
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1272

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

Abstract- In Multi-core systems the applications co-execute in

Multi-programmed mode, have interfere with each other during
execution, which creates resource bottleneck affecting the
performance. To reduce the interference in a given set of
resources some conventional approaches don't give guarantee of
performance in a conflicting application environment. In this
paper, we make an in-depth analysis of benchmark applications
interference for shared resources and find out application set
which could be executed adopting a designated policy to mitigate
the interference effects. In this work, we have performed profiling
and analysis of applications on the state-of-the-art simulator
gem5. Finally, we conclude the possibility of performance
improvement through the designated policy. The simulation
results show the scope to have a new scheduler for performance
improvement in such systems.

Keywords: Interference, Multi-core, analysis, performance,

policy, co-schedule.

I. INTRODUCTION

Multi-core systems execute a diverse set of applications. The
diversity is due to the distinct characteristics of the
applications which exit in its virtue. The diversity causes
conflicts among the applications, which further create the
issue of interference effects in the Multi-programmed
environment [1]. The interference, in turn, affects the system
behavior, due to the activities ordered by the applications
running on various cores. In other words, interference is an
undesired phenomenon that alters the system performance.
To reduce the interference effects, it is essential to find the
behavior of the applications, which would cause this [2]. To
find the behavior of the application, some profiling based
approaches are available, where the applications are run in a
reference environment [3]. Knowing the essential
characteristics of applications in terms of system parameters
like latency could help in finding a suitable approach to
execute the application in the said conflicting environment.
To find the behavior of different applications running in
isolation, a lot of research has been carried out in literature

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Surendra Kumar Shukla*, Research Scholar, School of Computer

Science & IT, Devi Ahilya University, Indore, India, Email:
surendr.shukla@gmail.com

Dr. P.K Chande, Ex-Director, MNIT Bhopal, SGSITS Indore, India,
Email-pkchandein@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

[4] [5]. However, to find the application's behavior (in
totality some intended combination), few attempts are made
to some extent [6] [7]. The behavior of the applications
becomes more unpredictable when executed in some
intended "combinations," which is termed here as
co-schedule [8]. Co-schedule is a group of independent
applications/benchmarks which get executed in the cores
simultaneously. The behavior of application also depends on
the application would be mapped to a processor core.
However, the decision of the core mapping solely depends on
the scheduler of the host machine. The performance of the
system also depends on the number of threads in a
benchmark. In general, increasing the number of threads in a
benchmark may increase the system throughput, but it also
affects the performance adversely after a saturation stage.
The concurrent execution of benchmarks is also a possibility
to improve the performance.
The benchmarks of co-schedules might be single-threaded or
multi-threaded. Single-threaded benchmarks, in general, do
not require specific scheduling policy, and they are bound to
a core as per the order specified in the simulation script, and
they could not switch to other cores in run time. However,
multi-threaded benchmarks threads could switch from one
core to another core as per the scheduling policy.
It is known that, in general, increasing the number of cores,
can increase the possibility of performance improvement in
terms of throughput. However, it is not always valid as
Multi-core systems shares some common elements like last
level cache, bus, DRAM controller, etc. which create the
resource conflicting issues at run time.
To increase the performance of Multi-core systems, it is
essential to quantify the behavior of the applications and
interference effects. The analysis is a useful tool to find out
the causes, factors in terms of parameters responsible for
performance degradation [9]. There are various performance
factors which stand latent and show their effect when
multiple co-scheduled applications interact with each other.
It is vital to find such factors which require in-depth intended
simulations and their analysis.
One such concealed factor is memory access latency.
Memory access latency is a critical factor for the performance
of Multi-core systems. Memory Access latency becomes
vital when applications/benchmarks conflicts/interfere with
the shared resources like bus and Last level cache. The
conflicts mainly influence memory access latency in Last
level cache and contention in the bandwidth [10]. Hence, it is
required to have an in-depth understanding of the behavior of
benchmarks/applications in combination; to diminish the
effect of memory latency effects.

Parameter Analysis of Interfering Applications
in Multi-Core Environment for Throughput

Enhancement

Surendra Kumar Shukla, P.K. Chande

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B2922.129219&domain=www.ijeat.org

Parameter Analysis of Interfering Applications in Multi-Core Environment for Throughput Enhancement

1273

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

Analysis of system parameters like miss rate, bandwidth
utilization, the total numbers of branches committed, etc
Are proved to be beneficial to find out the hidden causes of
the performance degradation in Multi-core systems, [11].
However, the system parameters behavior is observed to be
different from different application combinations, which
calls for an in-depth approach precisely interpret the outcome
of the execution of the application in terms of performance
[12].
For example, on an application execution scenario, a higher
value of bandwidth utilization indicates the performance
improvement, mainly when an application executes in
isolation. In another scenario, the same parameter indicates
the performance degradation when co-scheduled applications
cause conflicts for shared resources, and miss rate increases,
which means we need to pay attention to the phenomenon,
which causes performance degradation.
Further, in a situation, the performance improvement in terms
of IPC; the higher value of bandwidth parameter could be
beneficial for the performance in a scenario when bandwidth
has a higher requirement, and it is provided to the needy
applications. In another situation, it might be that the
bandwidth is available to the application, but due to
co-schedule characteristics/conflicts, it is remaining
underutilized.
In conclusion, the Parameter behavior and its interpretation
change as per the characteristics of the application and their
coexistence with other applications. There seems to be a
serious need to have a precise classification of applications
combination and correct interpretation of the parameters in
distinct scenarios. This proposition is important, which
would address the said observation in a holistic manner for
which a new scheduling policy would be required.
Therefore the accurate interpretation of the system
parameters would help in mitigating the effect of
application/co-schedule [13] interference, which affects the
Multi-core system performance severely. The interference
effects are low-level effects whose identification would
require a detailed simulation of application co-schedules and
analysis of the system parameters.
It means appropriate parameters like bandwidth
consumption, data bus utilization, and the number of
branches is required to extract from the co-schedules. And a
detailed analysis would be required on the parameter
behavior. Thus Parameters and their correlation would be
useful to have a holistic view of the interference.
The simulation and analysis of the designated co-schedules
would require a specialized policy through which the
interference scenario could be created by executing the
applications, first in isolation and then in combinations. Here
we consider an execution environment in terms of the
processor cores, L1 and L2 cache size, bandwidth size, type
of core used for the simulation, and a process to execute the
benchmarks in a varied situation, at length, to see effects on
the parameters of the co-schedules.
In this research work, our contribution is mentioned below-
● We have simulated the Mi-bench applications in In-order

and Out-of-order-core in isolation and measured system
parameters.

● We simulated the applications in the form of co-schedules
with varied sizes (2, 4 and 8) under In-order and
Out-of-order cores. And measured the system performance
in terms of performance metrics, Weighted IPC and
Average normalized turnaround time (ANTT)

● We have done a critical analysis of application behavior
when executed in isolation and an intended combination.

● We have explored the possibility of mapping the
conflicting co-schedules with the appropriate policy, which
might diminish the interference effects.

● Finally, we have prepared a roadmap to automate the
interference removal process through a holistic policy
scheduler.

The rest of the paper is organized as, in section-II, we have
done the critical review of the work done in the profiling of
benchmarks and related performance measurement process,
section-II has covered the simulation setup and performance
metrics used for the evaluation of results. In section-IV, we
have presented the simulation results in terms of graphs.
Section-V describes the critical analysis of results found in
the profiling. Finally, we have concluded the research work
in section-VI.
In the next section, we have surveyed profiling approaches.

II. REVIEW OF PREVIOUS WORK

To find the application's behavior their characterization is
essential. Various research efforts have made in this
direction. One of the most popular approaches for
characterizing the benchmarks is through the simulation
tools. The popular application characterization tool, which is
used for many years in computer architecture research, which
has an active user community, is the gem5 [14]. The gem5
simulation tool could characterize the applications in SE
(System emulation) and Full mode. In SE mode, executable
binary is profiled using the ISA of the host machine through
system calls. Whereas, in Full mode, the applications are
executed using the actual ISA and disk image of the target
architecture. Gem5 supports two types of processor core
known as-In-order and Out-of-order [15]. In-order core
executes the applications in the program order, whereas the
Out-of-order core does not consider the program flow and
executes an instruction whose data is available.
Using the gem5 simulation tool, various researchers have
done the characterization of applications in isolation as well
as in the intended combination (multi-programmed mode).
Mi-bench, SPLASH-2, and PARSEC [16][17][18] are
well-known Open source benchmarks used for many years in
Multi-core architecture research.

