

Color Based Image Retrieval by Combining Various **Features**

Bably Dolly, Deepa Raj

Abstract: Content based image retrieval system retrieve the images according to the strong feature related to desire as color, texture and shape of an image. Although visual features cannot be completely determined by semantic features, but still semantic features can be integrate easily into mathematical formulas. This paper is focused on retrieval of images within a large image collection, based on color projection by applying segmentation and quantification on different color models and compared for good result. This method is applied on different categories of image set and evaluated its retrieval rate in different models.

Keywords: segmentation, image retrieval, color feature

I. INTRODUCTION

In today's scenario, due to utilization of internet and web technologies there is wide spread range of collection of databases with enormous categories of images. Different type of information are going to be gathered from online in terms categorized books, learning content, newspaper, of advertisement etc. which are digitized and also available as per user requirement. With respect to access these in terms of images from databases, different methods have been implemented to retrieve image as per usefulness. The content based image retrieval system is the application of computer vision with reference to the viewpoint of image problem. This paper is based on the automatic retrieval of most similar images to the given Query image on the basis of local feature extraction like colors, shapes, texture etc. In image retrieval system for searching, browsing, and retrieving images from a large database of images. Most usual and general method of image retrieval, make use of some method of adding up metadata such as descriptions, keywords, tokens, captioning, to the images so that retrieval can be performed well. Few systems are functioning with lower level features; manually image annotation is time-consuming, difficult and costly. To address this, many researchers proposed an automatic user friendly image retrieval system using different methods. Searching any query image which is Content-based (which might be referred to colors, shapes, textures, or any other information) analyzed for actual image to be present in database. In this paper, we try to provide best solution in large number of data.

II. COLOR IMAGE

Any colored image is a blend of few basic colors. In this each individual pixel of a color image down into Red, Green and

Revised Manuscript Received on December 30, 2019. * Correspondence Author

Bably Dolly, Ph.D., Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow.

Deepa Raj, Assistant professor, Department of Computer Science Babasaheb Bhim Rao Ambedkar University

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Blue values. For different color band R, G & B different matrix is generated. The three matrices are arranged in sequential order, next to each other creating a 3 dimensional m by n of 3 matrixes. A RGB image converted to an indexed image which reduces the number of colors in the process.

III. COLOR IMAGE FEATURE EXTRACTION

There are different features related to the colored images:-

3.1 Color histogram:

An image histogram refers to the probability mass function of the image intensities. This is extensive for color images to confine the joint probability of the intensities of the three different color channels. More formally, the color histogram is defined as:

$H_{c1,c2,c3}(x, y, z)$

= P.Prob(c1 = x, c2 = y, c3 = z)

Where c1, c2 and c3 are the three channels of color model image (RGB, HSV, L*a*b and YCbCr) and the P is the no of pixels in given image

3.1.1 Color Histogram Euclidean distance:

There are three distance formulas that can be used for image retrieval: histogram Euclidean Distance, histogram intersection and histogram quadratic (cross) distance. In this paper, histogram Euclidean Distance has been chosen to work. By considering the H' and H" as two color histogram of Query image and searched image respectively. The Euclidean Distance between the H' and H" can be computed as:

$$D(H',H'') = \sqrt{\sum_{a} \sum_{a} \sum_{a} (H'(z,y,z) - H'(z,y,z))}$$

Where E is the Euclidean distance to be calculated between two color histogram H' and H''. In the above formula maximum of histogram value of individual channel of an image has been taken.

