
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

541

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP
DOI: 10.35940/ijeat.B3278.129219
Journal Website: www.ijeat.org

Abstract: With the advancement in technology and
development of High Throughput System (HTS), the amount of
genomic data generated per day per laboratory across the globe is
surpassing the Moore’s law. The huge amount of data generated
is of concern to the biologists with respect to their storage as well
as transmission across different locations for further analysis.
Compression of the genomic data is the wise option to overcome
the problems arising from the data deluge. This paper discusses
various algorithms that exists for compression of genomic data as
well as a few general purpose algorithms and proposes a
LZW-based compression algorithm that uses indexed multiple
dictionaries for compression. The proposed method exhibits an
average compression ratio of 0.41 bits per base and an average
compression time of 6.45 secs for a DNA sequence of an average
size 105.9 KB.

Keywords: Compression, lossless, LZW, DNA, Multiple
Dictionary, Decompression.

I. INTRODUCTION

The past two decades have witnessed huge data evolution in
many areas of science. Among them the most widely
discussed is the discovery of sequencing genomic data. With
the advent of technologies and HTS the data generation has
become overwhelming challenging the scientists in the
biological community to find ways of efficiently managing
the sequences, especially for storing and transmitting it for
further analysis. Data compression has been of interest to
data scientists for a long time. Efficient algorithms for
compression and decompression have been developed for
textual, video and, image types of data. Since genomic
sequence is composed of character set {A, C, G, T}
corresponding to chemical compounds Adenine, Cytosine,
Guanine and Thymine respectively and the data files are
stored with text data, the text data compressions are the best
suited for compression. Among the text compression
techniques, lossy compression does not yield back the
original data. The genomic data cannot afford a loss when
decompressed as every character in the data file has equal
importance and hence for compressing genomic data only
lossless compression can be relied upon. The paper discusses
different lossless compression techniques currently used for
compressing text data as well as methods available for
compressing genomic data.

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Dr. Keerthy A S*, Research Scholar, Department of Computer Science,

Karpagam Academy of Higher Education, Coimbatore (Tamil Nadu) India.
E-mail: keerthysanthosh@gmail.com

Dr. S. Manju Priya, Professor, Department of CS, CA & IT, Karpagam
Academy of Higher Education, Coimbatore (Tamil Nadu) India. E-mail:
smanjupr@gmail.com)

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

The author [1] identifies dictionary method as the best suited
for lossless compression of data and proposes a modified
version of LZW with multiple dictionaries for efficient
compression. Also, compression ratio achieved is compared
with existing genomic and general purpose 1 compression
algorithms.

II. LITERATURE REVIEW

The need for compressing genomic sequence data was
identified and attempted from the 20th century where most
attempts were made using text-based tools that already
existed. In 1996, Rivals et al. [2] attempted to compress the
genomic sequences by considering the regularities and
approximate tandem repeats that appear in the DNA
sequences. The author proposes an algorithm Cfact, a
two-pass algorithm which locates repeated segments and
measures their quantitative importance based on compression
rate. They also propose a methodology to measure
approximate tandem repeats which are of evolutionary
importance to DNA sequences. GenCompress proposed by
Xin Chen et al. is a one pass algorithm which looks for
complemented palindromes in DNA sequences. When Cfact
looks for global matches, GenCompress[3] searches for the
best approximate match within the text under analysis. It also
identifies regularities in the genomic sequences such as
crossover and mutation. The authors claim that
GenCompress performs better than Cfact. A combination of
parallel dictionary and adaptive Huffman algorithm is
proposed by Lin, Lee and Jan[4] for compressing text data.
The usage of multiple dictionaries of variable length for
compression and decompression is explained with a sample
sequence. The fixed length codewords are converted to
variable length codewords based on approximated AH
algorithm. Variant approaches to AH (Adaptive Huffman)
algorithm are discussed and their performance is evaluated.
The output from Huffman tree is represented as canonical
Huffman code. The authors bring out the advantage of having
better compression with parallel dictionaries instead of a
single dictionary for text data. NML (Normalized Maximum
Likelihood) based model for DNA sequences is detailed and
tested for genomic as well as non-genomic data sets by
Korodi et al. [5]. The compression splits the DNA sequence
into non-overlapping sequences and assigns a search
dictionary for each of the blocks with subsequences collected
from previous data and also complemented palindromes.
The results, when compared with bzip2, a general purpose
encoder, showed sufficient