A. Characterization in Isolation

There are some conventional policies like increasing the L1
and L2 cache size mentioned in the literature to perform the
simulation and analysis of interference effects in the system
and analyzing the effect on the performance. The analysis
revealed that increasing the cache size reduces the conflicts
for memory bandwidth and shared L2 cache, which in turn
mitigates the interference effect to some extent and increases
the performance [19]. In the same line, to find the
characteristics of applications in isolation, Mi-bench
applications are simulated on X86 and ARM processors
considering the in-order and Out-of-order processor cores
[20]. The performance metrics like energy consumption, CPI,
L2 miss rate, bandwidth utilization, etc, are measured after
the simulation. These metrics have used to find the
application behavior.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1274

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

The simulation results detail important system parameters
responsible for application behavior. However, the analysis is
limited to the single benchmarks and does not consider the
interference effect when multiple benchmarks execute
simultaneously.
In another context, some studies revealed that the L1-cache
parameter does not have a significant impact on the
performance. However, the Last level cache partitioning is
identified as a vital source for performance degradation,
which is further proved by the experiments done on
micro-benchmarks.
Finally, it is verified that partitioning the last level cache in
applications interference environment could not always
beneficial for performance improvement. [21]. To find the
correlation of interference effect with memory access latency
characterization of cache behavior is carried out through the
reuse distance histogram model [22]. L2 cache miss rate is
measured by considering L1 cache configuration as input and
applying random and LRU cache replacement policies in the
gem5 simulator. The profiling results are compared with the
histogram model, and the accuracy is calculated through the
absolute error.
To explore the behavior of media applications on
heterogeneous systems, some experiments are carried out on
the Gem5-gpu simulator [23]. The approach used for finding
the application characteristic is conventional; some attributes
of the system like cache and processor clock frequency are
changed and the performance of the system is measured.
In other work, for addressing the interference issue, analysis
through cache coloring approaches is also carried out [24].
Cache coloring is an effective approach to model the
interference situation. Also, the said policy ensures that the
data and instructions of different processor cores should be
placed in the different cache sets. However, it requires special
allocators for the distribution of instructions and data to make
it independent. Also, accessing the data distributed through
this policy in parallel is very difficult.
In the same line, to find the alternate of SRAM, comparative
analysis of SRAM and STT-MRAM cache memories using
the SPLASH-2 benchmarks is performed in the gem5
simulator [25]. The architecture considered for the simulation
is X-86 and ARM. The purpose of the benchmark to quantify
how SPLASH-2 benchmarks behavior changes considering
the said memory types.
For finding the interference effects in real-time systems, the
worst-case execution time is considered an effective
approach [26]. The worst-case execution time helps on
finding the ‘severe interference situation’ in real-time
Multi-core systems, which determines the peak value of slow
down an application would feel on the conflicting
environments. This helps in estimating the minimum
resource requirement of an application that executes in the
mixed time-critical application execution environment.
In another context [27], for finding the behavior of gadgets
like mobile phones it is found that we don't have sufficient
and suitable programs to test the power and performance.
Some research work prepared the benchmarks for mobile
phones and integrated them with the gem5 simulator. The
benchmarks include the typical user inputs like a scroll,
typing, etc. The benchmarks are very effective when
applications are used in isolation; however, how applications
would behave in a concurrent way is the topic to be explored.
In the same line, the characterization of Smartphone
applications in terms of CPI parameters is carried out using

the simpoint and gem5 tools [28]. The simpoint is beneficial
for verifying the performance of the applications which are in
the testing phase and needs to be tested through a list of
distinct design parameters. The simpoint and full simulation
results are compared in terms of absolute error and it is found
that the simpoint approach is having approximately the same
accuracy as the full simulation.

B. Characterization in Multi-programmed environment

In the above section, it is found that most of the work of
benchmark characterization considers the applications in
isolation which covers the interference among the
applications itself for the shared resources. However, in
real-time systems, there are various applications run in a
concurrent way.
To find the behavior of applications in terms of interference,
running concurrently on Multi-core systems, some research
efforts have made in the literature.
To find the behavior of the application on conflicting
multi-programmed environment EEMBC MultiBench are
executed concurrently in 64-many core architecture [29]. The
simulation considered the single thread and multiple threads
on each workload. The simulation explores the bandwidth
saturation scenario and its effect on L1 cache miss penalties.
In the mentioned experiment it is found that in many-core
architecture increasing the number of concurrent workloads
and threads are beneficial for the performance in terms of
IPC.
In the same line, bandwidth utilization analysis is carried out
to ensure the quality of service for the Multi-programmed
applications, co-scheduled in the Multi-core environment
using gem5 simulator [30]. The analysis done through the
various bandwidth partitioning approaches like square root,
proportional and the performance is measured through the
multi-programmed performance metrics like harmonic
weighted speedup, minimum fairness, weighted speedup, and
sum-of-IPCs.
Various simulations carried out in gem5 simulator covers
state-of-the-art applications like No-SQL, big data, etc. [31].
In these simulations, a comparative analysis of No-SQL
benchmarks is done in terms of system parameters related to
the memory hierarchy. The analysis explores the behavior of
data-intensive applications using the gem5 simulator in full
system mode. The main objective of the analysis is to know
whether the characteristics of No-SQL applications are
similar to the well known parallel benchmark applications
like SPEC, PARSEC, and NAS. The said benchmarks
similarity in terms of system parameters might be used to
utilize the existing optimization approaches of well-known
benchmarks to the contemporary database applications. The
results show that despite having the distinct specification of
No-SQL databases they all show uniform behavior for the
cache hierarchy. Analysis of memory interferences in terms
of memory access delay for the parallel memory operations
performed in the Multi-core systems [32]. The analysis
considers that each processor core could generate a parallel
memory request for the DRAM controller. The parallel
request for memory is possible due to approaches like
non-blocking, speculative execution and Out-of-order
instruction execution.

http://www.ijeat.org/

Parameter Analysis of Interfering Applications in Multi-Core Environment for Throughput Enhancement

1275

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

These approaches are advantageous in terms of throughput,
however, generates very high pressure for the main memory.
The simulation and analysis are carried out through the gem5
simulator using SPEC2006 benchmarks to find the
worst-case performance in terms of delay.
Some researchers have emphasized on Interference analysis
of shared L2 cache, by finding the nature of schedules in the
real-time environment [33]. The analysis provides a
maximum value of cache parameters for each application in a
schedule, which indicates the interference effects on an
application to explore the possible performance degradation.
The upper bound interference parameter is further used for
making scheduling decisions. For finding the upper bound
interference value of an application, the integer linear
programming is used which further helps in making the
iterative algorithm.
In the next section, we have discussed various performance
metrics that are used in the literature for the application’s

characterization and analysis.

C. Metrics for Performance analysis

To perform the analysis of application interference, various
metrics are proposed in the literature. Metrics are based on
two perspectives-the users and the system [34]. User
perspective metrics consider the response of individual
applications in terms of the slowdown. System-level progress
is measured through the system throughput; measured in
terms of weighted speedup [35].
Which performance metrics are suitable for a workload has
been an issue of debate for a long time in a multi-core
research community [36]? Performance metrics
accuracy/clarity depends on the type of environment we are
executing. For example; time-critical application deadline is
the prime concern and thus deadline is an appropriate metric
whereas for normal application system throughput is
considered for performance measurement.
For single-threaded workload, IPC and CPI are the important
metrics. However, for multi-threaded workload IPC and CPI
are not suitable performance metrics as if some benchmark
threads were busy on time-consuming program constructs a
falsy interpretation may have resulted. For example, an
application may get stuck in a loop.
In the same line, system-oriented metrics that were used
earlier measures the total time the processor was busy and did
not consider the fairness among co-executing applications,
load balancing, etc. Another interesting metrics for the
performance measurement is Fairness used to find the
slowdown of applications in the Multi-programmed
scenarios. The system could be termed as “Fair” if the rate of

performance degradation (slow-down) of all the applications
in Multi-programmed environment is similarly considered
for their execution in isolation [37].

