome 
of the execution of the application in terms of performance 
[12]. 
For example, on an application execution scenario, a higher 
value of bandwidth utilization indicates the performance 
improvement, mainly when an application executes in 
isolation. In another scenario, the same parameter indicates 
the performance degradation when co-scheduled applications 
cause conflicts for shared resources, and miss rate increases, 
which means we need to pay attention to the phenomenon, 
which causes performance degradation. 
Further, in a situation, the performance improvement in terms 
of IPC; the higher value of bandwidth parameter could be 
beneficial for the performance in a scenario when bandwidth 
has a higher requirement, and it is provided to the needy 
applications. In another situation, it might be that the 
bandwidth is available to the application, but due to 
co-schedule characteristics/conflicts, it is remaining 
underutilized.  
In conclusion, the Parameter behavior and its interpretation 
change as per the characteristics of the application and their 
coexistence with other applications. There seems to be a 
serious need to have a precise classification of applications 
combination and correct interpretation of the parameters in 
distinct scenarios. This proposition is important, which 
would address the said observation in a holistic manner for 
which a new scheduling policy would be required. 
Therefore the accurate interpretation of the system 
parameters would help in mitigating the effect of 
application/co-schedule [13] interference, which affects the 
Multi-core system performance severely. The interference 
effects are low-level effects whose identification would 
require a detailed simulation of application co-schedules and 
analysis of the system parameters. 
It means appropriate parameters like bandwidth 
consumption, data bus utilization, and the number of 
branches is required to extract from the co-schedules. And a 
detailed analysis would be required on the parameter 
behavior. Thus Parameters and their correlation would be 
useful to have a holistic view of the interference. 
The simulation and analysis of the designated co-schedules 
would require a specialized policy through which the 
interference scenario could be created by executing the 
applications, first in isolation and then in combinations. Here 
we consider an execution environment in terms of the 
processor cores, L1 and L2 cache size, bandwidth size, type 
of core used for the simulation, and a process to execute the 
benchmarks in a varied situation, at length, to see effects on 
the parameters of the co-schedules. 
In this research work, our contribution is mentioned below- 
● We have simulated the Mi-bench applications in In-order 

and Out-of-order-core in isolation and measured system 
parameters. 

● We simulated the applications in the form of co-schedules 
with varied sizes (2, 4 and 8) under In-order and 
Out-of-order cores. And measured the system performance 
in terms of performance metrics, Weighted IPC and 
Average normalized turnaround time (ANTT) 

● We have done a critical analysis of application behavior 
when executed in isolation and an intended combination.  

● We have explored the possibility of mapping the 
conflicting co-schedules with the appropriate policy, which 
might diminish the interference effects. 

● Finally, we have prepared a roadmap to automate the 
interference removal process through a holistic policy 
scheduler.  

The rest of the paper is organized as, in section-II, we have 
done the critical review of the work done in the profiling of 
benchmarks and related performance measurement process, 
section-II has covered the simulation setup and performance 
metrics used for the evaluation of results. In section-IV, we 
have presented the simulation results in terms of graphs. 
Section-V describes the critical analysis of results found in 
the profiling. Finally, we have concluded the research work 
in section-VI. 
In the next section, we have surveyed profiling approaches.  

II. REVIEW OF PREVIOUS WORK 

To find the application's behavior their characterization is 
essential. Various research efforts have made in this 
direction. One of the most popular approaches for 
characterizing the benchmarks is through the simulation 
tools. The popular application characterization tool, which is 
used for many years in computer architecture research, which 
has an active user community, is the gem5 [14]. The gem5 
simulation tool could characterize the applications in SE 
(System emulation) and Full mode. In SE mode, executable 
binary is profiled using the ISA of the host machine through 
system calls. Whereas, in Full mode, the applications are 
executed using the actual ISA and disk image of the target 
architecture. Gem5 supports two types of processor core 
known as-In-order and Out-of-order [15]. In-order core 
executes the applications in the program order, whereas the 
Out-of-order core does not consider the program flow and 
executes an instruction whose data is available. 
Using the gem5 simulation tool, various researchers have 
done the characterization of applications in isolation as well 
as in the intended combination (multi-programmed mode).  
Mi-bench, SPLASH-2, and PARSEC [16][17][18] are 
well-known Open source benchmarks used for many years in 
Multi-core architecture research. 

A. Characterization in Isolation 

There are some conventional policies like increasing the L1 
and L2 cache size mentioned in the literature to perform the 
simulation and analysis of interference effects in the system 
and analyzing the effect on the performance. The analysis 
revealed that increasing the cache size reduces the conflicts 
for memory bandwidth and shared L2 cache, which in turn 
mitigates the interference effect to some extent and increases 
the performance [19]. In the same line, to find the 
characteristics of applications in isolation, Mi-bench 
applications are simulated on X86 and ARM processors 
considering the in-order and Out-of-order processor cores 
[20]. The performance metrics like energy consumption, CPI, 
L2 miss rate, bandwidth utilization, etc, are measured after 
the simulation. These metrics have used to find the 
application behavior.  
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The simulation results detail important system parameters 
responsible for application behavior. However, the analysis is 
limited to the single benchmarks and does not consider the 
interference effect when multiple benchmarks execute 
simultaneously.  
In another context, some studies revealed that the L1-cache 
parameter does not have a significant impact on the 
performance. However, the Last level cache partitioning is 
identified as a vital source for performance degradation, 
which is further proved by the experiments done on 
micro-benchmarks. 
Finally, it is verified that partitioning the last level cache in 
applications interference environment could not always 
beneficial for performance improvement. [21]. To find the 
correlation of interference effect with memory access latency 
characterization of cache behavior is carried out through the 
reuse distance histogram model [22]. L2 cache miss rate is 
measured by considering L1 cache configuration as input and 
applying random and LRU cache replacement policies in the 
gem5 simulator.  The profiling results are compared with the 
histogram model, and the accuracy is calculated through the 
absolute error. 
To explore the behavior of media applications on 
heterogeneous systems, some experiments are carried out on 
the Gem5-gpu simulator [23]. The approach used for finding 
the application characteristic is conventional; some attributes 
of the system like cache and processor clock frequency are 
changed and the performance of the system is measured. 
In other work, for addressing the interference issue, analysis 
through cache coloring approaches is also carried out [24]. 
Cache coloring is an effective approach to model the 
interference situation. Also, the said policy ensures that the 
data and instructions of different processor cores should be 
placed in the different cache sets. However, it requires special 
allocators for the distribution of instructions and data to make 
it independent. Also, accessing the data distributed through 
this policy in parallel is very difficult. 
In the same line, to find the alternate of SRAM, comparative 
analysis of SRAM and STT-MRAM cache memories using 
the SPLASH-2 benchmarks is performed in the gem5 
simulator [25]. The architecture considered for the simulation 
is X-86 and ARM. The purpose of the benchmark to quantify 
how SPLASH-2 benchmarks behavior changes considering 
the said memory types. 
For finding the interference effects in real-time systems, the 
worst-case execution time is considered an effective 
approach [26]. The worst-case execution time helps on 
finding the ‘severe interference situation’ in real-time 
Multi-core systems, which determines the peak value of slow 
down an application would feel on the conflicting 
environments. This helps in estimating the minimum 
resource requirement of an application that executes in the 
mixed time-critical application execution environment. 
In another context [27], for finding the behavior of gadgets 
like mobile phones it is found that we don't have sufficient 
and suitable programs to test the power and performance. 
Some research work prepared the benchmarks for mobile 
phones and integrated them with the gem5 simulator. The 
benchmarks include the typical user inputs like a scroll, 
typing, etc. The benchmarks are very effective when 
applications are used in isolation; however, how applications 
would behave in a concurrent way is the topic to be explored. 
In the same line, the characterization of Smartphone 
applications in terms of CPI parameters is carried out using 

