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Abstract: A key mission in medical science is diagnosing a 
disease due to its criticality and accuracy in examining whether a 
patient is suffering from particular disease or not. Then, the most 
appropriate side of treatment can be decided. Obstructive Sleep 
Apnea (OSA) syndrome is the most widespread sleep disorder 
characterized by chronic episodes of reduction in the airflow or 
stoppage in airflow during sleep, being caused by blockage of 
upper airway. The intention of this review is to analyze already 
existing algorithms for detecting apnea all the way through usage 
of different sensors that have not been implemented on hardware. 
This study offers an exhaustive literature research value from 
2003 to 2019 and setting a roadmap for bio-engineers and 
medical doctors thereby reducing research period and improving 
medical service efficiency concerning obstructive sleep apnea 
diagnosis. 

 
Keywords: Algorithms review, diagnosis approaches, 

obstructive sleep apnea, Sleep disorder.  

I. INTRODUCTION 

In medical science, diagnosing a particular disease in 
precedence of its treatment is the major difficulty find. 
Hence diagnosis plays a significant role to examine whether 
or not a patient has a possible disease. The present work 
focuses on OSA diagnosis methods. 

Sleep disorders are familiar health condition that affects 
various aspects of life. International Classification of Sleep 
Disorder have recognized more than 60 different types of 
sleep disorders and categorized them into seven groups. 
Obstructive sleep apnea belongs to second category and is 
characterised by frequent events of reduction or complete 
blockage of breathing during sleep and is due to collapse of 
upper airway. Apnea is the full obstruction of airway and 
hypopnea is the partial obstruction of airway when a person 
is asleep and breathing may be inadequate for 10 seconds or 
even longer. This lowers the level of oxygen in blood and in 
central nervous system. Brain senses this impaired breathing 
and arouses individuals from sleep so that the airway can be 
reopened. This awakening is so brief and breathing typically 
resumes with some gasping sounds and body jerk. A 
noticeable sign of this disorder is severe snoring and poor 
sleep quality. 
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OSA individuals of about 25% reports excessive daytime 

sleepiness. Patients of greater proportion report un-
refreshing sleep or fatigue [1]. Other important symptoms 
may include recurrent nocturnal waking due to gasping or 
choking sounds, nocturia, long existing morning headaches, 
and erectile dysfunction and poor concentration [2-4]. OSA 
affect people of all ages including childrens and its 
prevalence increases for aged people (50 years and above). 
Around 1 in 5 adult individual notices mild symptoms, 
while 1 in 15 individuals have moderate to severe symptoms 
of OSA. Obesity is a main risk factor and is seen in upto 
70% of obese individuals. 

American Academy of Sleep Medicine (AASM) has 
projected four levels of categorization for the sleep related 
disorder diagnostic devices [5]. Polysomnography (PSG 
level I study) is the gold model technique for diagnosing 
obstructive sleep apnea. It involves monitoring of seven or 
even more channels of data to record activity of different 
organ systems associated with sleep such as breathing 
airflow signal, respiratory movement, oxygen saturation 
(SpO2), Electrooculogram (EOG), electroencephalogram 
(EEG), electromyogram (EMG), electrocardiogram (ECG) 
signals and position of body[6]. OSA syndrome is detected 
if individual with indicated symptoms shows five or even 
more events of respiration per hour of sleep during night 
study of PSG [7].  Risk phase of apnea can be defined as 
normal (0-5 events/hour), 5≤AHI<15 events/hour is reported 
as mid, 15≤AHI<30 events/hour is reported as moderate and 
above 30 events/hour is reported as severe. Home based 
polysomnography (level II study) is used only for research 
purposes. Level III study involves recording minimum of 3 
channels of data such as airflow, snoring, body posture, 
heart rate, respiratory excursion and oxygen saturation level 
but does not records sleep. Hence respiratory event index is 
used to estimate severity of OSA. Level IV study involves 
recording of less than or two channels of data. Oximetry is 
one channel while the other records heart rate, airflow or 
snoring. 