D. Profiling Approaches

In the review, it is found that profiling is proved to be an
approach, which uses a hardware or software instrument to
quantify and measure the performance of an application and
obtain the behavior of the application in isolation as well as
comprehensively. There are two popular approaches for
profiling the benchmarks; full simulation and simpoint
analysis [38]. The full simulation profiling approach
performs the profiling process for the whole benchmark
which requires weeks or months of time for some
benchmarks, especially to SPEC benchmarks [39]. Another

approach of profiling is to find the simulation points in a
benchmark and profiling them in full mode. Other parts of the
benchmark are not considered and they are just
fast-forwarded. In this work, we simulated the Mi-bench
benchmarks completely as they take a reasonable time. For
the execution of each benchmark, it takes a maximum of five
hrs. As compared to SPEC2006 benchmarks which take two
to three days for the completion. Since the situation is always
complex in real life, & would not fit into a logical scenario,
we propose a proactive approach to know about the behavior
of the application in a given environment in the next section.

III. METHODOLOGY

For finding the applications conflicting behavior, we have
performed the profiling of applications in two ways- First in
isolation and second in an intended combination which we
termed as the co-schedule. For profiling, state-of-the-art
gem5 simulator has been used. The input for the simulation
we used is well known Mi-bench benchmarks that are
suitable for embedded devices. The simulation process
produced the stat.txt files which contain various system
parameters like L2 cache miss rate, bandwidth utilization,
energy consumption (and others which are not considered
here). The schematic view of simulation steps is shown in
Figure-1.

Fig.1. Schematic view of profiling Steps

In the next section, we have explored how to form a
group/co-schedule which would further help in creating the
interference scenario.

A. Group/Co-schedule Forming Process

In order to create and quantify interference situations in
multi-programmed environment, five benchmarks of
Mi-bench benchmark suite are selected. These benchmarks
are Dijkstra, Basic math, qsort, Bitcount, and Patricia. Each
benchmark has distinct characteristics in terms type of
instructions they contain. Each benchmark has the intuitive
function which they perform during the execution. For
example, most of the instructions in Dijkstra benchmark are
CPU bound and it performs the task of finding the shortest
path among the given set of nodes. The above-mentioned
benchmarks executed under X86 ISA (Instruction set
architecture). Also, the simulation has been carried out in
gem5 simulator. Experiments performed using in-order
(Minor-CPU) and Out-of-order cores [40]. Gem5 does not
support the MinorCPU processor core option in the default
setting for X-86 ISA (in the list of CPU-Type supported for
X86 ISA). To get that option for the simulation we have done
the modification on gem5 source code particular to some files
under the build folder.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1276

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

Each benchmark binary is executed completely for the input
specified in the benchmark suite. For the experiments, we
prepared the python script and executed it in the command
line in gem5 SE mode.
Benchmarks are executed in isolation mode under the
reference architecture (System configuration is detailed in the
next section). The benchmark groups which we also refer to
as co-schedule is a possible distinct application combination.
We formed three types of groups each has 2, 4, 8
applications. If in a group we have n applications then that
group is termed as co-schedule size-n. In this way, a group
that has 2 applications termed as co-schedule size-2. The
reason for having the size of the group in the power of two is
that the actual processor core where these groups would
execute has the same convention for the number of cores.
Moreover, having five applications, five simulations have
carried out in isolation mode. In the same line, considering
the group size-two, and have five benchmarks, there could be
a total of ten distinct combinations, where each combination
has a single instance of a benchmark. In the same way,
considering the group of four, have the same number of total
benchmarks mentioned in the previous case, there would be a
total of five combinations with respect to an instance of each
benchmark.
After the simulations for group-size 2 and 4, we explored the
group size of 8 hoping more intense interference effects.
Since in a real system there could be any combination of
applications (single/multiple instances) as a candidate in a
co-schedule for the execution. We moved to a new
application combination where we have considered the
multiple copies of the benchmarks and measured the
interference effects.
We prepared the workloads (co-schedule) considering
single-core, dual-core, quad-core, and octa-core processors.
The benchmarks we have taken for the experiments are
single-threaded; so each application is mapped to a core and
it could not switch to other core during the simulation.
For all the simulations we prepared a separate python script
which is executed in the terminal of Ubuntu 16.04
(open-source operating system). Also, the default
configuration script “se.py” which exists in the

gem5/config/example/se.py directory is considered for
specifying the parameters in the experiments.

Table-I: Benchmark groups forming process

Executing

Alone

Applicatio
n

Combinati
on(2)

Applicatio
n

Combinati
on(4)

Application
Combination

Multiple
copies(8)

Application
Combination(

Multiple
copies)

 A AB ABCD AAAABBBB AA

 B AC ABCE AAAACCCC AAAA

 C AD ABDE AAAADDDD AAAAAAAA

 D AE ACDE AAAAEEEE BB

 E BC BCDE AAAAAABB BBBB

 BD AAAAAACC BBBBBBBB

 BE AAAAAADD AABB

 CD AAAAAAEE AACC

 CE

 DE

Total 5 10 5 8 8

The process of group forming is shown in Table-I. The
alphabets A to E designate to a benchmark for an easy

understanding of the process. Having a total of five
applications, all the possible combinations are formed for the
group size-2, 4 and 8. In the next section, we have presented
the simulation environment created for application profiling
through the process mentioned above.

IV. EXPERIMENT SETUP

In this section, we detailed the reference machine in terms of
system parameters, type of processor core used for the
simulation. Also, the benchmarks, their basic characteristics
& the purpose are also elaborated. The co-schedule size,
simulation procedure used is summarized briefly.

A. Co-schedule size & Number of core

In the experiments, the co-schedules are mapped to the
processor cores as per the availability of the number of cores;
typically we used 8 cores. The co-schedule size (possible
combination size) depends on the number of cores. This
means, if the total number of cores in a Multi-core system is
four then the maximum sizes of the co-schedule would be
four. However, a co-schedule whose size is less than four
could also be mapped to the four cores having a condition that
the co-schedule size must be in the power of two. However, if
in the command line, the co-schedule whose size is greater
than the number of core (parameter), default configuration
file “se.py” does not allow to perform the experiment and ask
for the modification on the script. For performing such
experiments would require modifying the se.py script and
need to enable the SMT mode on it.

B. Simulation Procedure

First, we run the benchmarks in isolation and measured the
performance in terms of system parameters. In isolation
mode, all the shared resources like L2 cache are fully
available which could be used by the benchmark. After that,
we executed the benchmarks in possible combinations to find
the interference effects on the performance due to their
co-execution and conflicts for the resources.

C. Reference Architecture

For the simulation the reference machine is prepared whose
configuration in terms of system parameters is presented in
Table-II. For the simulation, we used the two processor core
types- In-order and Out-of-order which is supported in the
gem5 simulator. The separate L1 cache is taken for storing
the data and instructions. To create the interference situation
among the processor cores, the unified L2 cache is used. In
the same way, other parameters like cache associativity,
cache line size, and bandwidth size are selected.

Table-II: Reference architecture for the experiments

Host
Machine

CPU Cache Configuration

CPU
Type

Core

L1-
I/D

L2

Assoc

Line
Size

Band
width
size

http://www.ijeat.org/

Parameter Analysis of Interfering Applications in Multi-Core Environment for Throughput Enhancement

1277

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

Quad-core
CPU,/Ubu
ntu-16.04

In/Out
order
Core

1/2/4
/8

32
KB

64
KB

L1/L2
-2

64 1280
Mbytes

D. Benchmarks

For the experiments, the Mi-bench benchmark suite is used.
The benchmarks are executed in isolation and in the form of
co-schedules. The basic functions and the characteristics of
the benchmarks are provided in the Table-III

Table-III: Mi-bench applications

Benchmark
s

Benchmark description

Dijkstra

Dijkstra is an application to find the shortest path
between nodes in a graph. This benchmark creates a
large graph in the form of the adjacency matrix and
calculates the shortest path between every pair of
vertices

Basic Math Basic Math benchmark performs simple maths
calculation for small embedded devices which is not
having dedicated hardware for these calculations.
Calculations like finding square root etc. are performed
in this benchmark. The input for this benchmark is a
list of predefined constant.

qsort qsort benchmark sorts an array of string in ascending
order using the qsort algorithm. The data set for this
benchmark is a list of words.

bitcount Bitcount benchmark is used to test the processor, how
efficiently it counts the bits in an array. The input for
this benchmark is an array of numbers that contain the
1’s and 0’s. Bitcount benchmark uses 5 different bit
counting algorithms for counting purposes.