the simpoint and gem5 tools [28]. The simpoint is beneficial 
for verifying the performance of the applications which are in 
the testing phase and needs to be tested through a list of 
distinct design parameters. The simpoint and full simulation 
results are compared in terms of absolute error and it is found 
that the simpoint approach is having approximately the same 
accuracy as the full simulation. 

B. Characterization in Multi-programmed environment 

In the above section, it is found that most of the work of 
benchmark characterization considers the applications in 
isolation which covers the interference among the 
applications itself for the shared resources. However, in 
real-time systems, there are various applications run in a 
concurrent way. 
To find the behavior of applications in terms of interference, 
running concurrently on Multi-core systems, some research 
efforts have made in the literature. 
To find the behavior of the application on conflicting 
multi-programmed environment EEMBC MultiBench are 
executed concurrently in 64-many core architecture [29]. The 
simulation considered the single thread and multiple threads 
on each workload. The simulation explores the bandwidth 
saturation scenario and its effect on L1 cache miss penalties. 
In the mentioned experiment it is found that in many-core 
architecture increasing the number of concurrent workloads 
and threads are beneficial for the performance in terms of 
IPC. 
In the same line, bandwidth utilization analysis is carried out 
to ensure the quality of service for the Multi-programmed 
applications, co-scheduled in the Multi-core environment 
using gem5 simulator [30]. The analysis done through the 
various bandwidth partitioning approaches like square root, 
proportional and the performance is measured through the 
multi-programmed performance metrics like harmonic 
weighted speedup, minimum fairness, weighted speedup, and 
sum-of-IPCs. 
Various simulations carried out in gem5 simulator covers 
state-of-the-art applications like No-SQL, big data, etc. [31]. 
In these simulations, a comparative analysis of No-SQL 
benchmarks is done in terms of system parameters related to 
the memory hierarchy.  The analysis explores the behavior of 
data-intensive applications using the gem5 simulator in full 
system mode. The main objective of the analysis is to know 
whether the characteristics of No-SQL applications are 
similar to the well known parallel benchmark applications 
like SPEC, PARSEC, and NAS. The said benchmarks 
similarity in terms of system parameters might be used to 
utilize the existing optimization approaches of well-known 
benchmarks to the contemporary database applications. The 
results show that despite having the distinct specification of 
No-SQL databases they all show uniform behavior for the 
cache hierarchy. Analysis of memory interferences in terms 
of memory access delay for the parallel memory operations 
performed in the Multi-core systems [32]. The analysis 
considers that each processor core could generate a parallel 
memory request for the DRAM controller. The parallel 
request for memory is possible due to approaches like 
non-blocking, speculative execution and Out-of-order 
instruction execution.  
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These approaches are advantageous in terms of throughput,  
however, generates very high pressure for the main memory. 
The simulation and analysis are carried out through the gem5 
simulator using SPEC2006 benchmarks to find the 
worst-case performance in terms of delay. 
Some researchers have emphasized on Interference analysis 
of shared L2 cache, by finding the nature of schedules in the 
real-time environment [33]. The analysis provides a 
maximum value of cache parameters for each application in a 
schedule, which indicates the interference effects on an 
application to explore the possible performance degradation.  
The upper bound interference parameter is further used for 
making scheduling decisions. For finding the upper bound 
interference value of an application, the integer linear 
programming is used which further helps in making the 
iterative algorithm. 
In the next section, we have discussed various performance 
metrics that are used in the literature for the application’s 

characterization and analysis. 

C. Metrics for Performance analysis 

To perform the analysis of application interference, various 
metrics are proposed in the literature. Metrics are based on 
two perspectives-the users and the system [34]. User 
perspective metrics consider the response of individual 
applications in terms of the slowdown. System-level progress 
is measured through the system throughput; measured in 
terms of weighted speedup [35].  
Which performance metrics are suitable for a workload has 
been an issue of debate for a long time in a multi-core 
research community [36]? Performance metrics 
accuracy/clarity depends on the type of environment we are 
executing. For example; time-critical application deadline is 
the prime concern and thus deadline is an appropriate metric 
whereas for normal application system throughput is 
considered for performance measurement. 
For single-threaded workload, IPC and CPI are the important 
metrics. However, for multi-threaded workload IPC and CPI 
are not suitable performance metrics as if some benchmark 
threads were busy on time-consuming program constructs a 
falsy interpretation may have resulted. For example, an 
application may get stuck in a loop. 
In the same line, system-oriented metrics that were used 
earlier measures the total time the processor was busy and did 
not consider the fairness among co-executing applications, 
load balancing, etc. Another interesting metrics for the 
performance measurement is Fairness used to find the 
slowdown of applications in the Multi-programmed 
scenarios. The system could be termed as “Fair” if the rate of 

performance degradation (slow-down) of all the applications 
in Multi-programmed environment is similarly considered 
for their execution in isolation [37]. 

D. Profiling Approaches 

In the review, it is found that profiling is proved to be an 
approach, which uses a hardware or software instrument to 
quantify and measure the performance of an application and 
obtain the behavior of the application in isolation as well as 
comprehensively. There are two popular approaches for 
profiling the benchmarks; full simulation and simpoint 
analysis [38]. The full simulation profiling approach 
performs the profiling process for the whole benchmark 
which requires weeks or months of time for some 
benchmarks, especially to SPEC benchmarks [39]. Another 

approach of profiling is to find the simulation points in a 
benchmark and profiling them in full mode. Other parts of the 
benchmark are not considered and they are just 
fast-forwarded. In this work, we simulated the Mi-bench 
benchmarks completely as they take a reasonable time. For 
the execution of each benchmark, it takes a maximum of five 
hrs. As compared to SPEC2006 benchmarks which take two 
to three days for the completion. Since the situation is always 
complex in real life, & would not fit into a logical scenario, 
we propose a proactive approach to know about the behavior 
of the application in a given environment in the next section. 

III. METHODOLOGY 

For finding the applications conflicting behavior, we have 
performed the profiling of applications in two ways- First in 
isolation and second in an intended combination which we 
termed as the co-schedule. For profiling, state-of-the-art 
gem5 simulator has been used. The input for the simulation 
we used is well known Mi-bench benchmarks that are 
suitable for embedded devices. The simulation process 
produced the stat.txt files which contain various system 
parameters like L2 cache miss rate, bandwidth utilization, 
energy consumption (and others which are not considered 
here). The schematic view of simulation steps is shown in 
Figure-1. 