3.2 Color Moments

The second feature has been taken as color moments. The Mean and standard deviation of each channel have been calculated as:

$$Mean(M) = \frac{1}{n} \sum_{j=1}^{n} Ii_{j} Ii_{j}$$

Published By:

& Sciences Publication

Blue Eyes Intelligence Engineering

Retrieval Number: B3163129219/2019©BEIESP DOI: 10.35940/ijeat.B3163.129219 Journal Website: <u>www.ijeat.org</u>

Standard Deviation(
$$\delta$$
) = $\sum_{k=0}^{n} (Ii, j - Er, i)^k$

3.2.1Color Moments Euclidean distance:

The Euclidean distance of mean and standard deviation respectively can be computed as:

$$D_{M} = \sqrt{(M' - M'')^{2}}$$

$$D_{M} = \sqrt{(\delta' - \delta'')^{2}}$$

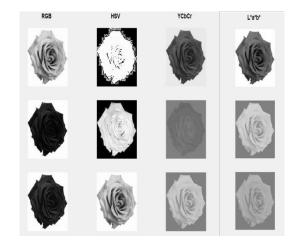
3.3 Colormap:

The Coplormap which gives three column matrix of RGB triplets. Each one of the row of matrix define single RGB triplet that specifies one color of the colormap. The values are in the range. There will be any length of the colormaps, but there should be widely three columns. Each one of the row in the matrix shows one color by use of an RGB triplet. There are number of elements which specify the intensities of the red, green, and blue components of the color of RGB triplets which is three-element row vector. The intensities must be in between the range. A 0 value shows no color and 1 value shows full intensity

3.3.1 Colormap Euclidean distance: The colormap Euclidian distance can be compute as :

$$D_{map} = \sqrt{\sum_{n=1}^{2} (c'_{n} - c''_{n})^{2}}$$

Where D_{map} Euclidian distance for Colormap, c_n is the number of channels i.e, where n=1,2,3 for three channels respectively.


IV. CBIR SYSTEM ON THE BASIS OF COLOR FEATURES

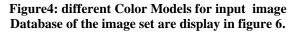

Proposed algorithm uses combinations of color feature to overcome the problem description. The Framework of CBIR system is displayed in figure 5. Query image having similar characteristic from database has to retrieve. Proposed system is implemented and concentrated on visual contents of an image specially color applying on the roses dataset. Proposed system retrieve image from image databases with common, feature values as color histogram. In this paper, the proposed work will try to provide a platform to extract images from the database using query method. Input image before and after segmentation is shown in figure 3.

Figure3: input image (a) before segmentation (b) after segmentation

Segmented image is shown in figure 4 using different color model.

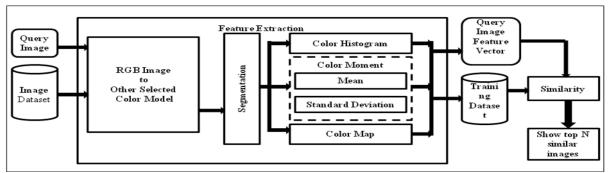


Figure 5: Framework of CBIR System

Retrieval Number: B3163129219/2019©BEIESP DOI: 10.35940/ijeat.B3163.129219 Journal Website: <u>www.ijeat.org</u>

Figure 6: Set of Images in database

Following algorithm are used to retrieve the images:

- 1. Input a query image.
- 2. Convert RGB image to specified color model space.
- 3. Do Color Segmentation.
 - [Collect four features]
- 4. Create histogram of segmented image.
- 5. Take maximum of histogram value of each channel of color image separately for first feature
- 6. Next to take color moment: mean and standard deviation as second and third feature respectively.
- 7. Take color map value of each channel of segmented color image separately as fourth feature
- 8. Repeat from step 2 to step 7. For each image from dataset of images and store feature vector of each image.
- 9. Calculate feature vector of query image. Used Euclidean distance to find the score of each feature present in dataset related to query image.
- 10. Sort the score to retrieve top N similar images.

V. EXPERIMENTAL ANALYSIS

In this research paper different color model as RGB, YCbCr and HSV have been taken for feature collections which are as mention below:

Feature1 for RGB model: maximum value of R, G, and B in RGB Histogram

Feature2: Mean of image intensity

Feature3: Standard Deviation of RGB image

Feature4: Color Map value of RGB

Same has been carried out for the next YCbCr, HSV and L^*a^*b models respectively, Table1 shows the feature of query image in different models.

To retrieve the image according to the query image, score is calculated as given formula:

Distance Vector =
$$\sum_{1}^{m} (Fn - Fq_n)^2$$

Where n denotes the number of F features of dataset image I, q_n denotes the number of features for an query image.