Patricia Patricia is a data structure which is used in the
computer network to represent routing tables.

E. Workload

To find the interference effects on performance, a
comprehensive workload is prepared through the Mi-bench
benchmark suite. The workload is prepared considering the
applications co-existence aspects like isolation, combination,
single & multiple instances. The workload in terms of
co-schedules is detailed in Table-4.

Table-IV: Mi-bench Benchmarks Workload

Mi-Bench Applications Co-schedules

Executing

Alone
Application

Combination(2)

Application
Combination(4

)

Applicati
on

Combinat
ion(8)

A Dijkstra
1. Dijkstra, Basic

Math AB

Dijkstra ,Basic
Math,qsort,Bitc

ount, ABCD

qsort(4)
Dijkstra(4

)

B
Basic
Math

2. Dijkstra, qsort AC
Dijkstra, Basic
Math , qsort,

Patricia ABCE

qsort(4)
BasicMath

(4)

C qsort
3. Dijkstra, Bitcount

AD

Dijkstra,Basic
Math,Bitcount,P

atriciaABDE

qsort(4)
Bit-count(

4)

D Bitcount
4. Dijkstra, Patricia

AE
Dijkstra,

qsort ,Bitcount,
qsort(4)

Patricia(4)

Patricia ACDE

E Patricia
5. Basic Math,qsort

BC

Basic
Math,qsort,
Bitcount,

Patricia BCDE

qsort(6)
Dijkstra(2

)

6. Basic Math,
Bitcount BD

qsort(6)

BasicMath
(2)

7.Basicmath, Patricia

BE

qsort(6)
Bitcount(2

)

 8. qsort, Bitcount CD
qsort(6)

Patricia(2)

 9. qsort, Patricia CE

10. Bitcount, Patricia

DE

Total 5 10 5 8

Initially, the single instance of the workload is executed to
find the behavior of the applications using the in-order and
Out-of-order core. For creating more intense interference
effects the applications are profiled in the Out-of-order core
using the multiple instances of the benchmarks.

F. Performance Metrics

The performance metrics used for the performance analysis
are enlisted and described in Table-V. For simplicity, here we
assume that there are only two applications executing in the
multi-programmed environment. We have denoted these
applications as A and B. Applications are first executed in
isolation mode and then in Multi-programmed mode. With
the help of the performance metrics, the performance of
co-schedules in terms of progress and slowdown is
calculated. The Sum-of-IPC metrics which is also termed as
IPC throughput is calculated through the simple arithmetic
Sum-of-IPCs. Weighted IPC is the ratio of IPC in
Multi-programmed mode and IPC when applications
executed in isolation mode. The weighted speedup is the
arithmetic sum of Weighted IPC of all the applications
executed in the system. The harmonic mean is the sum of
reciprocal of weighted IPC. The Average normalized
turnaround time ANTT used to find the applications
slowdown which they feel in multi-programmed mode
compared with their execution in isolation. Weighted
Speedup is used to find the progress of the applications when
they executed in Multi-programmed mode compared with the
isolation mode.

Table-V: Performance Metrics for the performance
analysis

S.No Performanc
e metrics

Description Remark

1.
IPC

Higher
value is
better

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1278

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

2.

IPC

Throughput

IPC-A + IPC-B

Higher
value is
better

3.

H-Mean of
IPC’S

Here two
denotes the

total
number of

applications

4.

 Weighted

IPC

Higher
value is
better

5.

 Weighted
Speedup

Weighted IPC-A Weighted
IPC-B

Higher
value is
better

6.

H-mean of
Speedup

Lower
value is
better

7.

STP(System
throughput)

 Weighted Speedup

System
throughput
is used to
measure the
performanc
e in system
level

8.

ANTT

Lower
value is
better

V. RESULT & ANALYSIS

In order to find the applications behavior in-depth, (in
isolation & in some combination) it is essential to have their
general characteristics in terms of the type of instructions and
branches they contain. The general characteristics of
Mi-bench applications are shown in Figure-2. In the Figure, it
could be noted that Bitcount application has the highest
number of CPU bound instructions as compared to other
benchmarks. On the other hand, among all the benchmarks,
the qsort benchmark contains the higher number of
memory-bound instructions. Dijkstra benchmark contains the
highest number of conditional branching instructions. The
higher value of CPU bound and memory-bound instructions
show the CPU & memory involvement respectively during
the execution of the benchmark.

Fig.2. Mi-bench benchmark instructions mix [16]
This information would also be useful to analyze the behavior
of these applications when executes in some intent
combination. In the same line, the Basic Math and Patricia
benchmarks have a higher branch prediction rate. The branch

predictor rate plays a vital role in IPC improvement. If the
branch predictor does not predict the branches accurately, the
IPC of the system reduces due to the branch miss-prediction
penalty. Branch miss-prediction causes flushing the
miss-predicted instructions in the pipeline which was
assumed to be executed in the near future. The static basic
block length of Basic math and Bit count benchmarks are
higher which indicates that these benchmarks do not have
nested branches in between the instructions. The higher value
of basic block length helps in fetching multiple instructions
(exploiting instruction-level parallelism) in a cycle and
further improves the system throughput in terms of IPC [41].
Patricia benchmark has a random data access pattern which
makes it vulnerable to the higher miss rate for the L2 cache.
The higher cache associativity might help in reducing the
miss rate of Patricia benchmark.

A. Application profiling on In-order CPU

In this section, we have discussed the experimental results
obtained when the applications are executed in In-order CPU.
Applications are executed for generating their profiles in
fixed reference architecture (Refer Table-2 for the
configuration). The objective of the experiment is to find the
general behavior of the application when it is executed in
isolation and further in an intended combination.

Test Case-I Applications profiling in Isolation mode

Figure-3 shows the results (in terms of system parameters)
obtained after profiling the applications in the reference
architecture, in isolation mode. Here, the Dijkstra application
enjoyed less miss rate and lead to a conclusion that it does not
have many memory-bound instructions. Further, it does not
have many conflicts among instructions for the shared L2
cache as the data is available in the cache and it does not have
to access the main memory for the data, which means it has
less bandwidth load(due to less required) compared to other
benchmarks which we have run in subsequent sections. Then,
the Basicmath benchmark has almost similar behavior as
Dijkstra benchmark. qsort benchmark shows the higher miss
rate as it has a higher number of memory-bound instructions
[Refer Figure-2].
Another observation of having a high value of miss rate
shown in the result is that the number of L2 cache
replacements is higher due to conflicts for the same cache
line. Further, the higher value of bandwidth engagement
indicates a number of memory operations in the execution of
this benchmark.
Patricia benchmark has shown higher bandwidth
consumption as compared to other benchmarks, although it
has a lower miss rate; the reason is that the instruction count
of Patricia benchmark compared to other benchmarks is
higher which creates high demand for bandwidth. Also, the
higher branch prediction rate (indicates the scope of
parallelism in a benchmark) reduces the value for L2-cache
miss. The Bitcount benchmark shows strange behavior; it is
showing a higher miss rate and it has higher CPU bound
instructions compared to other benchmarks.

http://www.ijeat.org/

Parameter Analysis of Interfering Applications in Multi-Core Environment for Throughput Enhancement

1279

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

Fig.3. Mi-bench applications Execution in Isolation Mode

(In-order Core)

The reason for such behavior is that the branch prediction rate
of Bitcount benchmark is slightly low as compared to other
benchmarks that restrict the parallel execution of bit counting
algorithms (instructions). In the same line, other parameters
like IPC, data bus utilization indicates that qsort benchmark
suffers mostly in terms of performance. Higher Branch
prediction rate and large basic block length [16] of Basic
math benchmark have provided it parallel instruction
execution opportunities which improve the overall IPC,
compared to other benchmarks.