 
Fig.1. Schematic view of profiling Steps  

In the next section, we have explored how to form a 
group/co-schedule which would further help in creating the 
interference scenario. 

A. Group/Co-schedule Forming Process 

In order to create and quantify interference situations in 
multi-programmed environment, five benchmarks of 
Mi-bench benchmark suite are selected. These benchmarks 
are Dijkstra, Basic math, qsort, Bitcount, and Patricia. Each 
benchmark has distinct characteristics in terms type of 
instructions they contain. Each benchmark has the intuitive 
function which they perform during the execution. For 
example, most of the instructions in Dijkstra benchmark are 
CPU bound and it performs the task of finding the shortest 
path among the given set of nodes.  The above-mentioned 
benchmarks executed under X86 ISA (Instruction set 
architecture). Also, the simulation has been carried out in 
gem5 simulator. Experiments performed using in-order 
(Minor-CPU) and Out-of-order cores [40]. Gem5 does not 
support the MinorCPU processor core option in the default 
setting for X-86 ISA (in the list of CPU-Type supported for 
X86 ISA). To get that option for the simulation we have done 
the modification on gem5 source code particular to some files 
under the build folder.  
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Each benchmark binary is executed completely for the input 
specified in the benchmark suite. For the experiments, we 
prepared the python script and executed it in the command 
line in gem5 SE mode. 
Benchmarks are executed in isolation mode under the 
reference architecture (System configuration is detailed in the 
next section). The benchmark groups which we also refer to 
as co-schedule is a possible distinct application combination. 
We formed three types of groups each has 2, 4, 8 
applications. If in a group we have n applications then that 
group is termed as co-schedule size-n. In this way, a group 
that has 2 applications termed as co-schedule size-2. The 
reason for having the size of the group in the power of two is 
that the actual processor core where these groups would 
execute has the same convention for the number of cores.  
Moreover, having five applications, five simulations have 
carried out in isolation mode. In the same line, considering 
the group size-two, and have five benchmarks, there could be 
a total of ten distinct combinations, where each combination 
has a single instance of a benchmark. In the same way, 
considering the group of four, have the same number of total 
benchmarks mentioned in the previous case, there would be a 
total of five combinations with respect to an instance of each 
benchmark.  
After the simulations for group-size 2 and 4, we explored the 
group size of 8 hoping more intense interference effects.  
Since in a real system there could be any combination of 
applications (single/multiple instances) as a candidate in a 
co-schedule for the execution. We moved to a new 
application combination where we have considered the 
multiple copies of the benchmarks and measured the 
interference effects.  
We prepared the workloads (co-schedule) considering 
single-core, dual-core, quad-core, and octa-core processors. 
The benchmarks we have taken for the experiments are 
single-threaded; so each application is mapped to a core and 
it could not switch to other core during the simulation.  
For all the simulations we prepared a separate python script 
which is executed in the terminal of Ubuntu 16.04 
(open-source operating system). Also, the default 
configuration script “se.py” which exists in the 

gem5/config/example/se.py directory is considered for 
specifying the parameters in the experiments. 

Table-I: Benchmark groups forming process 
 

 
Executing 

Alone 

Applicatio
n 

Combinati
on(2) 

Applicatio
n 

Combinati
on(4) 

Application 
Combination 

Multiple 
copies(8) 

Application 
Combination(

Multiple 
copies) 

 A AB ABCD AAAABBBB AA 

 B AC ABCE AAAACCCC AAAA 

 C AD ABDE AAAADDDD AAAAAAAA 

 D AE ACDE AAAAEEEE BB 

 E BC BCDE AAAAAABB BBBB 

  BD  AAAAAACC BBBBBBBB 

  BE  AAAAAADD AABB 

  CD  AAAAAAEE AACC 

  CE    

  DE    

Total 5 10 5 8 8 

The process of group forming is shown in Table-I. The 
alphabets A to E designate to a benchmark for an easy 

understanding of the process. Having a total of five 
applications, all the possible combinations are formed for the 
group size-2, 4 and 8. In the next section, we have presented 
the simulation environment created for application profiling 
through the process mentioned above. 

IV. EXPERIMENT SETUP 

In this section, we detailed the reference machine in terms of 
system parameters, type of processor core used for the 
simulation. Also, the benchmarks, their basic characteristics 
& the purpose are also elaborated. The co-schedule size, 
simulation procedure used is summarized briefly. 

A. Co-schedule size & Number of core 

In the experiments, the co-schedules are mapped to the 
processor cores as per the availability of the number of cores; 
typically we used 8 cores. The co-schedule size (possible 
combination size) depends on the number of cores. This 
means, if the total number of cores in a Multi-core system is 
four then the maximum sizes of the co-schedule would be 
four. However, a co-schedule whose size is less than four 
could also be mapped to the four cores having a condition that 
the co-schedule size must be in the power of two. However, if 
in the command line, the co-schedule whose size is greater 
than the number of core (parameter), default configuration 
file “se.py” does not allow to perform the experiment and ask 
for the modification on the script. For performing such 
experiments would require modifying the se.py script and 
need to enable the SMT mode on it. 

B.  Simulation Procedure 

First, we run the benchmarks in isolation and measured the 
performance in terms of system parameters. In isolation 
mode, all the shared resources like L2 cache are fully 
available which could be used by the benchmark. After that, 
we executed the benchmarks in possible combinations to find 
the interference effects on the performance due to their 
co-execution and conflicts for the resources. 

C. Reference Architecture 

For the simulation the reference machine is prepared whose 
configuration in terms of system parameters is presented in 
Table-II. For the simulation, we used the two processor core 
types- In-order and Out-of-order which is supported in the 
gem5 simulator. The separate L1 cache is taken for storing 
the data and instructions. To create the interference situation 
among the processor cores, the unified L2 cache is used. In 
the same way, other parameters like cache associativity, 
cache line size, and bandwidth size are selected. 

Table-II: Reference architecture for the experiments 
 

Host 
Machine 

CPU Cache Configuration  

 
CPU 
Type 

 
Core 

 
L1-
I/D 

 
L2 

 
Assoc 

 
Line 
Size 

 
Band 
width 
size 
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Quad-core 
CPU,/Ubu
ntu-16.04 

In/Out 
order 
Core 

1/2/4
/8 

32
KB 

64
KB 

L1/L2
-2 

64 1280 
Mbytes 

 

D. Benchmarks  

For the experiments, the Mi-bench benchmark suite is used. 
The benchmarks are executed in isolation and in the form of 
co-schedules. The basic functions and the characteristics of 
the benchmarks are provided in the Table-III 

 
Table-III: Mi-bench applications 

Benchmark
s 

Benchmark description 

 
Dijkstra  

Dijkstra is an application to find the shortest path 
between nodes in a graph. This benchmark creates a 
large graph in the form of the adjacency matrix and 
calculates the shortest path between every pair of 
vertices 

Basic Math Basic Math benchmark performs simple maths 
calculation for small embedded devices which is not 
having dedicated hardware for these calculations. 
Calculations like finding square root etc. are performed 
in this benchmark. The input for this benchmark is a 
list of predefined constant. 

qsort qsort benchmark sorts an array of string in ascending 
order using the qsort algorithm. The data set for this 
benchmark is a list of words. 

bitcount Bitcount benchmark is used to test the processor, how 
efficiently it counts the bits in an array. The input for 
this benchmark is an array of numbers that contain the 
1’s and 0’s. Bitcount benchmark uses 5 different bit 
counting algorithms for counting purposes. 