PSG provides precise results but it is an expensive and 
very slow process. It usually requires the patient to be in the 
sleep laboratory under the supervision of expert technicians. 
Using portable PSG devices, the test can be carried out in 
patient’s home but use of all necessary sensors makes 

uncomfortable experience. To address this issue, alternate 
devices (level IV study) have been developed to observe 
patients with fewer sensors and different diagnosis 
algorithms [8].  
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II. METHODS AND ALGORITHMS 

In this section considerable amount of work has done to 
reassess papers that have offered algorithms based on 
analyses of respiration, ECG and pulse oximetry since these 
seems to be more potential approaches to detect OSA. 

 
A. Based On Oximetry 

Pulse oximetry is a method to measure the amount of 
haemoglobin (in percentage) saturated with oxygen. Among 
large number of polysomnographic recordings, [9] included 
recordings for individuals with age of ≥18 years and 
excluded individuals with parasomnia, chest wall diseases, 
lung diseases, anaemia and ischemic heart disease. Apnea 
Hypopnea Index with 0 to 86.5 events per hour from 230 
polysomonographic recordings which met above criteria are 
categorized into 138 training sets and 92 test sets. Apneic 
event occurrence is denoted by three points A,B and C. 

Point A indicates the decrease in value of 1%≤SpO2≤3%. 

Point B indicates decrease in SpO2 signal to atleast 3% 
below point A. If SpO2 value returns to either 3% above 
point B or 1% below point A, it is marked as point C. The 
total time taken between point A and C should be ≥ 

10seconds and ≤ 90seconds. From detection results AHI 

index are estimated using regression modelling.  
[10] used two nonlinear characteristics such as and 

Lempel-Ziv complexity and Cumulative Tendency Measure 
methods to detect OSA.  Three stage algorithm was used by 
[11] such as feature extraction, pre-processing with principal 
component analysis and statistical classifier. 

The photoplethysmogram signal is monitored for decrease 
in amplitude fluctuations. With the features of Pulse Rate  

 
 

 

Table-I: Comparitive Study Of Analyzed Algorithms 

Source 
sensor 

Year in 
which 

proposed 

Technique or 
Methodology 

 
Accuracy% 

 
Advantages 

 
Limitation 

O
xi

m
et

ry
 

2018 Regression modelling 96.7% 
Not only provides diagnostic 
information but also timing 

information of apneic events. 

Difficult to categorise whether the 
detected apneic event is central 

apnea, obstructive apnea or mixed 
sleep apnea. 

2006 
Lempel-Ziv complexity and 
Central Tendency Measure 

87.2% Improved sensitivity and specificity. Small sample size. 

2010 

Principal Component 
Analysis(PCA) and Linear 

Discriminant Analysis 
(LDA) 

93.02% 

Improved Classification performance 
due to the combination of nonlinear 
and spectral features from oximetry 

data. 
 

Doubtful subjects are labelled as 
OSA Syndrome positive. 

2013 
Pulse Rate Variability 

(PRV) 
86.67% 

PRV discriminate apneic events 
without need of additional signals. 

1. Accuracy for fragment 
classification computed using 

leave-one-out method produced 
only smaller accuracies. 

2. Limited subjects in database 

2014 
Time varying 

characterization of PRV 
and SpO2 

92.6% Portable and less sleep disturbance. 

Recordings are done only at 
hospital. Not suitable for home 
screening due to severe sensor 

displacement. 

2017 
Artificial Neural Network 

classifier and Genetic 
Algorithm 

97.7% 
Identified that most of apneic event 
information are in time-frequency 

space and improved accuracy. 

Multilayer Perceptron (MLP) 
structure is calculated using thumb 

rule and is subject dependent. 

2017 Deep Belief Network 

UCDDB-
85.26% 

Apnea ECG 
database- 
97.64% 

Outperformed than other feature based 
approaches in both databases. 

Unbalanced data due to prevalence 
of non apnea events and fixed 

Deep Belief Network structure. 

R
es

pi
ra

tio
n 2013 

k- Nearest Neighbour 
(kNN) 

91.2% 
Accurately detects apneic events from 

respiratory impedance signal. 

Small sample set. Accuracy can be 
achieved higher if used with ECG 
analysis. Value of k has a greater 

impact on accuracy. 