After taking four features as mentioned above the Euclidian distance (D) has been calculated, Feature1 is taken as F1 for D(H',H"), Feature2 as F2 for D_M, Feature3 as F3 for D_{std}, Feature4 as F4 for D_{map} In this research paper, Number of features ($F_{1..n}$ for four features of dataset images and Fq_{1..n} for four features of query image) are taken, the distance vector for these four image can be calculated as:

Distance Vector(D) = $\sqrt{(F1 - Fq_1)^2 + (F2 - Fq_2)^2 + (F3 - Fq_2)^2 + (F4 - Fq_4)^2}$ Here D is considering as a score card for each images in the dataset.

Where

F1=R^{max}, G^{max}, B^{max} of Histogram of Image

F2= Color Map value of RGB color

F3= mean of image

F4=Standard Deviation of image

Same has been taken for Query image as Fq_1 , Fq_2 , Fq_3 , Fq_4 respectively.

The maximum value of color histogram of each channel in different color model for each image in database is shown in Table 2. The score of the dataset images are arranged in ascending order by using the RGB color model in Table 3 with respect to query image. Table 4 display the score of the image in YCbCr model with respect to query image. Table 5 display the score of the image in L*a*b model with respect to query image. Table 6 display the score of the image in HSV model with respect to query image. From the given tables we analyzed that YCbCr and RGB not retrieve a related image from top 1 to 14 images. L*a*b retrieve top 14 image of same color and HSV retrieve top 14 of same color.

			F1			F2			F3	F4
Sn.	Query	Color Models	max	max value of Histogram Color Map						Standard
	Image	Widdels	Channel1	Channel2	Channel3	Channel1	Channel2	Channel3	Mean	Deviation
1.	Red2	L*a*b	44005	48590	48800	0.1529	0.0117	0.0117	0.0614	0.1609
2.	Red 2	RGB	40620	46276	47635	0.1568	0.0039	0.0039	14.5222	40.0809
3.	Red 2	HSV	46211	50367	50427	0.1568	0.0078	0.0078	15.0010	42.9606
4.	Red 2	YCbCr	39666	45014	45549	0.1921	0.0156	0.0156	19.4967	46.7806

Table 1: features extracted for Query Image

 Table 2: Maximum value of color histogram of each channel separately

				Color Models Histogram Values									
			L*a*b			HSV		YCbCr			rgb		
Sn.	Image	max(L)	max(a)	max(b)	max(H)	max(S)	max(V)	max(Y)	max(Cb)	max(Cr)	max(R)	max(G)	max(B)
1	Red1	57423	60483	60839	51721	57722	57702	51550	57215	57591	51721	57722	57702