Patricia Patricia is a data structure which is used in the 
computer network to represent routing tables. 

E. Workload 

To find the interference effects on performance, a 
comprehensive workload is prepared through the Mi-bench 
benchmark suite. The workload is prepared considering the 
applications co-existence aspects like isolation, combination, 
single & multiple instances. The workload in terms of 
co-schedules is detailed in Table-4. 
 

Table-IV:  Mi-bench Benchmarks Workload  
 

Mi-Bench Applications Co-schedules 

 
Executing 

Alone 
Application 

Combination(2) 

Application 
Combination(4

) 

Applicati
on 

Combinat
ion(8) 

A Dijkstra 
1. Dijkstra, Basic 

Math AB 

Dijkstra ,Basic 
Math,qsort,Bitc

ount, ABCD 

qsort(4) 
Dijkstra(4

) 

B 
Basic 
Math 

2. Dijkstra, qsort AC 
Dijkstra, Basic 
Math , qsort, 

Patricia ABCE 

qsort(4) 
BasicMath

(4) 

C qsort 
3. Dijkstra, Bitcount 

AD 

Dijkstra,Basic 
Math,Bitcount,P

atriciaABDE 

qsort(4) 
Bit-count(

4) 

D Bitcount 
4. Dijkstra, Patricia 

AE 
Dijkstra, 

qsort ,Bitcount, 
qsort(4) 

Patricia(4) 

Patricia ACDE 

E Patricia 
5. Basic Math,qsort 

BC 

Basic 
Math,qsort, 
Bitcount, 

Patricia BCDE 

qsort(6) 
Dijkstra(2

) 

  
6. Basic Math, 
Bitcount BD 

 
qsort(6) 

BasicMath
(2) 

  
7.Basicmath, Patricia 

BE 
 

qsort(6) 
Bitcount(2

) 

  8. qsort, Bitcount CD  
qsort(6) 

Patricia(2) 

  9. qsort, Patricia CE   

  
10. Bitcount, Patricia 

DE 
  

Total 5 10 5 8 

 
Initially, the single instance of the workload is executed to 
find the behavior of the applications using the in-order and 
Out-of-order core. For creating more intense interference 
effects the applications are profiled in the Out-of-order core 
using the multiple instances of the benchmarks. 

F. Performance Metrics 

The performance metrics used for the performance analysis 
are enlisted and described in Table-V. For simplicity, here we 
assume that there are only two applications executing in the 
multi-programmed environment. We have denoted these 
applications as A and B. Applications are first executed in 
isolation mode and then in Multi-programmed mode. With 
the help of the performance metrics, the performance of 
co-schedules in terms of progress and slowdown is 
calculated. The Sum-of-IPC metrics which is also termed as 
IPC throughput is calculated through the simple arithmetic 
Sum-of-IPCs.  Weighted IPC is the ratio of IPC in 
Multi-programmed mode and IPC when applications 
executed in isolation mode. The weighted speedup is the 
arithmetic sum of Weighted IPC of all the applications 
executed in the system. The harmonic mean is the sum of 
reciprocal of weighted IPC. The Average normalized 
turnaround time ANTT used to find the applications 
slowdown which they feel in multi-programmed mode 
compared with their execution in isolation. Weighted 
Speedup is used to find the progress of the applications when 
they executed in Multi-programmed mode compared with the 
isolation mode. 
 

Table-V:  Performance Metrics for the performance 
analysis 

 

S.No Performanc
e metrics 

Description Remark  

1.  
IPC  

 

 

Higher 
value is 
better 
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2. 

 
IPC 

Throughput 

 
IPC-A + IPC-B 

Higher 
value is 
better 

 
 

3. 

 
H-Mean of 
IPC’S 

     

 
 

Here two 
denotes the 

total 
number of 

applications 

 
 

4. 

 
  Weighted 

IPC 
 

Higher 
value is 
better 

 
5. 

 
  Weighted 
Speedup 

Weighted IPC-A Weighted 
IPC-B 

 
Higher 
value is 
better 

 
6. 

 
H-mean of 
Speedup 

 

Lower 
value is 
better 

 
7. 

 
 
 

STP(System       
throughput) 

           
 
           Weighted Speedup 

System 
throughput 
is used to 
measure the 
performanc
e in system 
level 

 
 

8. 

 
ANTT 

 

 
 

 
Lower 
value is 
better 

 

V. RESULT & ANALYSIS 

In order to find the applications behavior in-depth, (in 
isolation & in some combination) it is essential to have their 
general characteristics in terms of the type of instructions and 
branches they contain. The general characteristics of 
Mi-bench applications are shown in Figure-2. In the Figure, it 
could be noted that Bitcount application has the highest 
number of CPU bound instructions as compared to other 
benchmarks. On the other hand, among all the benchmarks, 
the qsort benchmark contains the higher number of 
memory-bound instructions. Dijkstra benchmark contains the 
highest number of conditional branching instructions. The 
higher value of CPU bound and memory-bound instructions 
show the CPU & memory involvement respectively during 
the execution of the benchmark. 
 

 
 

Fig.2. Mi-bench benchmark instructions mix [16] 
This information would also be useful to analyze the behavior 
of these applications when executes in some intent 
combination. In the same line, the Basic Math and Patricia 
benchmarks have a higher branch prediction rate. The branch 

predictor rate plays a vital role in IPC improvement. If the 
branch predictor does not predict the branches accurately, the 
IPC of the system reduces due to the branch miss-prediction 
penalty. Branch miss-prediction causes flushing the 
miss-predicted instructions in the pipeline which was 
assumed to be executed in the near future. The static basic 
block length of Basic math and Bit count benchmarks are 
higher which indicates that these benchmarks do not have 
nested branches in between the instructions. The higher value 
of basic block length helps in fetching multiple instructions 
(exploiting instruction-level parallelism) in a cycle and 
further improves the system throughput in terms of IPC [41]. 
Patricia benchmark has a random data access pattern which 
makes it vulnerable to the higher miss rate for the L2 cache. 
The higher cache associativity might help in reducing the 
miss rate of Patricia benchmark.  

A.  Application profiling on In-order CPU 

In this section, we have discussed the experimental results 
obtained when the applications are executed in In-order CPU. 
Applications are executed for generating their profiles in 
fixed reference architecture (Refer Table-2 for the 
configuration). The objective of the experiment is to find the 
general behavior of the application when it is executed in 
isolation and further in an intended combination. 