Genomic Sequence Data Compression using
Lempel-Ziv-Welch Algorithm with Indexed

Multiple Dictionary
Keerthy A. S., S. Manju Priya

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:keerthysanthosh@gmail.com
mailto:smanjupr@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3278.129219&domain=www.ijeat.org

Genomic Sequence Data Compression using Lempel-Ziv-Welch Algorithm with Indexed Multiple Dictionary

542

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP
DOI: 10.35940/ijeat.B3278.129219
Journal Website: www.ijeat.org

advantage in compression. The
authors further claim a compression ratio of 1.66 bits per
symbol. The major drawback of LZW (Lempel Ziv Welch)
based data compression is the size of the dictionary generated
and that it gets filled up quickly while compressing.
Parvinder et al.[6] propose a substitution of short sequence by
long sequences as the dictionary gets filled up. An alternative
suggestion is to use two dictionaries – a primary dictionary
and a secondary dictionary. The primary dictionary will
maintain frequently used entries. When it gets filled up, the
entries would be moved to the secondary dictionary so that
there will be more space in the primary dictionary to add new
code words. XM (eXpert Model)[7] is a statistical
methodology for compressing biological sequences such as
genomic sequences and protein sequences. The method
consists of using statistical properties and repetition within
sequences for compression. The compressor calculates the
probability of each symbol based on the observations from
previous occurrences of the symbol, identifies the probability
distribution of the symbol and compresses it using a general
purpose method like arithmetic coding. A comparative
analysis of different compression algorithms is presented,
where XM claims to have an average compression rate of
1.69 bits per symbol. DNAEncodeWG[8] (DNA Encode for
Whole Genome) is a reference-based compression method
for Whole Genome sequences. The method identifies the
presence of query sequence in the whole genome sequence
and records the properties of the region and the differences
identified between reference sequence and query sequence.
The method claims to have an average compression of 0.19
bits per symbol. Heath et al. [9] proposes a four-stage
algorithm for compression of genomic sequences, which also
provides random accession of subsequences. The first step in
the four-step compression strategy is preprocessing the target
sequences, where the sequences are grouped based on
segments or chromosomes, and then multiple sequence
alignment is performed with the reference genome. In the
second stage the difference between the target and reference
sequences is identified. In the third step the differences are
compressed with Huffman coding. In the last step the
differences are used to identify mutations in the target
genome. The authors claim a compression ratio of 0.98 for
mitochondrial sequences. DNABIT[10] compress uses two
phases of compression. In the first phase all single bases in
non-repetitive regions are assigned two bit codes. In the
second phase based on the number of bases repeated in each
region, four different coding methods are used, namely 3 bit,
5 bit, 7 bit and 9 bit. For two or three similar bases 3 bit
coding is used, for three to eight repeats of same base 5 bit
coding is used, for two base repeat upto 8 times 7 bit coding is
used, and if the consecutive 4 bases are the same in the
subsequence under consideration, 9 bit coding is used. The
authors conclude on an average compression ratio of 1.53 bits
per symbol. Nishad and Chezian[11] proposes a two-stage
dictionary-based compression technique for DNA sequence
compression. In the first stage, a fragment of four characters
is fetched from the sequence and converted to corresponding
binary sequence. For conversion to binary sequence, each
character is mapped to binary code as follows: A= 00, C= 01,
G= 10 and T = 11. The binary string generated is added to the
dictionary. In the second phase, a binary tree is constructed