Test Case-II: -Application profiling on In-order core with
Co-schedule Size-2

In this test case, we have discussed the results when the
co-schedules of size-2 executed on the reference machine and
have compared it with the results of the isolation mode. The
variation in IPC, when the applications executed in isolation
and in Multi-programmed mode, is shown in Figure-4. All
the co-schedules are showing similar behavior in the
presence of their partner benchmark. All the Co-schedules
(numbered 1 to 10) have similar IPC when they are executed
in isolation mode and after that in Multi-programmed mode.
The performance of co-schedules in Multi-programmed
environment is also presented through the Sum-of-IPC
performance metrics in Figure-4. The Sum-of-IPC metric
shows that the benchmark applications run in combination
which has higher IPC at execution are performing better in
terms of IPC. Specifically Co-schedules 3, 6, 8, 10 have
shown such behavior where Bit-count benchmark exists. On
the other hand, the weighted speedup and ANTT
performance metrics indicate that all the applications have
made the same progress, considering their execution in
Multi-programmed mode as well as in isolation mode. The
results, as expected indicates that in the in-order core,
application execution in the form of co-schedules does not

show significant interference effects for the shared resources.
The reason for such behavior is that the In-order CPU core
executes the application instructions in the same order as they
appear in the application.

Fig.4. Mi-bench applications Execution Co-schedule

size-2 (In-order Core)

Test Case-III Application profiling on In-order core and
Co-schedule Size-4

In order to find the interference effects and their impact on
performance for co-schedule size and number of cores taken
as to four is shown in Figure-5. It may be noted that
Co-schedules is not showing any noticeable difference in IPC
in Multi-programmed mode with respect to isolation mode.
To observe even the slightest behavior of the applications we
have calculated the Sum-of-IPC. It is observed that
Co-schedule ABCE has the lowest Sum-of-IPC value when
applications are executed in the multi-programmed mode.
The reason for such behavior is that, among all the
co-schedules, this co-schedule has a higher number of
memory-bound instructions (collectively) which resulted in a
higher number of L2 Cache replacements (Figure-6). In other
co-schedules, the bitcount benchmark, which contains a
higher number of CPU intensive instructions, contributes to
increasing the sum of the IPC performance metrics for all.
However, this case has considered performance only for
multi-programmed mode and thus, it is again proved that
sum-of-IPC performance metrics favor those co-schedules
which contain benchmarks of higher IPC.

Fig.5. Mi-bench applications Execution Co-schedule

size-4 (In-order Core)

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1280

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

To know the behavior of the applications in terms of relative
progress by considering IPC in isolation also, we have
another set of results presented in the next section.
It becomes obvious that the performance results obtained
through Sum-of-IPC previously favors the higher IPC
benchmarks. However, results when considering weighted
speedup demonstrate that in the co-schedules ACDE; have
shown higher progress as compared to other co-schedules.
On the other hand, co-schedules (ABCD, ABCE, ABDE, and
BCDE) have shown a slight interference effect as they might
suffer for shared resources. ANTT performance metrics
which is capable to observe the minor variation in IPC in
multi-programmed mode compared with isolation mode is
also indicating that the co-schedule ACDE has low
slow-down.
This means, in all the co-schedules except ACDE, there are
some applications that have not got a fair opportunity to get
the shared resources or they have not utilized the available
resources optimally and resulted in slow progress in
Multi-programmed environment compared with their
execution in isolation mode. We found the variation in
performance for the co-schedules ABCE and ACDE for
knowing the accurate reasons for such behavior we presented
the system parameters for all the co-schedules in Figure-6.
It could be observed that in co-schedule ACDE has higher
bandwidth & data bus engagement. Also, it has a huge
number of L2 replacements. These parameters indicate that
co-schedule ACDE has utilized the resources (bandwidth)
efficiently and resulted in the higher weighted speedup. But
in the co-schedule, there is an application(s) (most probably
qsort) which contributes to a large number of L2
replacements. In the same way, other co-schedules which
shows higher miss rate and relatively less progress is due to
some applications in the schedule which contributes to the
positive or negative effects.

Fig.6. System parameters of Co-schedule size-4 (In-order

Core)

The results discussed above are summarized as:

● The interference effect among the applications is slightly
lower when the applications are executed in the In-order
core.

● It is noticed that the co-schedule which contains some
benchmarks having higher IPC as their virtue show
significant improvement in overall IPC in
Multi-programmed mode.

● The higher value for weighted speedup is the indication of
better resource utilization and less interference.

● In most cases, qsort and Bit count benchmarks influence

the co-schedules.
● qsort benchmark increases the miss rate and the Bit count

benchmark increases the Sum-of-IPCs of the workloads in
the multi-programmed environment.

● Bitcount benchmark influences the co-schedules in terms
of sum-of-IPC and weighted speedup as it contains a
higher number of CPU intensive instructions.

● Profiling results of co-schedule size-2 and 4 have
concluded that we need not have to further profile the
co-schedules having size 8, 16, etc. as the co-schedules are
not showing much interference effects.

● The results shown above conclude that for executing these
co-schedules the general policies like increasing the core
frequency would be appropriate for increasing the
Weighted speedup. However, how the general policies
would behave in terms of energy consumption is the scope
for further analysis.

To observe the interference situation in-depth, a more
conflicting multiprogram environment would be required.
For creating such an environment, we have done the profiling
of co-schedules on Out-of-order CPU. The Out-of-order CPU
core executes the applications in non-program order. It means
the application instructions whose operands are available
could be executed without following the program order. The
Out-of-order CPU is expected to create a more conflicting
environment compared to the In-order core for the shared
resources. The results of the benchmark profiling for
Out-of-order are presented in the next section.

B. Applications profiling on Out-of-order CPU

In this section, we have discussed the profiling results
obtained when benchmarks/applications are executed in the
Out-of-order core.
The Out-of-order CPU which executes the instructions on
non-sequential order allows instruction execution on a cache
miss also. The co-schedules are executed in the same
reference machine which we used for the In-order core for
application profiling.
Test Case-I Applications profiling on Out-of-order CPU
in Isolation mode

In order to have an understanding of the system parameters
when applications are executed in the Out-of-order core, the
simulations have been carried out. and the results are
presented in Figure-7.
To perform the analysis of application characteristics in
terms of system parameters in both the CPU cores (In-order
and Out-of-order), Figure-7 depicts the parameters for both
the cases. It could be noted In Figure-7, that the miss rate for
the qsort & Bitcount benchmark is high and for other
benchmarks, its value is comparatively low.

http://www.ijeat.org/

Parameter Analysis of Interfering Applications in Multi-Core Environment for Throughput Enhancement

1281

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

Fig.7. Mi-bench applications Execution in Isolation Mode

(In-order vs. Out-of-order core)

The IPC of the applications in the Out-of-order core is higher
compared with the In-order core for all the benchmarks.
Among all the benchmarks it is observed that the qsort
application has low IPC value in the In-order core which is
drastically improved in the Out-of-order core.
The reason is that in the Out-of-order core, the qsort
benchmark instructions have better utilized the available
bandwidth, whereas in In-order core, due to the restrictions of
instructions order, it was underutilized. Basic math
application has negligible miss rate whereas Bit count and
qsort benchmarks instructions have shown higher conflicts
for resources. On the other hand, the Bandwidth utilization in
Out-of-order CORE is higher as compared with the
In-order-core for all the benchmarks. The reason for higher
consumption of bandwidth is that in the Out-of-order core
during the cache miss events the processor core, instead of
waiting for the data, starts executing other instructions whose
data is available.
The total number of conflicts for the L2 cache is higher in In
Out-of-order core for the qsort and Patricia benchmark. The
results, L2 conflict, and the Bandwidth utilization confirm
that the qsort benchmark has higher memory-bound
instructions & they conflict for the L2 cache and the
bandwidth. The average overall miss latency for most of the
benchmarks is reduced when they executed in the
Out-of-order core.
The branch prediction accuracy is reduced as in the
Out-of-order core as the instructions which are ready are
executed without considering the branch predictor results.
It is observed that for the qsort benchmark, system
parameters value is very high, especially for bandwidth and
data bus utilization which has made the other benchmarks
parameter values not clearly shown in Figure-7. The exact
value of system parameters is listed in Table-7 & 8 for
In-order and Out-of-order core respectively.