Test Case-I Applications profiling in Isolation mode 

Figure-3 shows the results (in terms of system parameters) 
obtained after profiling the applications in the reference 
architecture, in isolation mode. Here, the Dijkstra application 
enjoyed less miss rate and lead to a conclusion that it does not 
have many memory-bound instructions. Further, it does not 
have many conflicts among instructions for the shared L2 
cache as the data is available in the cache and it does not have 
to access the main memory for the data, which means it has 
less bandwidth load(due to less required) compared to other 
benchmarks which we have run in subsequent sections. Then, 
the Basicmath benchmark has almost similar behavior as 
Dijkstra benchmark. qsort benchmark shows the higher miss 
rate as it has a higher number of memory-bound instructions 
[Refer Figure-2].  
Another observation of having a high value of miss rate 
shown in the result is that the number of L2 cache 
replacements is higher due to conflicts for the same cache 
line. Further, the higher value of bandwidth engagement 
indicates a number of memory operations in the execution of 
this benchmark.  
Patricia benchmark has shown higher bandwidth 
consumption as compared to other benchmarks, although it 
has a lower miss rate; the reason is that the instruction count 
of Patricia benchmark compared to other benchmarks is 
higher which creates high demand for bandwidth. Also, the 
higher branch prediction rate (indicates the scope of 
parallelism in a benchmark) reduces the value for L2-cache 
miss. The Bitcount benchmark shows strange behavior; it is 
showing a higher miss rate and it has higher CPU bound 
instructions compared to other benchmarks.  
  

http://www.ijeat.org/


Parameter Analysis of Interfering Applications in Multi-Core Environment for Throughput Enhancement  
 

1279 

 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: B2922129219/2019©BEIESP 
DOI: 10.35940/ijeat.B2922.129219 
Journal Website: www.ijeat.org 

 
Fig.3. Mi-bench applications Execution in Isolation Mode 

(In-order Core) 

The reason for such behavior is that the branch prediction rate 
of Bitcount benchmark is slightly low as compared to other 
benchmarks that restrict the parallel execution of bit counting 
algorithms (instructions). In the same line, other parameters 
like IPC, data bus utilization indicates that qsort benchmark 
suffers mostly in terms of performance. Higher Branch 
prediction rate and large basic block length [16] of Basic 
math benchmark have provided it parallel instruction 
execution opportunities which improve the overall IPC, 
compared to other benchmarks. 

Test Case-II: -Application profiling on In-order core with 
Co-schedule Size-2 

In this test case, we have discussed the results when the 
co-schedules of size-2 executed on the reference machine and 
have compared it with the results of the isolation mode. The 
variation in IPC, when the applications executed in isolation 
and in Multi-programmed mode, is shown in Figure-4. All 
the co-schedules are showing similar behavior in the 
presence of their partner benchmark. All the Co-schedules 
(numbered 1 to 10) have similar IPC when they are executed 
in isolation mode and after that in Multi-programmed mode. 
The performance of co-schedules in Multi-programmed 
environment is also presented through the Sum-of-IPC 
performance metrics in Figure-4. The Sum-of-IPC metric 
shows that the benchmark applications run in combination 
which has higher IPC at execution are performing better in 
terms of IPC. Specifically Co-schedules 3, 6, 8, 10 have 
shown such behavior where Bit-count benchmark exists. On 
the other hand, the weighted speedup and ANTT 
performance metrics indicate that all the applications have 
made the same progress, considering their execution in 
Multi-programmed mode as well as in isolation mode. The 
results, as expected indicates that in the in-order core, 
application execution in the form of co-schedules does not 

show significant interference effects for the shared resources. 
The reason for such behavior is that the In-order CPU core 
executes the application instructions in the same order as they 
appear in the application. 

 
Fig.4. Mi-bench applications Execution Co-schedule 

size-2 (In-order Core) 

Test Case-III Application profiling on In-order core and 
Co-schedule Size-4 

In order to find the interference effects and their impact on 
performance for co-schedule size and number of cores taken 
as to four is shown in Figure-5. It may be noted that 
Co-schedules is not showing any noticeable difference in IPC 
in Multi-programmed mode with respect to isolation mode.  
To observe even the slightest behavior of the applications we 
have calculated the Sum-of-IPC.  It is observed that 
Co-schedule ABCE has the lowest Sum-of-IPC value when 
applications are executed in the multi-programmed mode. 
The reason for such behavior is that, among all the 
co-schedules, this co-schedule has a higher number of 
memory-bound instructions (collectively) which resulted in a 
higher number of L2 Cache replacements (Figure-6). In other 
co-schedules, the bitcount benchmark, which contains a 
higher number of CPU intensive instructions, contributes to 
increasing the sum of the IPC performance metrics for all. 
However, this case has considered performance only for 
multi-programmed mode and thus, it is again proved that 
sum-of-IPC performance metrics favor those co-schedules 
which contain benchmarks of higher IPC.  

 
Fig.5. Mi-bench applications Execution Co-schedule 

size-4 (In-order Core) 
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To know the behavior of the applications in terms of relative 
progress by considering IPC in isolation also, we have 
another set of results presented in the next section.  
It becomes obvious that the performance results obtained 
through Sum-of-IPC previously favors the higher IPC 
benchmarks. However, results when considering weighted 
speedup demonstrate that in the co-schedules ACDE; have 
shown higher progress as compared to other co-schedules. 
On the other hand, co-schedules (ABCD, ABCE, ABDE, and 
BCDE) have shown a slight interference effect as they might 
suffer for shared resources. ANTT performance metrics 
which is capable to observe the minor variation in IPC in 
multi-programmed mode compared with isolation mode is 
also indicating that the co-schedule ACDE has low 
slow-down.  
This means, in all the co-schedules except ACDE, there are 
some applications that have not got a fair opportunity to get 
the shared resources or they have not utilized the available 
resources optimally and resulted in slow progress in 
Multi-programmed environment compared with their 
execution in isolation mode. We found the variation in 
performance for the co-schedules ABCE and ACDE for 
knowing the accurate reasons for such behavior we presented 
the system parameters for all the co-schedules in Figure-6. 
It could be observed that in co-schedule ACDE has higher 
bandwidth & data bus engagement. Also, it has a huge 
number of L2 replacements. These parameters indicate that 
co-schedule ACDE has utilized the resources (bandwidth) 
efficiently and resulted in the higher weighted speedup. But 
in the co-schedule, there is an application(s) (most probably 
qsort) which contributes to a large number of L2 
replacements. In the same way, other co-schedules which 
shows higher miss rate and relatively less progress is due to 
some applications in the schedule which contributes to the 
positive or negative effects. 
 

 
Fig.6. System parameters of Co-schedule size-4 (In-order 

Core) 

The results discussed above are summarized as: 

● The interference effect among the applications is slightly 
lower when the applications are executed in the In-order 
core. 

● It is noticed that the co-schedule which contains some 
benchmarks having higher IPC as their virtue show 
significant improvement in overall IPC in 
Multi-programmed mode.  

● The higher value for weighted speedup is the indication of 
better resource utilization and less interference. 