for the dictionary, where a child node is designed as a path
taken from a parent node. New binary codes are generated for
members of dictionary. Corresponding to each fragment in
the sequence the new binary code is written to the output file.
In their subsequent works, [12, 13], Nishad and Chezian,
introduced compression based on dictionary. They described
an implementation of LZW with binary searching that
reduced the time complexity for searching a string later and
also proposed to use multiple dictionaries in the place of
single dictionary which would reduce the search complexity.
The methodology is proposed for general purpose
compression. The implementation is tested with genomic
data as well. The decompression is also performed using
multiple dictionaries and the authors claim a 94%
compression for text data.
COMRAD[14] works iteratively to compress a set of DNA
sequences using the length of substring and a minimum
frequency threshold as parameters for first iteration. In each
subsequent iteration, a frequency dictionary is created and
substitutions are done. In the first iteration, frequency
dictionary creation step calculates the frequency of each
substring of pre-specified length. In the first substitution step,
the substrings that are repeated most frequently are replaced
by symbols. The result from first iteration would be a mix of
nucleotides and symbols used in the substitution. In the
subsequent iterations, these steps are repeated with frequency
dictionary generation and substitution. The iterations
terminate when no further substitution is possible. From the
final frequency dictionary, all those substitutions with
frequency of less than a threshold value are eliminated by
replacing the substitution with the original string in the
sequence. The frequency dictionary generated and the
substitution strings are encoded using Huffman coding as a
final step. The compression cost of the method depends on
the number of iterations performed. The decompression
works in the reverse order, the first step being Huffman
decoding and the second step COMRAD decoding.
COMRAD permits random access across the sequence that is
compressed. Though it assures pretty good compression, the
algorithm is memory intensive. SCALCE (Sequence
Compression Algorithm using Locally Consistent
Encoding)[15] is a boosting method that works based on local
parsing method that rearranges the reads to improve
compression rate and speed with or without a reference
sequence. SCALCE is combined with Arithmetic coding for
compressing quality scores and gzip to achieve considerable
compression on read names resulting in a good compression
rate and improved running time.
Giancarlo, Rombo and Utro[16] have listed various methods
of compression used widely based on research areas as
collection of sequences, collection of HTS (High
Throughput Sequence) reads and compressive sequence
analysis. The compression techniques are compared based on
the type of compression, the method of compression and
availability of random access.
 Huffman coding and arithmetic coding are identified as
statistical methods of compression.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

543

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP
DOI: 10.35940/ijeat.B3278.129219
Journal Website: www.ijeat.org

 Lempel-Ziv data compression is a dictionary-based one,
which is used along with Huffman coding by COMRAD. For
an analysis of relative compression, the authors compare
GRS, GReEN and many other techniques that use reference
sequence for accomplishing compression. The growth of raw
sequence data over the years has been analyzed by
Deorowicz and Grabowski [17], along with the various
methods of data compression techniques available for
genomic data, comparing the existing general purpose
methods of compression using genomic sequences.
Reference-based compression using FASTQ files and SAM
files is performed. As data deluge is becoming a fact in the
biological scientific community, the authors discuss the need
for compression techniques. They look into the available
compression methods and their suitability with respect to
genomic sequence data. They also discuss different file
formats for data storage.
Zhu et al.[18] selected a set of genomes from different
species with respect to origin, length and repeat content. The
performance evaluation of various compression techniques,
both reference-based and reference-free, was performed
based on compression ratio, memory usage and compression
and decompression time. The author suggests CRAML,
which is a lossy compression method to give the best
compression ratio and the best compression and
decompression time and memory. The authors also point out
that high throughput sequencing has made personalized
genomic sequencing affordable, and that encryption
techniques must be deployed to protect the privacy of
personalized data.
Wandelt et al.[19] discuss the key methods of genomic data
compression. Naïve bit manipulation replaces every base by a
two bit code. Dictionary-based method adds the entry of a
codeword to dictionary when encountered. These
book-keeping details are further used for the decompressing
purpose. Since high amounts of repetition of bases are the
prominent features of genomic data, statistical methods are
also employed in compressing genomic information.
Huffman coding or arithmetic encoder works based on the
principle of statistical algorithms. Referential algorithms are
used only when there is a standard sequence that can be kept
as reference for compressing similar genomes. The authors
discuss the usage of each of these techniques in whole
genome compression as well as read compression. The lack
of benchmark datasets as well as metrics for comparing
performance of different methods has been pointed out. They
suggest rate of compression, time taken for compression and
decompression and memory usage while compressing and
decompressing as metrics of performance analysis.
Pratas and Pinho[20] propose an asymmetric compressor for
genomic data sequences which parallelize the tasks using two
FCMs. The sequences are preprocessed by calculating
probability estimates using symbol counts. The
preprocessing helps in identifying low complexity areas in
the sequence. Two finite context models (FCMs) of high and
low order are run parallel to compete with each other. The
outputs from each of the FCMs are stored and processed
separately. The higher order FCM is used to compress
regions with low information content. The higher order FCM
also considers the possible inverted repeats (IRs). The high
FCM consists of a regular chain and an IR chain. The authors