Table-VI: Mi-bench Benchmarks System Parameters in
Isolation Mode (In-order Core)

Mi-bench IPC

Data
bus

utilizati
on in

percent
age

Miss
rate

No. of
replac
ement

s

Band
width
utiliza

tion
Mbyte

/s

Numb
er of

condit
ional
branc

hes
incorr

ect

Avera
ge

overal
l miss
latenc
y-L2

Number
of

instructi
ons

simulate
d

Dijkstra
0.3516

36
0.01

0.03
6057

89
1.096
509

238
2965
36.25

95

431824
47

Basic
Math

0.3164
79

0
0.00
1162

43
0.451
634

1974
2

2772
11.11

11

117007
252

qsort
0.2676

17
0.98

0.51
0532

7108
6

128.5
6106

1002
4

1150
79.20

31

161025
06

Bit count
0.3909

14
0.01

0.65
6999

5
0.670

17
35

1097
69.59

4

395341
09

Patricia
0.2566

28
0.06

0.00
4873

1443
6

7.181
053

1049
2

3708
26.41

49

772371
51

Table-VII: Mi-bench Benchmarks System Parameters in
Isolation Mode (Out-of-order Core)

Benchma
rk

IPC

Data
bus

utilizati
on in

percent
age

Miss
rate

No. of
repla
ceme
nts

Band
width
utiliza

tion
Mbyte

/s

Num
ber
of

condi
tiona

l
bran
ches
incor
rect

Average
overall

miss
latency-

L2

Number
of

instructi
ons

simulate
d

Dijkstra
1.474
416

0.04
0.0358

81
81

4.645
751

1360
26

125374
.4701

4318244
6

Basic
Math

1.011
4

0.01
0.0019

58
78

1.503
625

2396
127

250752
.4825

1170072
16

qsort
0.974
652

3.6
0.5224

53
7228

2
461.7
40467

1771
50

116690
.569

1610250
5

Bit
count

1.404
736 0.02

0.7471
26 1

2.362
736

1527
62

116581
.7308

3953439
2

Patricia
0.558
768 0.13

0.0064
37

1526
0

16.02
9211

4839
041

212653
.3339

7723715
0

The results are summarized:

● Benchmarks are showing different behavior in
Out-of-order core as compared to the In-order core in terms
of system parameters like miss rate, bandwidth utilization
and the number of L2 cache conflicts.

● Benchmarks are showing remarkable progress in the
Out-of-order core for IPC performance metric in isolation
as compared with the In-order core. The reason for this is
due to proper CPU cycle utilization when the data of any
instruction is not available..

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1282

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

● In results presented above, it is found that the qsort
benchmark has higher value of bandwidth utilization and
L2 cache conflicts; concludes that there is a higher
possibility the qsort benchmark would dominate other
benchmarks in multi-programmed environment.

The summary presented above concludes that benchmarks
execution in Out-of-order mode has significant potential
creates a high conflicting environment. This motivates us to
further explore the execution of the benchmark in the form of
co-schedules. In the next section we have presented the
results when applications are executed in co-schedules of
size-2, 4 and 8 in Out-of-order mode.

Test Case-II Application profiling on Out-of-order core
and Co-schedule Size-2

The simulation results in this case, are showing significant
interference for the shared resources as compared with the
in-order core having the same co-schedule size. The results
are presented in Figure-8. Co-schedules are showing notable
variations in IPC in Multi-programmed mode with respect to
isolation mode. The variation shows that applications IPC is
decreased when they have run in Multi-programmed mode.
In all the cases, co-schedule-8[qsort, Bit count] has shown
significant performance loss. In Co-schedule-8 the bitcount
benchmark conflicts to qsort benchmark for the resources in
multi-programmed core. The conflict is due to the
randomness in the instruction selection and execution by the
Out-of-order CPU core.

Fig.8. Mi-bench applications Execution Co-schedule

size-2 (Out-of-order Core)

Sum-of-IPC performance metrics is favoring those
co-schedules which have higher IPC benchmarks. It is not
clearly indicating that co-schedule-8 have done less progress.
The weighted speedup performance metrics clearly show that
the co-schedules 1, 5, 6 and 7 have made higher relative
progress and other co-schedules (2, 3, 4, 9, and 10) have
shown moderate performance except co-schedule 8.
Co-schedule-8 contain the qsort benchmark, and it is
observed in previous cases, the schedules which have this
application have made less progress as being the memory
bound characteristics in it. ANTT performance metrics also
indicate that the co-schedule-8 has suffered in terms of
slow-down. The system parameters for Co-schedule 8 are
shown in Table-9 & 10.

 Table-VIII: Mi-bench Benchmarks System
Parameters in Isolation core (Out-of-order Core)
 IM (Isolation core), MP (Multi-programmed Mode)

Benchmark
L2 Cache
miss(data)

L2 Cache
miss(data)

L2 Cache
miss(Instruc

L2 Cache
miss(Instruc

IM MP tion) IM tion) MP

qsort 0.520342 0.521966 0.886493 0.900817

Bit count 0.964029 0.992933 0.692998 0.738826

Table-IX: Mi-bench Benchmarks System Parameters in

Isolation Mode (Out-of-order Core)

Co-sched
ule-8

Data bus
utilization

IM %

Data bus
utilization

MP %

Bandwidth
Utilization

Mbytes/s IM

Bandwidth
Utilization
Mbytes/s

MP

8.qsortt,
Bit count

3.62 2.14 464.103203 273.973578

The system parameters in Table-9 and 10 clearly show that
the applications have not got the required amount of
resources in multi-programmed mode and due to that the
performance is hampered.

Test Case-III Application profiling on Out-of-order core
and Co-schedule Size-4

In this test case, we have attempted to analyze the
interference effect on co-schedules for more number of
applications compared to the previous one. The interference
effects in terms of performance metrics are shown in
Figure-9. In the Figure, a noticeable difference

Fig.9 Mi-bench applications Execution Co-schedule

size-4 (Out-of-order Core)

in terms of IPC among all the co-schedules could be observed
except for the co-schedule-3, when applications are executed
in the multi-programmed mode as compared to the Isolation
mode. The reason for such behavior which could be observed
in the Figure is that all the co-schedules which contain qsort
application have faced the interference effect and in the
co-schedule-3 qsort benchmark is absent and resulted in no
interference among the applications. In the same line, the
Sum-of-IPC metrics indicate that co-schedule BCDE has
done low progress, the reason is that in this co-schedule qsort
benchmark affecting the Bitcount and Dijkstra benchmark
and a notable interference effect is observed. The weighted
speedup indicates that the co-schedule ACDE is affected
much in terms of progress and slows down respectively.
Among all the Co-schedules the interference effect on Basic
Math and Patricia benchmark is not recorded which is
obvious as both have relatively less miss rate in Out-of-order
core. The Co-schedule ACDE is affected as it contains most
of the benchmarks which are affected due to the qsort
benchmark.

http://www.ijeat.org/

Parameter Analysis of Interfering Applications in Multi-Core Environment for Throughput Enhancement

1283

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

C. Applications profiling Considering Multiple copies
In previous results, we have observed that a single copy of a
benchmark in a co-schedule has not shown the notable
interference effects, as a single copy of an application does
not have a sufficient number of conflicting instructions to
show the interference effects. To find the possibility of
interference effects in the multiple copies we have done the
simulations and the results are shown in Figure-10.
Test Case-I Applications profiling Multiple copies in
In-order Mode
In Figure-10, it could be noted that when all the benchmarks
are executed having its own 2,4 and 8 copies some
benchmarks have shown the variation in IPC whereas some
benchmarks remain neutral.

Fig.10. Mi-bench multiple copies of benchmarks
Execution (In-order Core)

Dijkstra, Basic Math, and Bitcount benchmarks have not
shown significant variation in IPC (interference among
multiple copies). However, increasing the number of copies
of Basic Math, qsort and Patricia benchmarks from two to
eight shows the variation in IPC. Whereas the Patricia and
qsort benchmark instructions have shown the sensitivity for
the interference for the shared resources. In other words, the
multiple copies of benchmarks (only a few) are affecting due
to interference for the shared resources. To know the
interference effect when multiple copies of two distinct
benchmarks are simultaneously executed a special simulation
is carried which is shown in Figure-10. For this simulation,
the co-schedules are prepared by taking multiple copies of
qsort, Patricia and Dijkstra benchmarks (6-copies in each
case) and single copies of Basic math and Bitcount
benchmarks. The purpose of
The simulation is to know the behavior of Bitcount and
Basicmath benchmarks when executed with heavy
conflicting partner benchmarks. However, no interference
effect is observed.