● In most cases, qsort and Bit count benchmarks influence 

the co-schedules.  
● qsort benchmark increases the miss rate and the Bit count 

benchmark increases the Sum-of-IPCs of the workloads in 
the multi-programmed environment. 

● Bitcount benchmark influences the co-schedules in terms 
of sum-of-IPC and weighted speedup as it contains a 
higher number of CPU intensive instructions. 

● Profiling results of co-schedule size-2 and 4 have 
concluded that we need not have to further profile the 
co-schedules having size 8, 16, etc. as the co-schedules are 
not showing much interference effects. 

● The results shown above conclude that for executing these 
co-schedules the general policies like increasing the core 
frequency would be appropriate for increasing the 
Weighted speedup. However, how the general policies 
would behave in terms of energy consumption is the scope 
for further analysis. 

To observe the interference situation in-depth, a more 
conflicting multiprogram environment would be required. 
For creating such an environment, we have done the profiling 
of co-schedules on Out-of-order CPU. The Out-of-order CPU 
core executes the applications in non-program order. It means 
the application instructions whose operands are available 
could be executed without following the program order. The 
Out-of-order CPU is expected to create a more conflicting 
environment compared to the In-order core for the shared 
resources. The results of the benchmark profiling for 
Out-of-order are presented in the next section. 

B.  Applications profiling on Out-of-order CPU 

In this section, we have discussed the profiling results 
obtained when benchmarks/applications are executed in the 
Out-of-order core.  
The Out-of-order CPU which executes the instructions on 
non-sequential order allows instruction execution on a cache 
miss also. The co-schedules are executed in the same 
reference machine which we used for the In-order core for 
application profiling. 
Test Case-I Applications profiling on Out-of-order CPU 
in Isolation mode 

In order to have an understanding of the system parameters 
when applications are executed in the Out-of-order core, the 
simulations have been carried out. and the results are 
presented in Figure-7.  
To perform the analysis of application characteristics in 
terms of system parameters in both the CPU cores (In-order 
and Out-of-order), Figure-7 depicts the parameters for both 
the cases. It could be noted In Figure-7, that the miss rate for 
the qsort & Bitcount benchmark is high and for other 
benchmarks, its value is comparatively low.  
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Fig.7. Mi-bench applications Execution in Isolation Mode 

(In-order vs. Out-of-order core) 

The IPC of the applications in the Out-of-order core is higher 
compared with the In-order core for all the benchmarks. 
Among all the benchmarks it is observed that the qsort 
application has low IPC value in the In-order core which is 
drastically improved in the Out-of-order core.  
The reason is that in the Out-of-order core, the qsort 
benchmark instructions have better utilized the available 
bandwidth, whereas in In-order core, due to the restrictions of 
instructions order, it was underutilized. Basic math 
application has negligible miss rate whereas Bit count and 
qsort benchmarks instructions have shown higher conflicts 
for resources. On the other hand, the Bandwidth utilization in 
Out-of-order CORE is higher as compared with the 
In-order-core for all the benchmarks. The reason for higher 
consumption of bandwidth is that in the Out-of-order core 
during the cache miss events the processor core, instead of 
waiting for the data, starts executing other instructions whose 
data is available.  
The total number of conflicts for the L2 cache is higher in In 
Out-of-order core for the qsort and Patricia benchmark. The 
results, L2 conflict, and the Bandwidth utilization confirm 
that the qsort benchmark has higher memory-bound 
instructions & they conflict for the L2 cache and the 
bandwidth. The average overall miss latency for most of the 
benchmarks is reduced when they executed in the 
Out-of-order core.  
The branch prediction accuracy is reduced as in the 
Out-of-order core as the instructions which are ready are 
executed without considering the branch predictor results. 
It is observed that for the qsort benchmark, system 
parameters value is very high, especially for bandwidth and 
data bus utilization which has made the other benchmarks 
parameter values not clearly shown in Figure-7. The exact 
value of system parameters is listed in Table-7 & 8 for 
In-order and Out-of-order core respectively. 
 

Table-VI: Mi-bench Benchmarks System Parameters in 
Isolation Mode (In-order Core) 

 

Mi-bench  IPC 

Data 
bus 

utilizati
on in 

percent
age 

Miss 
rate 

No. of 
replac
ement

s 

Band
width 
utiliza

tion 
Mbyte

/s 

Numb
er of 

condit
ional 
branc

hes 
incorr

ect 

Avera
ge 

overal
l miss 
latenc
y-L2 

Number 
of 

instructi
ons 

simulate
d 

Dijkstra 
0.3516

36 
0.01 

0.03
6057 

89 
1.096
509 

238 
2965
36.25

95 

431824
47 

Basic 
Math 

0.3164
79 

0 
0.00
1162 

43 
0.451
634 

1974
2 

2772
11.11

11 

117007
252 

qsort 
0.2676

17 
0.98 

0.51
0532 

7108
6 

128.5
6106 

1002
4 

1150
79.20

31 

161025
06 

Bit count 
0.3909

14 
0.01 

0.65
6999 

5 
0.670

17 
35 

1097
69.59

4 

395341
09 

Patricia 
0.2566

28 
0.06 

0.00
4873 

1443
6 

7.181
053 

1049
2 

3708
26.41

49 

772371
51 

Table-VII: Mi-bench Benchmarks System Parameters in 
Isolation Mode (Out-of-order Core) 

 

Benchma
rk 

IPC 

Data 
bus 

utilizati
on in 

percent
age 

Miss 
rate 

No. of 
repla
ceme
nts 

Band
width 
utiliza

tion 
Mbyte

/s 

Num
ber 
of 

condi
tiona

l 
bran
ches 
incor
rect 

Average 
overall 

miss 
latency-

L2 

Number 
of 

instructi
ons 

simulate
d 

Dijkstra 
1.474
416 

0.04 
0.0358

81 
81 

4.645
751 

1360
26 

125374
.4701 

4318244
6 

Basic 
Math 

1.011
4 

0.01 
0.0019

58 
78 

1.503
625 

2396
127 

250752
.4825 

1170072
16 

qsort 
0.974
652 

3.6 
0.5224

53 
7228

2 
461.7
40467 

1771
50 

116690
.569 

1610250
5 

Bit 
count 

1.404
736 0.02 

0.7471
26 1 

2.362
736 

1527
62 

116581
.7308 

3953439
2 

Patricia 
0.558
768 0.13 

0.0064
37 

1526
0 

16.02
9211 

4839
041 

212653
.3339 

7723715
0 

 

The results are summarized:  

● Benchmarks are showing different behavior in 
Out-of-order core as compared to the In-order core in terms 
of system parameters like miss rate, bandwidth utilization 
and the number of L2 cache conflicts. 

● Benchmarks are showing remarkable progress in the 
Out-of-order core for IPC performance metric in isolation 
as compared with the In-order core. The reason for this is 
due to proper CPU cycle utilization when the data of any 
instruction is not available.. 
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● In results presented above, it is found that the qsort 
benchmark has higher value of bandwidth utilization and 
L2 cache conflicts; concludes that there is a higher 
possibility the qsort benchmark would dominate other 
benchmarks in multi-programmed environment.  