				-											
2	Red 10	57217	58462	575	76 53	3124	54637	53421	55057	56500	5545	6 53	3124	54637	53421
3	Red 11	43901	51170	451	99 41	1417	50370	42600	40447	49478	4192	9 41	417	50370	42600
4	Red 12	57032	60270	5904	46 54	4544	57739	56541	54594	58530	5704	1 54	1544	57739	56541
5	Red 13	54305	5 57435	5493	33 54	4815	57456	55227	53351	56794	5419	2 54	1815	57456	55227
6	Red 14	522	79 553	19 5	3130	53528	56176	5432		3 54547	5234	3 53	3528	56176	54326
7	Red 15				2702	44221	44928				4105		4221	44928	44655
8	Red 2	440			8800	46211	50367				4554		5211	50367	50427
					7499										
9	Red 3	474				42741	49851				4404		2741	49851	42766
10	Red 4	558			6204	54460	55644				5451		1460	55644	54692
11	Red 5	405			2149	41452	51349				4178		1452	51349	42755
12	Red 7	596			9754	59125	60314				5926		9125	60314	59229
13	Red8	614	81 626	681 6	2045	58074	60470	5942	3 5922	7 61105	6029	08 58	3074	60470	59423
14	Red 9	473	47 531	70 5	0212	44398	50864	4773-	4 4425	8 51153	4799	90 44	4398	50864	47734
15	Yel1	655	36 655	36 6	5536	65536	65536	6553	6 4989	1 49891	5360)4 65	5536	65536	65536
16	Yel10	653	42 653	44 6	5500	65534	65536	6553	6 4008	5 40087	4679	05 65	5534	65536	65536
17	Yel11	619	88 629	017 6	2087	60884	61806	6088	5 3727	7 38259	3877	60)884	61806	60885
18	Yel2	655	03 655	603 6	5513	65536	65536	6553	6 3884	8 38848	4313	32 65	5536	65536	65536
19	Yel3	655		36 6	5536	65536	65536	6553	6 4624	4 46244	4962	25 65	5536	65536	65536
20	Yel4	655			5535	62592	62592			8 49018	4943			62592	62592
21	Yel5	653			5432	65536	65536			4 56854	5832		5536	65536	65536
22	Yel7	651			5200	65536	65536				5073		5536	65536	65536
23	Yel8	655	36 655	36 6	5536	65536	65536	6553	6 6223	7 62237	6226		5536	65536	65536
24	Yel9	655			5536	65284	65278	6530					5284	65278	65303
		Table	3: Score RGB		8 color 1 e E xtrac					e5: Score i L*a*b F	eatures	Extrac	ted		-
	Sn. 1	images Red2	F1 0	0.00	F3	F4 0.00	Score 0	Sn.	Red2	0	F2 0.00	F3 0.00	F4 0.00	Score 0	
	2	Red 11 Red 3	6362 6474	0.07	6.26 3.56	12.02 9.65	6380 6487	2	Red11 Red3	4431 5610	0.04	0.01	0.03	4431 5610	
	4	Ye15 Red 5	7136 8683	0.15	13.42 1.26	38.52 2.90	7188 8687	4 5	Red9 Red5	5843 7881	0.02	0.01 0.04	0.01 0.05	5843 7881	
	6	Red 9 Ye13	10929 13377	0.02	3.02 13.62	3.14 38.40	10936 13429	6	Red15 Red14	8549 11510	0.05	0.03	0.03	8549 11510	_
	8	Red 15 Ye12	13543 15596	0.07	5.56 13.56	10.60 37.36	13559 15647	8	Red13 Red4	14898 16168	0.08	0.03	0.06	14898 16168	_
	10	Red 14 Red 12	16202 16503	0.08	6.87 6.17	14.14 5.84	16223 16515	10	Red10 Red12	18682 20276	0.06	0.02	0.01 0.07	18682 20276	_
	12	Red 10 Red 1	18022 18278	0.04 0.02	2.87	3.82 4.43	18029 18285	12	Red1 Red7	21597 22662	0.09	0.04	0.05	21597 22663	-