The results discussed above are summarized as:-
● Multiple copies of a benchmark in a co-schedule have

shown significant interference effects in In-order core,
except Dijkstra, Basic Math, and Bitcount benchmarks

● Multiple copies of distinct benchmarks in a co-schedule are
also not showing the interference effect.

● The results clearly indicate that some benchmarks (qsort
and Patricia) which were neutral when executed
considering a single copy in In-order core (in previous
experiments) have also shown inherent interference
characteristics.

● Interference effect could be more severe for benchmarks
like qsort and Patricia in Out-of-order cores.

Test Case-II: Applications profiling multiple copies in
Out-of-order core
In previous experiments, it is noted that multiple copies of
benchmarks in a co-schedule have shown moderate
interference effects in the In-order processor core. Previous
results assure that the benchmarks which have shown the
interference effects in the In-order core would repeat their
behavior for Out-of-order core also. However, some
co-schedules which contain benchmarks like Dijkstra,
Bitcount and BasicMath have not shown the conflicting
behavior in In-order core although they were executed with
multiple copies of highly interference sensitive benchmarks.
Thus, it is not known whether these benchmarks would
behave in a similar fashion for the Out-of-order core also. In
this section, we attempted to find the interference effects for
the above mentioned applications which were neutral in
In-order core.
In previous experiments, we witness co-schedules which
contain more than two benchmarks have shown the
interference effects for Out-of-order cores. Thus, in this
experiment, we have done simulations and presented the
interference results for the co-schedules of size-4 and 8.

Fig.11. IPC Variation on Mi-bench benchmarks multiple

copies Coschedule size-8 (Out-of-order Core)

In all the previous cases, the qsort benchmark is identified as
a higher interference sensitive application for in-order and
Out-of-order cores. Hence, qsort benchmark could be a
suitable choice for further experiments. In this experiment,
we considered qsort as a common benchmark for all the
co-schedules. The co-schedules which contain multiple
copies of distinct benchmarks are simulated in the
Out-of-order core, variation in IPC and in-depth analysis
through performance metrics is shown in Figure-11 & 12
respectively.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1284

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

It could be noted In Figure-11 that four & six copies of qsort
benchmark are common for all the co-schedules. Figure-11
depicts that, all the co-schedules have shown the interference
effects due to the qsort benchmark. In all the co-schedules
IPC is decreased when applications are executed in the
Multi-programmed environment compared to the Isolation
mode. The interference effect is higher for the qsort, Dijkstra
and Patricia benchmarks whereas the BasicMath and Bit
count benchmarks are less affected. The Bitcount &
BasicMath benchmark contains higher number of CPU
bound instructions, and they have higher branch prediction
rate which makes them unaffected on highly conflicting
environments also. Whereas the Dijkstra, qsort and Patricia
benchmarks do not have higher branch prediction rate.
Moreover, lower value of basic-block length of affected
benchmarks has restricted to harness the parallelism potential
of Out-of-order cores.

Fig.12. Performance Analysis of Mi-bench benchmarks
multiple copies Co-schedule size-8 (Out-of-order Core)

In another context, the simulation results are also visualized
through the Sum-of-IPC, weighted speedup and ANTT
performance metrics, which is shown in Figure-12. Among
all the co-schedules the sum-of-IPC performance metrics of
co-schedule [(qsort (4), Dijkstra (4)] & [qsort (4) Bitcount
(4)] is higher. However, these two are the co-schedules that
are highly affected due to the interference. It is again proved
that the Sum-of-IPC is not the fair performance metrics to
measure the system throughput.
In the same line, the weighted speedup and ANTT
performance metrics (as we have seen in all previous cases)
are providing the different interpretations for the same set of
results. The Weighted speedup and ANTT performance
metrics, when the number of copies of all the co-schedules is
considered as four shows that the Co-schedule (qsort (4),
Basicmath (4)) has made higher relative progress and have
Lower slowdown respectively.
Whereas when number of copies of the qsort benchmark is
increased from four to six, the weighted speedup of [qsort(6),
BasicMath(2)], [(qsort(6), BitCount(2)] and
[(qsort(6),Patricia(2)]is higher, whereas the
Co-schedule[(qsort(6), (Dijkstra(2))] is suffered more. In
both cases one thing is common that the qsort and Dijkstra
benchmarks are conflicted for the resources whereas the
Bitcount, Basic Math benchmarks were safe. It means qsort
and Dijkstra benchmarks are identified as very sensitive
applications for the shared resources in the Out-of-order core.
It could be noted in Figure-12, increasing the number of
copies of qsort benchmark from four to six, the interference

effect is increased. The Bitcount benchmark was neutral for
the interference effects in all previous cases has repeated their
behavior considering multiple copies in the Out-of-order core
also. The benchmarks which were shown the interference
behavior in In-order core were found more intense in the
Out-of-order core.

The results discussed above are summarized as-

● Significant interference effects are observed when
co-schedules are executed in the Out-of-order core
considering multiple copies of the benchmark.

● Multiple copies of memory sensitive benchmarks affect all
the other benchmarks in a co-schedule.

VII. CONCLUSION

The interference among applications is one of the most
critical concerns for the need of performance. Thus, it is
necessary to find out in what situations/scenarios the
interference would impact on a higher degree. System
Parameters are important internal sources to find out the real
causes of interference effects among the applications which
execute at run time. In this research, we have performed an
in-depth analysis of interference effects among various
co-schedules, which occur due to the varying characteristics
of the applications. We have found the following important
facts related to the shared resource contention/interference in
multi-programmed environment-
● Interference effect is generally lesser on In-order CPU

cores whereas Out-of-order CPU cores have shown the
notable conflicts for the shared resources.

● The interference effect depends on the size of co-schedule
for a given set of CPU cores. Large co-schedule size could
be more prunes for interference situation.

● Sum-of-IPC performance metrics has higher value for
those co-schedules which contain benchmarks of higher
IPC. Weighted speedup and ANTT performance metrics
were proved to be a better choice for interference
measurement and analysis.

● If multiple copies of memory-bound benchmarks are
co-scheduled with some CPU bound benchmarks in
Out-of-order CPU core the higher interference effects are
observed (Refer figure-11).

● L2 Cache parameter must be selected appropriately for the
simulation setup; large L2 cache size would not reveal
observable interference effect on shared resources
contention.

● Multiple Copies of CPU intensive workloads do not create
much contention effect.

● Multiple Copies of those benchmarks that have mixed CPU
and memory-bound instructions show the contention
effects for L2 Cache.

● Benchmarks have not shown similar Interference behavior
for In-order and Out-of-order CPU cores. Moreover,
Benchmarks like Dijkstra whose behavior was neutral in
In-order CPU core has been shown higher interference
behavior for Out-of-order cores.

● The Basic block length, Branch prediction rate, type of
benchmark (CPU bound, Memory bound) are identified as
the key system parameters.

http://www.ijeat.org/

Parameter Analysis of Interfering Applications in Multi-Core Environment for Throughput Enhancement

1285

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

These parameters could help in deciding the suitable policy
to run the benchmarks for enhancing the system
throughput.

The interference analysis carried out in this research has
shown a strong need for some mechanism in the form of
scheduler in an existing Multi-core system. The scheduler,
considering the above discussed co-schedule execution
scenarios in terms of appropriate system parameter values
could decide an appropriate policy for performance
enhancement. Considering five benchmark applications and
their possible co-schedules in the presence of different
processor core has created an application execution scenario
that looks like applications are executing in the real physical
Multi-core machine. In this work, we considered only five
applications for interference analysis. in the future,
interference effects among applications having more number
of benchmarks, different co-schedules options, and for more
number of cores could be explored.

REFERENCES

1. Vincent N´elis, Patrick Meumeu Yomsi, and Lu´ıs Miguel Pinho. The

Variability of Application Execution Times on a Multi-Core Platform.
In Proc. of WCET, 2016.

2. Alexandre Kandalintsev. 2016. Application Interference in Multi-Core
Architectures : Analysis and Effects. Ph.D. Dissertation. University of
Trento, Italy.

3. Lakshminarasimhan, S. 2015. An Efficient Architecture for Dynamic
Profiling of Multicore Systems. Master's thesis. Dept. Elect. and
Comput. Eng., Univ of Arizona, USA.

4. Eklöv, D. 2012. Profiling Methods for Memory Centric Software
Performance Analysis.Ph.D. Dissertation.Uppsala University, Sweden.