point out that preprocessing can substantially improve the
memory usage, especially while decompressing.
Parallelization assures faster compression. GeCo (Genomic
Compression)[21], a statistical method for genomic data
compression, uses FCM based on Markov models. Patras,
Pinho and Ferreira extend the FCMs as XFCM, where the
probability estimate varies as the conditioning context is
different. They use the most probable symbol as the
conditioning context. A pseudo-random synthetic sequence is
generated and used as reference sequence. It is mutated with a
predefined substitution rate and genomic sequence with
several degrees of mutation generated. These resulting
sequences are compressed using the synthetic reference
sequence generated. A cache-has memory approach, which
keeps only the last hashed entries in memory, is used so that
memory usage is further reduced.
ERGC (Efficient Referential Genome Compression) [22]
algorithm works by keeping a sequence as referential
sequence and the sequence to be compressed as target
sequence. The algorithm works by splitting the reference
sequence and target sequence into equal-sized strings. A
greedy algorithm generates k-mers one at a time, and hashes
it to a hash table. If no match is found, k-mer is extended by
one, otherwise it aligns the reference sequence and target
sequence and extends the alignment until there is a mismatch.
The mutations and insertions in reference and target sequence
are also taken care of.
Though general purpose compression techniques like gzip
can compress and assist in efficient storage and transmission
of genomic data, they do not take into advantage the general
features of genome sequence such as tandem repeats,
microsatellites, etc., whose presence increases the possibility
of compression even better. Hence, the scientific world is
interested in identifying special purpose software that are
tailored for genomic data compression. Mince’s

algorithm[23] works by grouping similar sequences. The
compression is carried out in multiple phases. In the local
bucketing phase, Mince places similar reads into a bucket.
All k-mers of a read of length r are checked to see if any of
the k-mer or its reverse complement has a label matching the
existing ones. If none matches a new bucket is created. If it
matches, the read of length ‘r’ is assigned to that bucket using

an encoding transformation. Comparison with the existing
methods assures a better compression ratio. The k-mer
redundancy check exploits the possible sequence similarity
between the reads, and the read order is chosen randomly
while compressing. The literature review extensively studies
various methodologies used in compressing genomic
sequence data. It is evident from a comparative analysis of
the existing general purpose methods that they do not
efficiently compress genomic data. Statistical methodologies
reap the advantages of high degree of repetition of bases in
the data, but they are mostly memory intensive.
Reference-based methods claim to produce maximum
compression, but it is possible only if a valid reference
sequence is available. Dictionary-based methods are fast and
prompt in compression as well as decompression, but size
and maintenance of dictionary are drawbacks.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Genomic Sequence Data Compression using Lempel-Ziv-Welch Algorithm with Indexed Multiple Dictionary

544

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP
DOI: 10.35940/ijeat.B3278.129219
Journal Website: www.ijeat.org

Parallel dictionaries claim to ease the time complexity in
compression procedure with reduced number of shifts and
comparisons. Also, the methodologies discussed are
experimented in different datasets due to lack of benchmark
dataset. A quantitative comparison of different methods is
restricted to a few sequences that overlap different
methodologies.