	14	Ye111 Red 13	18601 18661	0.12	9.68 7.95	13.77 15.79	18624 18685	14	Red8 Yel11	26065 26556	0.12	0.05	0.08	26065 26556	-
	16 17	Ye17 Red4	19633 21893	0.15	13.27 5.93	38.26 3.81	19684 21903	16	Yel7 Yel10	31522 31857	0.15	0.06	0.13 0.14	31522 31857	-
	18	Red7 Yel9	27834 35664	0.11	9.89 14.48	14.99 39.40	27859	18 19	Yel5 Yel2	31878 32055	0.15	0.06	0.14 0.15	31878 32056	
	20	Yel10 Yel4	36114 36223	0.16	14.51 14.52	39.34 40.05	36168 36278	20 21	Yel4 Yel1	32095 32107	0.15	0.06	0.16	32096 32107	
	22	Yel1 Yel8	36223 36224 36224		14.52	40.08	36279	22 23	Yel3 Yel8	32107 32107	0.15	0.06	0.16	32107 32107	-
		Red8	38600	0.07	14.52	8.62	38610	24	Yel9	32107	0.15	0.06	0.16	32107	
		Iac	VCbC		re Extra			$- \vdash$	Ta	ble6: Score	e in HS eature I			T	-
	<u>Sn.</u>	Red2	F1 0	F2 0.00	F3 0.00	F4 0.00) Scor	0 51	1 Red2		F2 0.00	F3 0.00	F4 0.00	Score 0	_
	2		5099 5800	_	24.29	-		1	2 Red9	3284	0.01	1.92	1.42	3288	
	4	Red15	5923	0.03	4.14	2.58	3 593	0	3 Red13 4 Red3	8426	0.04 0.08	5.66 9.23	4.61 14.94	8187 8450	
	5		6673 6880		35.20				5 Red10 6 Red5	0 8659 9081	0.01 0.08	0.35 9.15	7.84 11.59	8668 9102	
	7	Red3	7270	0.02	2.52	7.40) 727	9	7 Red11 8 Red14	1 9178	0.07	5.96 7.22	9.48 16.20	9194	
	9	Red9	8046	0.03	3.19	2.59	805	1	9 Red4	10681	0.04	2.46	0.95	10684	
	10	Yel4	9862 10891	0.17	31.66 19.83	31.50	5 1094	3 1	1 Red13		0.02	2.63	1.90 16.48	11726 12162	
	12	Yel7 Yel1	12172 13900		10.21 19.85					17992	0.06	6.03 7.81	5.99 7.10		
	14		16513	0.11	10.17	17.38	3 1654	1 1	4 Red7	18525	0.10	8.86 8.56	14.10 11.04	18548 21363	
		Rod 4	10926	0.07		1 3.12	- 1983	· ·		23786	0.15	12.19	27.96		
	15 16	_	19826 20019	0.12	6.68 11.39			1	7 V.10	20/115	0.14	14.05	20.00	20170	
	15	Red13 Red1		0.12		2.60	5 2086	9 8 1	8 Yel10		0.16	14.85 15.00	39.82 42.71	28470 28898	
	15 16 17 18 19	Red13 Red1 Red10 Red12	20019 20859 21609 23186	0.12 0.06 0.08 0.12	11.39 7.09 6.92 12.21	2.60 2.02 15.54	5 2086 2 2161 4 2321		8 Yel10 9 Yel1 0 Yel2	28840 28842 28842	0.16 0.16 0.16	15.00 15.00 15.00	42.71 42.96 42.96	28898 28900 28900	
	15 16 17 18 19 20 21	Red13 Red1 Red10 Red12 Yel5 Red7	20019 20859 21609 23186 24470 28292	0.12 0.06 0.08 0.12 0.11 0.14	11.39 7.09 6.92 12.21 3.40 13.05	2.60 2.02 15.54 4.00 16.90	5 2086 2 2161 4 2321 5 2447 5 2832		8 Yel10 9 Yel1 0 Yel2 1 Yel3	28840 28842 28842 28842 28842	0.16 0.16 0.16 0.16	15.00 15.00 15.00 15.00	42.71 42.96	28898 28900 28900 28900	
	15 16 17 18 19 20	Red13 Red1 Red10 Red12 Yel5 Red7 Red8	20019 20859 21609 23186 24470	0.12 0.06 0.08 0.12 0.11 0.14 0.14	11.39 7.09 6.92 12.21 3.40	2.60 2.02 15.54 4.00 16.90 17.00	5 2086 2 2161 4 2321 5 2447 5 2832 0 2934		8 Yel10 9 Yel1 0 Yel2 1 Yel3 2 Yel5	28840 28842 28842	0.16 0.16 0.16 0.16 0.16 0.16	15.00 15.00 15.00	42.71 42.96 42.96 42.96	28898 28900 28900 28900 28900 28900 28900	