2015 
Ensemble classifiers-
AdaBoost, Random 

subspace & Random Forest 
98.68% 

All three classifiers achieved good 
accuracy due to its robustness and 

stability. Amongst all, random forest 
achieved high accuracy of 98.68%. 

- 
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Source 
sensor 

Year in 
which 

proposed 

Technique or 
Methodology 

 
Accuracy 

 
Advantages 

 
Limitation 

 

2012 
Support Vector Machine 

(SVM) 

Independent test 
accuracy and 

Cross-validation 
accuracy -For 
apnea event 

92.8% &  93.3%. 
For hypopnea event 

89.6% & 90.1%. 

Apneic event detection is not 
affected by less than two 

misclassifications. 

Detection accuracy of hypopnea event 
is poor. Also, error occurs in seperating 

hypopnea from combined event 
(apnea+hypopnea). 

2013 
Adaptive two stage 

classifier 

Apnea- 94.9% 
Hypopnea- 91.8% 
Combined event- 

96.5% 

Automatically estimates AHI 
and can be implemented in 
type4 personal monitoring 

devices as per AASM 
guidelines. 

Clinical validation study carried out on 
small datasets. Requires adjustment for 

different datasets hence unstable. 
Thermistor response to detect apnea 

events is poor 

2016 
AdaBoost  and 

ANFIS 
AdaBoost- 98.43% 

ANFIS-98.68% 
High  detection reliability 

 
Small dataset 

2013 
Voice Activity 

Detection(VAD) 
97% 

VAD segments the breath signal 
into silence and sound segments 
and thus detected apnea events 

with good accuracy. 

Real time apnea detection is not 
possible. 

E
C

G
 

2017 

Dual-tree complex 
wavelet transform and 

Logistic Boosting 
classifier 

84.4% 

High sensitivity (less missing 
detections). Doesn’t involve 

denoising, preprocessing or 
rejections of artifacts. 

- 

2016 

Normal Inverse 
Gaussian (NIG) 

modelling, 
Tunable Q-factor 

Wavelet Transform 
(TQWT) and Adaptive 
boosting (AdaBoost). 

87.33% 

TQWT adjusts Q factor lower 
and higher to characterize non-

apneic and apneic segments. 
Hence provides satisfactory 

performance. 

Does not support larger data set. Apart 
from OSA, ECG signals are affected 
by many cardiac conditions.  Data set 
used for validation purpose includes 

only healthy or apneic subjects. 

2016 
TQWT and Random 

Under Sampling 
Boosting (RUSBoost) 

UCDDB-91.94% 
Apnea ecg dataset- 

88.88% 

Computationally inexpensive. 
Does not experience mode 

mixing problems. 
- 

 
 

Source 
sensor 

Year in 
which 

proposed 

Technique or 
Methodology 

 
Accuracy 

 
Advantages 

 
Limitation 

 

2013 

Quadratic 
Discriminant Analysis, 

Linear 
Discriminant Analysis 

QDA-89% 
LDA-87% 

 

Cepstrum coefficients provides improved 
screening of OSA 

- 

2004 

Heart Rate Variability 
(HRV) spectral 

components and Linear 
Discriminant Analysis 

For 3 
variables- 

96.7% 
For 30 

variables- 
92.0% 

 

Promising way to detect OSA by ECG. Detection rate can be improved 

2015 

Extreme Learning 
Machine , Empirical 

Mode 
Decomposition 

83.77% 
Provides feasibility to portable sleep 

monitoring devices. 

Number of hidden neurons affects 
the detection accuracy. Reduced 
performance due to mode mixing 
between intrinsic-mode function 

levels. 

2017 
Variational Mode 

Decomposition (VMD) 
and SVM classifier 

97.5% 
Improved accuracy over empirical mode 

decomposition 
- 

2012 Hidden Markov model 99.23% 
Removes artifacts and achieved higher 

accuracy over other approaches. 
- 

C
om

bi
ne

d 
ap

pr
oa

ch
es

 2003 Power spectral analysis 89% 
Cost effective and can be incorporated 

into the existing system used in hospitals 
without any additional cost. 