III. METHODS AND METHODOLOGY

An analysis of different compression techniques brings out
the pros and cons of the various techniques used. Most of the
methods described for compression are laid down for
compressing text data. Of the methods discussed for text data
compression usage of multiple dictionary in compression
claims to be of less overhead and lossless. Since lossless
compression is unquestionable LZW is the best option for
compression. The LZW with single dictionary [24] is laid
down for compressing text data. Since the character set is
smaller for genomic data, the basic algorithm is modified to
suit the character set. Also, for faster search and retrieval of
data, multiple dictionaries[25] are used in compression and
decompression, which facilitate faster and efficient storage
and transmission of genomic data.
A. Compression
Each character read from the input file is concatenated with
the previous char or subsequence; its presence is verified in
the corresponding dictionary. If the string is present in the
dictionary DL where L is the length of the previous substring
and the character read from the input file, the subsequence is
extended by reading in the next character from the file.
Otherwise, a new entry corresponding to the subsequence is
made in the dictionary DL with the index calculated using the
subsequence. The procedure is laid down in following steps:
1. Set dictionary D1 with initial character set A, G, C and T
and assign to them CODE 1, 2, 3 and 4 respectively.
2. Read first character from input file to STRING
3. Initialize M:= 2, CODE := 5
4. Repeat the following steps till end of file
5. Assign CHAR := Next character from input file
6. Assign
L:= Lengthof(STRING+CHAR)
7. Assign
INDEX:=CALCULATE_INDEX(STRING+CHAR, M)
8. Search for INDEX in Lth dictionary
a. If INDEX found
AssignFLAG:= Search(STRING+CHAR, L)
b. OTHERWISE
i.Create INDEX in Lth dictionary
9. If FLAG is TRUE
a. STRING := STRING+CHAR
10. ELSE
a. Write CODE to output file
b. Add CODE. STRING+CHAR to Lth dictionary
c. CODE:= CODE+1
d. STRING:=CHAR
11. Repeat from step 5
12. STOP
13. Function CALCULATE_INDEX(X,M)
Return(∑ (𝐻𝐸𝑋(𝑡𝑜𝑙𝑜𝑤𝑒𝑟(𝑋𝑖)𝑀𝑂𝐷5)) ∗ 4

𝑀−𝑖𝑀
𝑖=1)

The codes are written in the output file as ascii characters
corresponding to their values. This eliminates the possibility
of wrongly reading the codes while decompressing.
B. Decompression
The decompression starts by reading in codes from the
compressed file. An initial dictionary D1 is created with
character set A, G, C, T assigned with codes 1, 2, 3, 4
respectively. For each code read from the compressed file, if
it is updated in the dictionary, write the corresponding
character or subsequence to the output file. Otherwise assign
the previous subsequence value to the dictionary and update
the code value.
1. Set dictionary D1 with initial character set A, G, C and T
and assign to them CODE 1, 2, 3and 4 respectively.
2. Initialize M: = 2, CODE:= 4, L: = 1
3. Assign OCODE:= Character(First character read from
compressed file)
4. Write OCODE to output file.
5. Repeat the steps till end of file
a. Assign NCODE := Next character from input file
b. Assign FLAG:= Search Dictionary(L, NCODE)
i.If FLAG is FALSE
Assign STRING:= OCODE + CHAR
ii.ELSE
1. Assign STRING := NCODE
2. L=L+1
3. Write STRING to output file
c. Assign CHAR=STRING[1]
d. CODE = CODE+1
e. Assign L = Lengthof(OCODE+CHAR)
f. Update Lth dictionary with CODE,
OCODE+CHAR
g. OCODE = NCODE
6. STOP
14. Function CALCULATE_INDEX(X,M)
Return (∑ (𝐻𝐸𝑋(𝑡𝑜𝑙𝑜𝑤𝑒𝑟(𝑋𝑖)𝑀𝑂𝐷5)) ∗ 4