Color Based Image Retrieval by Combining Various Features

Table 7 and Table 8 use to compare the retrieval rate of HSV and L*a*b for best result. Three categories of databases of specific color images have been taken like apple dataset, bus dataset, flower dataset to compare with the proposed method as well as famous precision and recall measures have been calculated for given pre-categorized databases. Both precision and recall are strong evaluation measure. Most of each experiment, image retrieval performed for given every query image. In this regard all the red images in different dataset are renamed as 'r', green as 'g' and yellow as 'y' in table 7 and table 8. In table7 using HSV model, it retrieved all top similar red images from apple dataset, and same retrieve all top in bus dataset with reference to query image and retrieved all top red images from flower dataset. L*a*b color model it also gives the same result for apple dataset and bus dataset and lower dataset.

Table7: HSV color image score for three different categorized dataset

HSV	HSV color image score for three different dataset									
apple	score	bus	score	flower	score					
red1	0	r2	0	r2	0					
r13	1293	r12	1267	r9	3288					
r15	2564	r5	1992	r15	8187					
r12	4132	r7	3483	r3	8450					
r9	4233	r17	3773	r10	8668					
r8	5707	r3	5053	r5	9102					
r7	6416	r6	5582	r11	9194					
r14	9033	r4	5755	r14	10147					
r11	9054	r14	6124	r4	10684					
r6	15667	r8	8052	r1	11726					
r2	16902	r15	8083	r13	12162					
r3	16902	r16	8087	r12	12707					
r4	17839	r10	13043	r8	18007					
r10	18558	r11	14442	r7	18548					
r5	19621	r9	14816	y11	21363					
g16	24171	r1	21162	y4	23826					
g17	28078	y4	24172	y9	28470					
g18	28078	y3	24889	y10	28898					
g19	28078	y6	25090	y1	28900					
g20	28078	y7	25190	y2	28900					
g21	28078	y9	25199	y3	28900					
g22	28078	y2	25220	y5	28900					
y23	28078	y5	25221	y7	28900					
y24	28078	y1	25223	y8	28900					
y25	28078	y8	25223	r6	31884					

Table 8: L*a*b color image score for three different categorized dataset

L*a*b c	L*a*b color image score for different category of dataset									
apple	score	bus	score	flower	score					
r1	0	r2	0	r2	0					
r2	2844	r5	707	r11	4431					
r6	3977	r14	1046	r3	5610					
r5	4622	r8	1061	r9	5843					
r11	7070	r15	3130	r5	7881					
r8	1163	r12	5946	r15	8549					
r13	1331	r10	6936	r14	11510					

r15	1359	.r4.	7831	r13	14898
r12	1699	r7	9647	r4	16168
r9	1882	r3	10375	r10	18682
r2	2138	r17	10828	r12	20276
r3	2131	r1	12287	r1	21597
r7	2266	r6	13385	r7	22663
r4	2389	r16	15754	r8	26065
r14	4418	r11	19363	y11	26556
y24	4903	r9	21251	r6	30840
g16	4917	уб	34238	y7	31522
g17	4919	y3	34290	y10	31857
g18	4919	y9	34458	y5	31878
g19	4919	y4	34597	y2	32056
g20	4919	y2	34721	y4	32096
g21	4919	y1	34785	y1	32107
g22	4919	y7	34817	y3	32107
y23	4919	y5	34822	y8	32107
y25	4919	y8	34822	y9	32107

5.1 The image retrieval Efficiency:

The precision of the system significantly shows the total number of similar images present in retrieved images and the total number of retrieved images from the database. In the same way recall is the ratio of the number of similar images present in the retrieved images and the total number of relevant images in the database. In this paper, for given Query image Q, if total N numbers of images have been retrieved so for this, The retrieval efficiency named as precision, recall and accuracy can be calculated given below:

$$Precision = \frac{Number of relevant images retrieved}{Total number of images in database}$$

 $Recall = \frac{Number of relevant images retrieved}{Total no of relevant images in database}$

Table9 : image retrieval results with	respect to precision
and recall	

Proposed Techniques using given HSV in different image categories	Apple database	Bus database	Flowers database
Query Image(n1)	R1	R2	R2
Number of images in database(n2)	24	24	24
Recall	1.00	1.00	0.93
Precision	0.60	0.64	0.56

As it can be seen from the above Table 9 the proposed technique is implemented in different category of dataset. First dataset is for collection of images of apple dataset of Red, Green and Yellow colored images, second dataset is the collection of buses of red and yellow color and the third dataset is the collection of roses of red and yellow colors.