- 

2012 Classifier combination 82% 
Classification performance is balanced 

and improved. 
- 

2015 
Linear 

Discriminant Analysis 
(LDA) 

87% 
Performed well in minute by minute 
apnea location task and in per subject 

global diagnosis. 

Absence of subjects with cardiac 
disturbances and between 5 to 10 

events per hour. 
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2009 Logistic regression 88.5% 

Median frequency and spectral entropy 
provides rich information in OSA 

diagnosis when used SaO2 with EEG 
signal. 

Study data could be larger since 
individuals with OSA positive were 

predominant. 

2017 
Multi-modal approach 

and Support Vector 
Machine 

96.64% 

Multi-modal technique performed for 
SpO2 and ECG signals with feature level 

fusion achieved highest accuracy of 
classification with SVM than all other 

scenarios. 

Accuracy decreased when SVM 
used with single modal approach. 

UCDDB- University College of Dublin sleep apnea DataBase 
 

Variability, Linear Discriminant Analysis classifies the 
data in [12].  [13] measured number of desaturation events 
per hour, , length of trace and the time with oxygen 
saturation less than 90% and then classified apnea events 
based on physiology. Combination of time and frequency 
domain characteristics obtained from PRV and SpO2 signals 
were used by [13]. Artificial Neural Network were 
employed by [14] to identify features of blood oxygen 
saturation and achieved 97.7% accuracy.[15] uses 3 layer 
learning model - first two layers for Boltzmann machine and 
third is a soft max layer.  

 
B. Based On Respiration 
A novel approach was proposed by [16] in which a coil of 

wire was first strapped around the rib cage of an individual. 
Then, respiratory signal is obtained by measuring the 
impedance of a coil. Peak to peak time, Peak height stability 
value, flat lining and long pauses occurrence were extracted 
and applied to kNN. [17] employed time frequency method 
by applying Hilbert Huang transform to nasal airflow signal. 
The airflow signal is decomposed into minimum, maximum 
and average by wavelets and skewness, entropy and energy 
were obtained by [18] and used three classifiers such as 
AdaBoost, Random forest and Random subspace. To detect 
OSA, [19] used oronasal airflow signal. The signal was 
filtered at first by butterworth filter and then segmented into 
features. With the three extracted features, apneic datas are 
classified by Support Vector Machine classifier. [20] Used 
airflow signal with same filter and performed two steps. 
First, to detect sleep disorder and the other is to classify 
either as apnea or hypopnea. [21] Extracted the statistical 
features of airflow signal by decomposing it by Daubechies 
wavelet. Classifiers such as Adaptive Neuro Fuzzy 
Inference System and AdaBoost are used to classify the data 
amongst which the best performance is achieved by ANFIS. 
[22] Utilized characteristic moment waveform to detect 
respiratory rate by segmenting the sound of breathing signal 
during sleep.  

 
C.  Based On ECG 
Electrocardiogram waveforms are analyzed to detect 

sleep disorders. ECG signals are segmented in [23] and 
frequency sub bands are generated from dual tree wavelet 
transform. Logistic boosting classifier is used to detect 
apnea situations. [24] Followed same method but used 
tunable Q factor wavelet transform and adaptive boosting 
classifier. [25] Divided the ECG signals into segments each 
of 1 minute duration and extracted spectral and statistical 
features from each segments. Random under sampling 
boosting is used as classification model to classify apnea 
events. Cepstrum features from RR series are fed into LDA 
and QDA classifiers in [26]. Frequency information such as 
low, high, ultra-low and very-low frequency, high were used 