5. Andreas Sembrant, David Eklov, and Erik Hagersten. 2011. Efficient
software-based online phase classification. In Proceedings - 2011 IEEE
International Symposium on Workload Characterization, IISWC -
2011, 104–115.

6. Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi. 2013. Application-to-core mapping policies
to reduce memory system interference in multi-core systems. In
Proceedings - International Symposium on High-Performance
Computer Architecture.

7. Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. 2010.
Addressing shared resource contention in multicore processors via
scheduling. In Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and operating
systems - ASPLOS ’10, 129.

8. Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha
Rastogi, and Onur Mutlu. 2016. BLISS: Balancing Performance,
Fairness and Complexity in Memory Access Scheduling. IEEE Trans.
Parallel Distrib. Syst. 27, 10 (2016), 3071–3087.

9. Zhihua Gan, Mingquan Zhang, Zhimin Gu, Hai Tan, and Jizan Zhang.
2017. Delay analysis and optimization for inter-core interference in
real-time embedded multicore systems. J. Parallel Distrib. Comput.
103, (2017), 77–86

10. Myonghoon Oh, Jongmoo Choi, Seong-je Cho, Jeesoo Kim,
Changhwan Youn, and Woosuk Chung. 2018. Analyzing and modeling
the impact of memory latency and bandwidth on application
performance. 1095–1101

11. Nitin Chaturvedi and Gurunarayanan S. 2013. Study of Various
Factors Affecting Performance of Multi-Core Processors. Int. J.
Distrib. Parallel Syst. 4, 4 (2013), 37–45

12. Gerd Zellweger, Denny Lin, and Timothy Roscoe. 2016. So many
performance events, so little time. 1–9.
DOI:https://doi.org/10.1145/2967360.2967375

13. Xiaoya Xiang, Bin Bao, Chen Ding, and Kai Shen. 2012. Cache
conscious task regrouping on multicore processors. In Proceedings -
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2012, 603–611.

14. N. Binkert et al., “The GEM5 Simulator,” SIGARCH Computer

Architecture News, vol. 39, no. 2, May 2011.
15. Anastasiia Butko, Rafael Garibotti, Luciano Ost, and Gilles Sassatelli.

2012. Accuracy evaluation of GEM5 simulator system. In ReCoSoC
2012 - 7th International Workshop on Reconfigurable and
Communication-Centric Systems-on-Chip,

16. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In Proceedings of the 4th Work. on
Workload Characterization, pages 83–94, 2001.

17. Steven Cameron Woo, Evan Torriet, Jaswinder Pal Singh, and Anoop
Guptat. 1995. The SPLASH-2 Programs : Characterization and

Methodological Considerations and Approach Axes of
Characterization Approach to Characterization. In ISCA ’95
Proceedings of the 22nd annual international symposium on Computer
architecture, 24–36.

18. Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
2008. The PARSEC Benchmark Suite: Characterization and
Architectural Implications. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques -
PACT ’08, 72

19. Vikas B.”On the Cache Behavior of SPLASH-2 Benchmarks on ARM
and ALPHA processors in Gem5 Full System Simulator” in 2014 3rd
International Conference on Ecofriendly Computing and
Communication Systems

20. A. Abudaqa, et al., "Simulation of ARM and x86 microprocessors
using in-order and Out-of-order CPU models with Gem5 simulator",
2018 5th International Conference on Electrical and Electronic
Engineering (ICEEE), 2018

21. H. Yun, P. Valsan, "Evaluating the Isolation Effect of Cache
Partitioning on COTS Multicore Platforms", Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (OSPERT),
2015.

22. J. Ge and M. Ling, "Fast Modeling of the L2 Cache Reuse Distance
Histograms from Software Traces," 2019 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), Madison, WI, USA, 2019, pp. 145-146.

23. S. Sawal and N. Guinde, "Performance evaluation using GEM 5-GPU
simulator", 2017 International Conference on Computing
Methodologies and Communication (ICCMC), 2017.

24. Mandalapu, Srini. “White Paper on Issues Associated with Interference

Applied to Multicore Processors.” (2016).
25. A. Arya, "A Comparative Study of Cache Memories Based on MRAM

and SRAM Technologies", 2018 Second International Conference on
Intelligent Computing and Control Systems (ICICCS), 2018

26. F. Reghenzani, G. Massari and W. Fornaciari, "Mixed Time-Criticality
Process Interferences Characterization on a Multicore Linux System",
2017 Euromicro Conference on Digital System Design (DSD), 2017.

27. S. Fan, B.C. Lee, "Evaluating asymmetric multiprocessing for mobile
applications", Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software, pp. 235-244, April
2016.

28. D. Sunwoo et al., "A structured approach to the simulation, analysis
and characterization of smartphone applications", IEEE International
Symposium on Workload Characterization (IISWC), 2013.

29. Chen, C. et al., “Profiling EEMBC MultiBench Programs in 64-core
Machine. EEMBC MultiBench Profiling” White Paper. 2013.

30. R. Wang, L. Chen and T. Pinkston, "An Analytical Performance Model
for Partitioning Off-Chip Memory Bandwidth,'' 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, 2013

31. A. Colaso et al., "Memory Hierarchy Characterization of NoSQL
Applications through Full-System Simulation", IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 5, pp. 1161-1173, 2018.

32. H. Yun, R. Pellizzon and P. Valsan, "Parallelism-Aware Memory
Interference Delay Analysis for COTS Multicore Systems", 2015 27th
Euromicro Conference on Real-Time Systems, 2015.

33. Xiao, S. Altmeyer and A. Pimentel, "Schedulability Analysis of
Non-preemptive Real-Time Scheduling for Multicore Processors with
Shared Caches", 2017 IEEE Real-Time Systems Symposium (RTSS),
2017

34. S. Eyerman and L. Eeckhout, "System-Level Performance Metrics for
Multiprogram Workloads", IEEE Micro, vol. 28, no. 3, pp. 42-53, 2008

35. Stijn Eyerman and Lieven Eeckhout. 2014. Restating the Case for
Weighted-IPC Metrics to Evaluate Multiprogram Workload
Performance. IEEE Comput. Archit. Lett. 13, 2 (2014), 93–96.

36. Pierre Michaud. 2013. Demystifying multicore throughput metrics.
IEEE Comput. Archit. Lett.

37. Hans Vandierendonck and André Seznec. 2011. Fairness metrics for
multi-threaded processors. IEEE Comput. Archit. Lett. 10, 1 (2011),
4–7

38. Lieven Eeckhout. 2010. Computer Architecture Performance
Evaluation Methods. In Synthesis Lectures on Computer Architecture,
Morgan Claypool

http://www.ijeat.org/
https://doi.org/10.1145/2967360.2967375

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1286

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B2922129219/2019©BEIESP
DOI: 10.35940/ijeat.B2922.129219
Journal Website: www.ijeat.org

39. A. Limaye and T. Adegbija. 2018. A Workload Characterization of the
SPEC CPU2017 Benchmark Suite. In 2018 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), 149–158

40. S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke. 2017. Mirage
cores: The illusion of many Out-of-order cores using in-order
hardware. In Proceedings of the Annual International Symposium on
Microarchitecture, MICRO, 745–758

41. Basic block: 2019. https://en.wikipedia.org/wiki/Basic_block.
42. Main Page: http://gem5.org/Main_Page.

AUTHORS PROFILE

Surendra Kumar Shukla is currently associated as a
Research Scholar with the School of Computer
Science & IT, Devi Ahilya University, Indore, India.
He is B.E in Computer Engineering from SGSITS
College Indore, India. M.E in Computer Engineering
from IET, Devi Ahilya University, Indore, India. He

has worked with different engineering universities in a span of 15 years in
the Department of Computer Engineering. His research area is Multi-core
architectures, Parallel Computing.

Dr. P.K. Chande is working as a Chairman C'S MIND-a
startup to think beyond AI Indore, M.P. India. He was Ex.
Director MANIT Bhopal, SGSITS Indore, Visiting prof.
Japan & Director MB&T MPSEDC. He has 2
co-authored books and has published more than 80

research papers in international/national journals. He has
Pursued Research in areas like Fault-Tolerant Systems, Real-Time
Knowledge Systems, Intelligent Automation, Smart Vehicular Systems etc.
He has guided 9 Ph. D. scholars.

http://www.ijeat.org/