5.2 Comparative Study by using different color models in proposed work:

Table10: Comparative Study by using different color models in proposed work

Proposed Techniques using given color model	RGB	YCbCr	L*a*b	HSV
Input Images	Red2	Red2	Red2	Red2

Retrieval Number: B3163129219/2019©BEIESP DOI: 10.35940/ijeat.B3163.129219

458

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Precision	0.28	0.25	0.40	0.40
Recall	0.47	0.40	0.67	0.67

On the basis of above comparative study of different color models by implementation of the proposed steps of CBIR system, it's clear from the above Table10 that both L*a*b and HSV give the better result as the accuracy of both L*a*b and HSV are same. Both are giving the best top 14 images related to query image out of 15 relevant images. So in this paper it can be say that on the basis of color feature both HSV and L*a*b doing well their job rather than RGB and YCbCr. Since HSV and L*a*b both shows same accuracy on the basis of color features, hence in this research paper , there are mix of all three dataset(shown in figure 7) category and making the one dataset for more accurate result which is shown through the table11.

Figure 7: mixed dataset of dataset for apple, bus and flower

Tab	ole11: Comparative analy	sis of proposed work usi	ng
	HSV and L*a*b	color models	
	HSV	L*a*h	

	HSV		L*a*b			
sn.	image	score	image	score		
1	RedRose2	0	RedRose2	0		
2	RedRose9	3288	RedBus15	3753		
3	RedApple13	3329	RedApple12	3828		
4	RedApple1	3478	RedApple9	4116		
5	RedBus5	3728	RedBus8	4199		
6	RedApple15	3890	RedRose11	4431		
7	RedBus12	4068	RedBus2	4749		
8	RedBus14	4222	RedBus12	4801		
9	RedBus2	4854	RedBus5	5255		
10	RedBus15	5726	RedApple2	5302		
11	RedApple12	5849	RedApple3	5302		
12	RedApple9	5936	RedApple15	5305		
13	RedApple8	6093	RedBus14	5404		
14	RedApple7	7472	RedApple13	5429		
15	RedBus7	7635	RedBus10	5508		
16	RedBus17	7799	RedBus4	5560		
17	RedRose15	8187	RedRose3	5610		
18	RedRose3	8450	RedRose9	5843		
19	RedRose10	8668	RedApple7	6160		
20	RedApple11	9065	RedApple8	6819		
21	RedApple14	9085	RedApple4	7566		
22	RedRose5	9102	RedBus7	7610		
23	RedBus3	9165	RedRose5	7881		

24	RedRose11	9194	RedBus3	8326
25	RedBus4	9481	RedRose15	8549
26	RedBus6	9695	RedBus17	8560
27	RedRose14	10147	RedBus1	10058
28	RedRose4	10684	RedApple11	10892
29	RedRose1	11726	RedBus6	11111
30	RedBus8	12008	RedRose14	11510
31	RedBus16	12054	RedBus16	13368
32	RedRose13	12162	RedRose13	14898
33	RedRose12	12707	RedApple10	14973
34	RedApple6	15377	RedRose4	16168
35	RedBus10	16865	RedBus11	16835
36	RedApple2	17774	RedApple1	17737
37	RedApple3	17774	RedRose10	18682
38	RedRose8	18007	RedBus9	18688
39	RedBus11	18227	RedRose12	20276
40	RedBus9	18546	RedApple6	21566
41	RedRose7	18548	RedRose1	21597
42	RedApple4	18754	RedApple5	22271
43	RedApple5	19308	RedRose7	22663
44	RedApple10	19478	RedRose8	26065
45	YellowRose11	21363	YellowRose11	26556
46	YellowRose4	23826	RedApple14	27142
47	RedBus1	24862	YellowRose7	31522
48	GreenApple16	25016	YellowBus6	31523
49	YellowBus4	27856	YellowBus3	31579
50	YellowRose9	28470	YellowBus9	31743
51	YellowBus3	28568	YellowRose10	31857
52	YellowBus6	28767	YellowRose5	31878
53	YellowBus7	28866	YellowBus4	31884
54	YellowBus9	28875	YellowApple24	31941
55	YellowBus2	28896	YellowBus2	32006
56	YellowBus5	28898	YellowRose2	32056
57	YellowRose10	28898	YellowBus1	32070
58	GreenApple17	28900	GreenApple16	32090
59	GreenApple18	28900	YellowRose4	32096
60	GreenApple19	28900	YellowBus7	32102
61	GreenApple20	28900	GreenApple17	32107
62	GreenApple21	28900	GreenApple18	32107
63	GreenApple22	28900	GreenApple19	32107
64	YellowApple23	28900	GreenApple20	32107
65	YellowApple24	28900	GreenApple21	32107
66	YellowApple25	28900	GreenApple22	32107
67	YellowBus1	28900	YellowApple23	32107
68	YellowBus8	28900	YellowApple25	32107
69	YellowRose1	28900	YellowBus5	32107
70	YellowRose2	28900	YellowBus8	32107
71	YellowRose3	28900	YellowRose1	32107
72	YellowRose5	28900	YellowRose3	32107
73	YellowRose7	28900	YellowRose8	32107