The summary presented above concludes that benchmarks 
execution in Out-of-order mode has significant potential 
creates a high conflicting environment. This motivates us to 
further explore the execution of the benchmark in the form of 
co-schedules. In the next section we have presented the 
results when applications are executed in co-schedules of 
size-2, 4 and 8 in Out-of-order mode. 

Test Case-II Application profiling on Out-of-order core 
and Co-schedule Size-2 

The simulation results in this case, are showing significant 
interference for the shared resources as compared with the 
in-order core having the same co-schedule size. The results 
are presented in Figure-8. Co-schedules are showing notable 
variations in IPC in Multi-programmed mode with respect to 
isolation mode. The variation shows that applications IPC is 
decreased when they have run in Multi-programmed mode. 
In all the cases, co-schedule-8[qsort, Bit count] has shown 
significant performance loss. In Co-schedule-8 the bitcount 
benchmark conflicts to qsort benchmark for the resources in 
multi-programmed core. The conflict is due to the 
randomness in the instruction selection and execution by the 
Out-of-order CPU core.  

 
Fig.8. Mi-bench applications Execution Co-schedule 

size-2 (Out-of-order Core) 

Sum-of-IPC performance metrics is favoring those 
co-schedules which have higher IPC benchmarks. It is not 
clearly indicating that co-schedule-8 have done less progress. 
The weighted speedup performance metrics clearly show that 
the co-schedules 1, 5, 6 and 7 have made higher relative 
progress and other co-schedules (2, 3, 4, 9, and 10) have 
shown moderate performance except co-schedule 8. 
Co-schedule-8 contain the qsort benchmark, and it is 
observed  in previous cases, the schedules which have this 
application have made less progress as being the memory 
bound characteristics in it. ANTT performance metrics also 
indicate that the co-schedule-8 has suffered in terms of 
slow-down. The system parameters for Co-schedule 8 are 
shown in Table-9 & 10. 

      Table-VIII: Mi-bench Benchmarks System 
Parameters in Isolation core (Out-of-order Core) 
 IM (Isolation core), MP (Multi-programmed Mode) 

Benchmark 
L2 Cache 
miss(data) 

L2 Cache 
miss(data) 

L2 Cache 
miss(Instruc

L2 Cache 
miss(Instruc

IM MP tion) IM tion) MP 

qsort 0.520342 0.521966 0.886493 0.900817 

Bit count 0.964029 0.992933 0.692998 0.738826 

 
Table-IX: Mi-bench Benchmarks System Parameters in 

Isolation Mode (Out-of-order Core) 

Co-sched
ule-8 

Data bus 
utilization 

IM % 

Data bus 
utilization 

MP % 

Bandwidth 
Utilization 

Mbytes/s IM 

Bandwidth 
Utilization 
Mbytes/s 

MP 

8.qsortt, 
Bit count 

3.62 2.14 464.103203 273.973578 

The system parameters in Table-9 and 10 clearly show that 
the applications have not got the required amount of 
resources in multi-programmed mode and due to that the 
performance is hampered. 

Test Case-III Application profiling on Out-of-order core 
and Co-schedule Size-4 

In this test case, we have attempted to analyze the 
interference effect on co-schedules for more number of 
applications compared to the previous one. The interference 
effects in terms of performance metrics are shown in 
Figure-9. In the Figure, a noticeable difference  

 
Fig.9 Mi-bench applications Execution Co-schedule 

size-4 (Out-of-order Core) 

in terms of IPC among all the co-schedules could be observed 
except for the co-schedule-3, when applications are executed 
in the multi-programmed mode as compared to the Isolation 
mode. The reason for such behavior which could be observed 
in the Figure is that all the co-schedules which contain qsort 
application have faced the interference effect and in the 
co-schedule-3 qsort benchmark is absent and resulted in no 
interference among the applications. In the same line, the 
Sum-of-IPC metrics indicate that co-schedule BCDE has 
done low progress, the reason is that in this co-schedule qsort 
benchmark affecting the Bitcount and Dijkstra benchmark 
and a notable interference effect is observed. The weighted 
speedup indicates that the co-schedule ACDE is affected 
much in terms of progress and slows down respectively. 
Among all the Co-schedules the interference effect on Basic 
Math and Patricia benchmark is not recorded which is 
obvious as both have relatively less miss rate in Out-of-order 
core. The Co-schedule ACDE is affected as it contains most 
of the benchmarks which are affected due to the qsort 
benchmark. 
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C. Applications profiling Considering Multiple copies 
In previous results, we have observed that a single copy of a 
benchmark in a co-schedule has not shown the notable 
interference effects, as a single copy of an application does 
not have a sufficient number of conflicting instructions to 
show the interference effects. To find the possibility of 
interference effects in the multiple copies we have done the 
simulations and the results are shown in Figure-10. 
Test Case-I Applications profiling Multiple copies in 
In-order Mode 
In Figure-10, it could be noted that when all the benchmarks 
are executed having its own  2,4 and 8 copies some 
benchmarks have shown the variation in IPC whereas some 
benchmarks remain neutral.  

 
 

Fig.10. Mi-bench multiple copies of benchmarks 
Execution (In-order Core) 

 
Dijkstra, Basic Math, and Bitcount benchmarks have not 
shown significant variation in IPC (interference among 
multiple copies). However, increasing the number of copies 
of Basic Math, qsort and Patricia benchmarks from two to 
eight shows the variation in IPC. Whereas the Patricia and 
qsort benchmark instructions have shown the sensitivity for 
the interference for the shared resources. In other words, the 
multiple copies of benchmarks (only a few) are affecting due 
to interference for the shared resources. To know the 
interference effect when multiple copies of two distinct 
benchmarks are simultaneously executed a special simulation 
is carried which is shown in Figure-10. For this simulation, 
the co-schedules are prepared by taking multiple copies of 
qsort, Patricia and Dijkstra benchmarks (6-copies in each 
case) and single copies of Basic math and Bitcount 
benchmarks. The purpose of  
The simulation is to know the behavior of Bitcount and 
Basicmath benchmarks when executed with heavy 
conflicting partner benchmarks. However, no interference 
effect is observed. 

The results discussed above are summarized as:- 
● Multiple copies of a benchmark in a co-schedule have 

shown significant interference effects in In-order core, 
except Dijkstra, Basic Math, and Bitcount benchmarks 

● Multiple copies of distinct benchmarks in a co-schedule are 
also not showing the interference effect. 

● The results clearly indicate that some benchmarks (qsort 
and Patricia) which were neutral when executed 
considering a single copy in In-order core (in previous 
experiments) have also shown inherent interference 
characteristics.  

● Interference effect could be more severe for benchmarks 
like qsort and Patricia in Out-of-order cores. 