by [27] to classify using LDA. Different decomposition 
methods such as Empirical- Mode Decomposition (EMD) 
[28] and Variational-Mode Decomposition (VMD) [29] are 
utilized to decompose electrocardiogram signals into 
variational mode functions and finite intrinsic mode 
functions. [30] Presented a different approach using multi 
source information of ECG signal in combination with index 
based cross correlation. Breathing results in modulation in 
the amplitude of T and R waves. [31] analyzed that sleep 
disorders  can be predicted using Morphology of ECG and 
heart rate by cardio-pulmonary coupling. Multi resolution 
wavelet transforms are used by [32] to separate ECG into 
alpha, beta, delta and theta spectral components and these 
coefficients were fed as input into neural networks. [33] 
Presented a detection algorithm that divides the spectral 
power in VLF band of RR series and calculates power ratio 
based coefficients. SVM and Gaussian mixture model 
classifiers are tested and best results were obtained using 
SVM. Signals such as RR and EDR (ECG derived 
respiration) are decomposed by [34] using 14-levels of 
Daubechies wavelet and fed into SVM to classify OSA 
events. [35] Used coefficients of RR series with SVM 
classifier and Hidden Markov Model. [36] Used three stages 
to classify apnea data. First stage, ECG data are analysed for 
changes in EDR and HRV. In second stage, power spectral 
density was used to obtain features from EDR and HRV. 
Then, Hill climbing algorithm is used to select best features. 
In third stage, SVM classifier is used to classify apnea and 
normal data. 

 
D. Based On Combined Approaches 
OSA can be detected by considering only SpO2 signals 

but [37] used both heart rate and SpO2 signals from pulse 
oximeter. Peaks in the frequency band of both signals are 
used to classify apnea events. A different approach was 
presented by [38] where a combination of ECG and SpO2 
signals was used. The features derived from these signals 
are analysed using correlation based subset selection and fed 
into three different classifiers. Combination of SpO2 and RR 
series are employed by [39] in which features in both 
frequency and time domain were extracted from RR series. 
Then LDA classifier was used to classify segments either 
apnea or normal. [40] Performed fusion at feature level of 
two signals such as SpO2 and ECG by employing 
multimodal techniques. The resultant signals are tested by 
kNN, SVM and Naive Bayes classifiers. PPG and nasal 
airflow signals were used by [41] to detect arousals and 
presented apnea hypopnea index and respiratory disturbance 
index.[42]Developed a sleepcare kit with 
photoplethysmography (PPG),  

nasal tube of PPG equipment to measure breathing signals 
and IMU sensor to determine posture. The measured datas 
are analyzed to detect apnea 
or hypopnea in real time.  

 
 

http://www.ijeat.org/


International Journal of Engineering and Advanced Technology (IJEAT) 
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020 

2872 

Retrieval Number: B3175129219/2020©BEIESP 
DOI: 10.35940/ijeat.B3175.029320 
Journal Website: www.ijeat.org 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

III. RESULTS AND DISCUSSION 

Thus a wide survey on previous works has been carried 
out covering different approaches in detecting OSA. 
Summary of papers presented and corresponding algorithms 
used is shown in table I. The table is categorised into four 
sections, related to different approaches analysed. By 
analysing algorithms, the highest accuracy was reported by 
[14] based on oximetry, [18] and [21] using respiration 
analysis, [35] based on ECG and [40] with combined 
approaches. Maximum sensitivity was reported by [12] and 
[14] using oximetry analysis and by [29] using analysis of 
ECG signals. [36] Used ECG signals and achieved 100% 
results for best classification, specificity and sensitivity. It is 
observed that based on single sensor approach, OSA is 
detected with highest accuracy by ECG signals since these 
electrocardiogram signals achieved best classification 
results. Most algorithms using electrocardiogram signals 
were tested on clear signals obtained from public databases. 
This could add a way to improve diagnosis. Combined 
approaches did not add to relevant advancement of 
classification capability. Algorithms with single source 
sensor to detect OSA are preferred due to their reduced 
complexity for hardware implementation. Classifiers such as 
kNN, SVM and NN were used in majority of works. Some 
work achieved good performance with high complexity. The 
key aspect is to obtain a method with good performance and 
reduced complexity. 

IV. CONCLUSION 

This review provides an overall analysis of existing 
algorithms to produce a robust tool for diagnosis of OSA. 
This can be a future direction for researchers to implement 
the analyzed algorithms in hardware and more research on 
self learning the classified features. The key aspect is to 
obtain a method with good performance and reduced 
complexity. With this intent, a special interest is to develop 
a home diagnosing device with reduced numeral of sensors 
and reduction in cost of diagnosis. Adapting proposed 
algorithms in efficient hardware and self learning the 
features is the key challenge identified. This work is 
essential, since it help patients by creating awareness and 
perhaps prevention too among peoples. 
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