Published By:

& Sciences Publication

Blue Eyes Intelligence Engineering

VI. CONCLUSION

Most Content-Based Image Retrieval (CBIR) systems focus on different stock of photo collections and try to address challenges of large specialized image collections and topics such as efficient image retrieval by image content. The research work concentrated on large set of images with different categories. This paper analyzed that the retrieval rate of HSV model and L*a*b model for color based image retrieval are approximately same using the proposed approach. While of RGB and YCbCr color model.

REFERENCES:

- Xiang-Yang Wang et.al, "An effective image retrieval scheme using color, texture and shape features", Computer Standards & Interfaces 33 (2011) page no 59-68
- Jun You et. El, "Content-based image retrieval using color and texture fused feature" Mathematical and Computer Modeling, 54(2011), 1121-1127
- Yogita Mistry et-al, "Content based image retrieval using hybrid features and various distance metric", Journal of Electrical Systems and Information Technology, 2017https://electronicsforu.com/electronics-rojects/prototypes/histogr am-extraction-color-image-matlab
- 4. Alsmadi M, Omar K. Fish, "classification: fish classification using memetic algorithms with back propagation classifier", 2012
- Alsmadi MK, Omar KB, Noah SA., "Fish classification based on robust features extraction from color signature using back-propagation classifier", J Comput Sci 2011, 7(1):52
- Hany Fathy Atlam, et.al, "Comparative Study on CBIR based on Color Feature" International Journal of Computer Applications Volume 78 – No.16, September 2013, ISSN 0975 – 8887
- Mark Nixon & Alberto Aquado, "Feature Extraction and Image Processing", second Edition 2008, Academic Press is an imprint of Elsevier, ISBN: 978-0-12372-538-7
- 8. R.Venkata Ramana Chary, et. al "FEATURE EXTRACTION METHODS FOR COLOR"
- Series Editor W. Bruce Croft, "Chapter 3: Color Feature Extraction", The Kluwer International Series On Information Retrieval, Amherst, Kluwer Academic Publishers Massachusetts, ISBN: 0-792-37944-6
- Mohammed Hamzah Abed, et.al, "Content based Image Retrieval based on Histogram", International Journal of Computer Applications ,Volume 110 – No. 3, January 2015 42, ISSN 0975 – 8887

AUTHORS PROFILE

Bably Dolly pursed M.tech(Computer Science & Technology) from Integral University Lucknow in year 2016. She is currently pursuing Ph.D. in Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow. Her main research work focuses on Digital Image Processing, Computer Vision

Deepa Raj, Working as an assistant professor in the Department of Computer Science Babasaheb Bhim Rao Ambedkar University. She did her Post Graduation from J.K Institute of applied physics and technology, Allahabad University and Ph.D. from Babasaheb Bhim Rao Ambedkar University Lucknow in the field of software engineering. Her field of interest is Software

Engineering, Computer Graphics, and Image processing. She has attended lots of National and International conference and numbers of research papers published in her field.

Published By:

& Sciences Publication

Blue Eyes Intelligence Engineering