Test Case-II:  Applications profiling multiple copies in 
Out-of-order core 
In previous experiments, it is noted that multiple copies of 
benchmarks in a co-schedule have shown moderate 
interference effects in the In-order processor core. Previous 
results assure that the benchmarks which have shown the 
interference effects in the In-order core would repeat their 
behavior for Out-of-order core also. However, some 
co-schedules which contain benchmarks like Dijkstra, 
Bitcount and BasicMath have not shown the conflicting 
behavior in In-order core although they were executed with 
multiple copies of highly interference sensitive benchmarks. 
Thus, it is not known whether these benchmarks would 
behave in a similar fashion for the Out-of-order core also. In 
this section, we attempted to find the interference effects for 
the above mentioned applications which were neutral in 
In-order core.  
In previous experiments, we witness co-schedules which 
contain more than two benchmarks have shown the 
interference effects for Out-of-order cores. Thus, in this 
experiment, we have done simulations and presented the 
interference results for the co-schedules of size-4 and 8. 
 

 
Fig.11. IPC Variation on Mi-bench benchmarks multiple 

copies Coschedule size-8 (Out-of-order Core) 

In all the previous cases, the qsort benchmark is identified as 
a higher interference sensitive application for in-order and 
Out-of-order cores. Hence, qsort benchmark could be a 
suitable choice for further experiments. In this experiment, 
we considered qsort as a common benchmark for all the 
co-schedules. The co-schedules which contain multiple 
copies of distinct benchmarks are simulated in the 
Out-of-order core, variation in IPC and in-depth analysis 
through performance metrics is shown in Figure-11 & 12 
respectively. 
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It could be noted In Figure-11 that four & six copies of qsort 
benchmark are common for all the co-schedules. Figure-11 
depicts that, all the co-schedules have shown the interference 
effects due to the qsort benchmark. In all the co-schedules 
IPC is decreased when applications are executed in the 
Multi-programmed environment compared to the Isolation 
mode. The interference effect is higher for the qsort, Dijkstra 
and Patricia benchmarks whereas the BasicMath and Bit 
count benchmarks are less affected. The Bitcount & 
BasicMath benchmark contains higher number of CPU 
bound instructions, and they have higher branch prediction 
rate which makes them unaffected on highly conflicting 
environments also. Whereas the Dijkstra, qsort and Patricia 
benchmarks do not have higher branch prediction rate. 
Moreover, lower value of basic-block length of affected 
benchmarks has restricted to harness the parallelism potential 
of Out-of-order cores. 

 
Fig.12. Performance Analysis of Mi-bench benchmarks 
multiple copies Co-schedule size-8 (Out-of-order Core) 

In another context, the simulation results are also visualized 
through the Sum-of-IPC, weighted speedup and ANTT 
performance metrics, which is shown in Figure-12. Among 
all the co-schedules the sum-of-IPC performance metrics of 
co-schedule [(qsort (4), Dijkstra (4)] & [qsort (4) Bitcount 
(4)] is higher. However, these two are the co-schedules that 
are highly affected due to the interference. It is again proved 
that the Sum-of-IPC is not the fair performance metrics to 
measure the system throughput.   
In the same line, the weighted speedup and ANTT 
performance metrics (as we have seen in all previous cases) 
are providing the different interpretations for the same set of 
results. The Weighted speedup and ANTT performance 
metrics, when the number of copies of all the co-schedules is 
considered as four shows that the Co-schedule (qsort (4), 
Basicmath (4)) has made higher relative progress and have 
Lower slowdown respectively.  
Whereas when number of copies of the qsort benchmark is 
increased from four to six, the weighted speedup of [qsort(6), 
BasicMath(2)], [(qsort(6), BitCount(2)] and 
[(qsort(6),Patricia(2)]is higher, whereas the 
Co-schedule[(qsort(6), (Dijkstra(2))] is suffered more. In 
both cases one thing is common that the qsort and Dijkstra 
benchmarks are conflicted for the resources whereas the 
Bitcount, Basic Math benchmarks were safe. It means qsort 
and Dijkstra benchmarks are identified as very sensitive 
applications for the shared resources in the Out-of-order core.  
It could be noted in Figure-12, increasing the number of 
copies of qsort benchmark from four to six, the interference 

effect is increased. The Bitcount benchmark was neutral for 
the interference effects in all previous cases has repeated their 
behavior considering multiple copies in the Out-of-order core 
also. The benchmarks which were shown the interference 
behavior in In-order core were found more intense in the 
Out-of-order core. 

The results discussed above are summarized as- 

● Significant interference effects are observed when 
co-schedules are executed in the Out-of-order core 
considering multiple copies of the benchmark. 

● Multiple copies of memory sensitive benchmarks affect all 
the other benchmarks in a co-schedule. 

 
VII. CONCLUSION 

 
The interference among applications is one of the most 
critical concerns for the need of performance. Thus, it is 
necessary to find out in what situations/scenarios the 
interference would impact on a higher degree. System 
Parameters are important internal sources to find out the real 
causes of interference effects among the applications which 
execute at run time. In this research, we have performed an 
in-depth analysis of interference effects among various 
co-schedules, which occur due to the varying characteristics 
of the applications. We have found the following important 
facts related to the shared resource contention/interference in 
multi-programmed environment- 
● Interference effect is generally lesser on In-order CPU 

cores whereas Out-of-order CPU cores have shown the 
notable conflicts for the shared resources. 

● The interference effect depends on the size of co-schedule 
for a given set of CPU cores. Large co-schedule size could 
be more prunes for interference situation. 

● Sum-of-IPC performance metrics has higher value for 
those co-schedules which contain benchmarks of higher 
IPC. Weighted speedup and ANTT performance metrics 
were proved to be a better choice for interference 
measurement and analysis. 

● If multiple copies of memory-bound benchmarks are 
co-scheduled with some CPU bound benchmarks in 
Out-of-order CPU core the higher interference effects are 
observed (Refer figure-11). 

● L2 Cache parameter must be selected appropriately for the 
simulation setup; large L2 cache size would not reveal 
observable interference effect on shared resources 
contention. 

● Multiple Copies of CPU intensive workloads do not create 
much contention effect. 

● Multiple Copies of those benchmarks that have mixed CPU 
and memory-bound instructions show the contention 
effects for L2 Cache. 

● Benchmarks have not shown similar Interference behavior 
for In-order and Out-of-order CPU cores. Moreover, 
Benchmarks like Dijkstra whose behavior was neutral in 
In-order CPU core has been shown higher interference 
behavior for Out-of-order cores.  

● The Basic block length, Branch prediction rate, type of 
benchmark (CPU bound, Memory bound) are identified as 
the key system parameters.  
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These parameters could help in deciding the suitable policy 
to run the benchmarks for enhancing the system 
throughput. 

The interference analysis carried out in this research has 
shown a strong need for some mechanism in the form of 
scheduler in an existing Multi-core system. The scheduler, 
considering the above discussed co-schedule execution 
scenarios in terms of appropriate system parameter values 
could decide an appropriate policy for performance 
enhancement. Considering five benchmark applications and 
their possible co-schedules in the presence of different 
processor core has created an application execution scenario 
that looks like applications are executing in the real physical 
Multi-core machine.  In this work, we considered only five 
applications for interference analysis. in the future, 
interference effects among applications having more number 
of benchmarks, different co-schedules options, and for more 
number of cores could be explored. 
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