𝑀−𝑖𝑀
𝑖=1)

IV. RESULTS AND DISCUSSION

The proposed algorithm is implemented on Intel® Core™ i7

(2.40GHz 8GB RAM) running on Windows 10 with Python
3.6. The experimental analysis was carried out on Nvidia
GeForce GTX 1060 GPU (Intel Core i7, 32GB RAM). A set
of standard DNA sequences that were tested with other
compressing algorithms were compressed and compared with
available compression ratio of WinZip and CTW, which are
general purpose compression algorithms, and CTW+LZ,
BIOCOMPRESS, GENCOMPRESS, DNACOMPRESS,
XM and DNAEncodeWG which are genomic compression
algorithms. The test data includes five human gene sequences
(HUMDYSTROP, HUMGHCSA, HUMHBB,
HUMHDABCD AND HUMHPRTB) that are commonly
used in most of DNA compression publications. Along with
these MOUSE CHROMOSOME2 and BAKER’s YEAST

CHROMOSOME 2 were also compressed, for which
comparative values for other algorithms were unavailable.
The compressions were compared using compression ratio
calculated as number of bits/base. Table 1 gives the
comparison of sequence size before and after compression,
and the time taken for
compression.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

545

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP
DOI: 10.35940/ijeat.B3278.129219
Journal Website: www.ijeat.org

Table 1: Comparing sequence size before and after compression using multiple dictionaries based on LZW

Name of Sequence
Uncompressed size (in

KB)
Compressed Size(in

KB) Compression Ratio Exec time (in sec)

MOUSECHR2 218.1 86 0.394314535 6.342

BAKERSYEASTCHR1 231 94 0.406926407 6.898

HUMDYSTROP 38.77 16 0.412690224 6.283

HUMGHCSA 64.495 24 0.37212187 6.139

HUMHBB 73.323 31 0.422786847 6.408

HUMHDABCD 58.864 25 0.424707801 7.15

HUMHRPTB 56.737 24 0.423004389 5.917

Average 105.9 42.86 0.41 6.45

The compression time (in secs) for seven sequences are presented graphically as follows:

Figure 1: Graph presenting compression time (in secs) for the seven sequences compressed

A. Comparing the proposed implementation (MDLZW) with the existing algorithms:

Table 2: Compression ratios given by different general purpose and genomic compression algorithms for compressing
five human genes.

DNA
SEQUENCE

Win
Zip

BIO
COMPRESS

GEN
COMPRESS

Normal
CTW

CTW
+

LZ

DNA
COMPRESS

XM
DNA

Encode
WG

MDLZW

HUMDYSTROP 2.38 1.9262 1.9231 1.92 1.9175 1.9116 1.9031 0.1729 0.4069
HUMGHCSA 2.34 1.3074 1.0969 1.3638 1.0972 1.0272 0.9828 0.2732 0.4127

HUMHBB 2.33 1.88 1.8204 1.8928 1.8082 1.7897 1.7513 0.2744 0.3721
HUMHDABCD 2.29 1.877 1.8192 1.8973 1.8218 1.7951 1.6671 0.1422 0.4247

HUMHRPTB 2.32 1.9066 1.8466 1.9132 1.8433 1.8165 1.7361 0.1111 0.423

Figure 22: Comparing compression ratio (bits per base) obtained by different algorithms on five human genes

6.342 6.898 6.283 6.139 6.408
7.15

5.917

0
1
2
3
4
5
6
7
8

Ti
m

e
in

 s
ec

s

SEQUENCES

Compression time(in secs) for DNA sequences

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Genomic Sequence Data Compression using Lempel-Ziv-Welch Algorithm with Indexed Multiple Dictionary

546

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP
DOI: 10.35940/ijeat.B3278.129219
Journal Website: www.ijeat.org

The comparative analysis of compression ratio by different
algorithms is presented in the Figure 2. The compression
rates in Figure 2 are obtained from existing literature[8]
except the last column, which gives the experimental results
in the proposed method. The general purpose compression
algorithms give the highest compression ratio. The best
compression among the compared algorithms is given by
DNAEncodeWG with an average compression ratio of
0.1948 bits per base, which is a reference-based algorithm. A
reference-based algorithm works well only if a valid
reference is available. Hence, it cannot be considered as a
convincing method for compressing sequences resulting from
experiments. Hence, the proposed algorithm gives a better
compression ratio than other compression algorithms
discussed and compared. Also, it is evident that general
purpose algorithms are not suitable for compressing the
genomic sequences as they do not take in to account the high
amount of repetitiveness in the sequence data.

V. CONCLUSION

The paper presents an efficient compression algorithm based
on LZW with the modification of using multiple dictionaries.
LZW has been proven as the best among the compression
algorithms for lossless compression. For compressing DNA
sequence data, lossless compression is mandatory and hence
LZW is the basic methodology chosen. The main drawback
of LZW is the dictionary size as well as time consumption in
searching the dictionary. This is overcome by using multiple
dictionaries that are indexed. Also, the dictionaries are
created dynamically during compression as well as
decompression, and the dictionary is not stored for later use.
Hence, memory overhead of dictionary storage is overcome.
Only the compressed file is stored and transmitted. The
proposed method MDLZW for Genomic Sequence data has
an average compression rate of 0.41bits per base, which is the
best among the compression rates compared. The
decompression algorithm performs a lossless decompression
in comparable time.

REFERENCES

1. Keerthy A S, Manju Priya S, 2016, Comparative analysis of Data
Compression and Pattern Matching Techniques for Biological Big
Data. International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET), 5(1).

2. Rivals, E., Dauchet, M., Delahaye, J.P. and Delgrange, O., 1996.
Compression and genetic sequence analysis. Biochimie, 78(5),
pp.315-322.

3. Chen, X., Kwong, S. and Li, M., 1999. A compression algorithm for
DNA sequences and its applications in genome comparison. Genome
informatics, 10, pp.51-61.

4. Lin, M.B., Lee, J.F. and Jan, G.E., 2006. A lossless data compression
and decompression algorithm and its hardware architecture. IEEE
TRANSACTIONS on very large scale integration (vlsi) systems,
14(9), pp.925-936.

5. Korodi, G., Rissanen, J. and Astola, J., 2007. DNA sequence
compression-Based on the normalized maximum likelihood model.
IEEE Signal Processing Magazine, 24(1), pp.47-53.

6. Singh, P. and Duhan, M., 2006, September. Enhancing LZW
Algorithm to Increase Overall Performance. In 2006 Annual IEEE
India Conference (pp. 1-4). IEEE.

7. Cao, M.D., Dix, T.I., Allison, L. and Mears, C., 2007, March. A
simple statistical algorithm for biological sequence compression. In
2007 Data Compression Conference (DCC'07) (pp. 43-52). IEEE.

8. Do Kim, H. and Kim, J.H., 2009. DNA data compression based on
the whole genome sequence. Journal of Convergence Information
Technology, 4(3), pp.82-85.

9. Heath, L.S., Hou, A.P., Xia, H. and Zhang, L., 2010, August. A
genome compression algorithm supporting manipulation. In Proc
LSS Comput Syst Bioinform Conf (Vol. 9, pp. 38-49).

10. Rajarajeswari, P. and Apparao, A., 2011. DNABIT
compress–genome compression algorithm. Bioinformation, 5(8),
p.350.

11. Nishad, P.M. and Chezian, R.M., 2012. A vital approach to compress
the size of DNA sequence using LZW (Lempel-Ziv-Welch) with
fixed length binary code and tree structure. International Journal of
Computer Applications, 43(1), pp.7-9.

12. Nishad, P. M. and R. Manicka Chezhian, 2012, Optimization of LZW
(Lempel-Ziv-Welch) Algorithm to Reduce Time Complexity for
Dictionary Creation in Encoding and Decoding, AJCSIT, 114-118.

13. Nishad, P. M., and Manicka Chezian R., 2012, Enhanced lzw
(lempel-ziv-welch) algorithm by binary search with multiple
dictionary to reduce time complexity for dictionary creation in
encoding and decoding, IJARCSSE 2.3,192 -198.

14. Kuruppu, S., Beresford-Smith, B., Conway, T. and Zobel, J., 2012.
Iterative dictionary construction for compression of large DNA data
sets. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), 9(1), pp.137-149.

15. Hach, F., Numanagić, I., Alkan, C. and Sahinalp, S.C., 2012.

SCALCE: boosting sequence compression algorithms using locally
consistent encoding. Bioinformatics, 28(23), pp.3051-3057.

16. Giancarlo, R., Rombo, S.E. and Utro, F., 2013. Compressive
biological sequence analysis and archival in the era of
high-throughput sequencing technologies. Briefings in
bioinformatics, 15(3), pp.390-406.

17. Deorowicz, S. and Grabowski, S., 2013. Data compression for
sequencing data. Algorithms for Molecular Biology, 8(1), p.25.

18. Zhu, Z., Zhang, Y., Ji, Z., He, S. and Yang, X., 2013.
High-throughput DNA sequence data compression. Briefings in
bioinformatics, 16(1), pp.1-15.

19. Wandelt, S., Bux, M. and Leser, U., 2014. Trends in genome
compression. Current Bioinformatics, 9(3), pp.315-326.

20. Pratas, D. and Pinho, A.J., 2014, September. Exploring deep Markov
models in genomic data compression using sequence pre-analysis. In
2014 22nd European Signal Processing Conference (EUSIPCO) (pp.
2395-2399). IEEE.

21. Pratas, D., Pinho, A.J. and Ferreira, P.J., 2016, March. Efficient
compression of genomic sequences. In 2016 Data Compression
Conference (DCC) (pp. 231-240). IEEE.

22. Saha, S. and Rajasekaran, S., 2015. ERGC: an efficient referential
genome compression algorithm. Bioinformatics, 31(21),
pp.3468-3475.

23. Patro, R. and Kingsford, C., 2015. Data-dependent bucketing
improves reference-free compression of sequencing reads.
Bioinformatics, 31(17), pp.2770-2777.

24. Ziv, J., and Lempel A., 1977, "A universal algorithm for sequential
data compression, IEEE Trans. Inf. Theory, 23.3, 337-343.

25. Keerthy, A. S., and S. Manju Priya, 2017, Lempel-Ziv-Welch
Compression of DNA Sequence Data with Indexed Multiple
Dictionaries. IJAER, 12.16, 5610-5615

AUTHORS PROFILE

Keerthy A. S. is currently pursuing Ph D in Karpagam
Academy of Higher Education, Coimbatore, India,
under the guidance of Dr. S Manju Priya. She has
completed MPhil in Bioinformatics from Kerala
University and MCA from Calicut University. Her area
of interests include Data Mining, Graph Theory,
Artificial Intelligence, Bioinformatics and Machine

Learning. She has more than 8 years of teaching experience in post graduate
level. She has published 4 Scopus indexed papers and presented papers in
multiple conferences.She has also guided project students in post graduate
level.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

547

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3278129219/2019©BEIESP
DOI: 10.35940/ijeat.B3278.129219
Journal Website: www.ijeat.org

 Dr. S. Manju Priya is working as a Professor in Dept
of CS, CA & IT, Karpagam Academy of Higher
Education, Coimbatore, India for the past 15 years. She
has completed Ph D in 2014 in Karpagam Academy of
Higher Education. She has attended various conferences
and has published 42 papers in various National and
International Journals. She has published on book on
wireless sensor network. Under her guidance she has

produced 5 Ph D scholars and 4 M Phil scholars. Currently 6 scholars are
under her guidance. She is one of the associate Editor in Karpagam Journal
of Computer Science. Her research areas are like Sensor Network, IOT,
Data mining and Big Data Analytics.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

