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Abstract: With the advancement in technology and 
development of High Throughput System (HTS), the amount of 
genomic data generated per day per laboratory across the globe is 
surpassing the Moore’s law. The huge amount of data generated 
is of concern to the biologists with respect to their storage as well 
as transmission across different locations for further analysis. 
Compression of the genomic data is the wise option to overcome 
the problems arising from the data deluge. This paper discusses 
various algorithms that exists for compression of genomic data as 
well as a few general purpose algorithms and proposes a 
LZW-based compression algorithm that uses indexed multiple 
dictionaries for compression. The proposed method exhibits an 
average compression ratio of 0.41 bits per base and an average 
compression time of 6.45 secs for a DNA sequence of an average 
size 105.9 KB. 

Keywords: Compression, lossless, LZW, DNA, Multiple 
Dictionary, Decompression.  

I. INTRODUCTION 

The past two decades have witnessed huge data evolution in 
many areas of science. Among them the most widely 
discussed is the discovery of sequencing genomic data. With 
the advent of technologies and HTS the data generation has 
become overwhelming challenging the scientists in the 
biological community to find ways of efficiently managing 
the sequences, especially for storing and transmitting it for 
further analysis. Data compression has been of interest to 
data scientists for a long time. Efficient algorithms for 
compression and decompression have been developed for 
textual, video and, image types of data. Since genomic 
sequence is composed of character set {A, C, G, T} 
corresponding to chemical compounds Adenine, Cytosine, 
Guanine and Thymine respectively and the data files are 
stored with text data, the text data compressions are the best 
suited for compression. Among the text compression 
techniques, lossy compression does not yield back the 
original data. The genomic data cannot afford a loss when 
decompressed as every character in the data file has equal 
importance and hence for compressing genomic data only 
lossless compression can be relied upon. The paper discusses 
different lossless compression techniques currently used for 
compressing text data as well as methods available for 
compressing genomic data. 
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The author [1] identifies dictionary method as the best suited 
for lossless compression of data and proposes a modified 
version of LZW with multiple dictionaries for efficient 
compression. Also, compression ratio achieved is compared 
with existing genomic and general purpose 1  compression 
algorithms. 

II. LITERATURE REVIEW 

The need for compressing genomic sequence data was 
identified and attempted from the 20th century where most 
attempts were made using text-based tools that already 
existed. In 1996, Rivals et al. [2] attempted to compress the 
genomic sequences by considering the regularities and 
approximate tandem repeats that appear in the DNA 
sequences. The author proposes an algorithm Cfact, a 
two-pass algorithm which locates repeated segments and 
measures their quantitative importance based on compression 
rate. They also propose a methodology to measure 
approximate tandem repeats which are of evolutionary 
importance to DNA sequences. GenCompress proposed by 
Xin Chen et al. is a one pass algorithm which looks for 
complemented palindromes in DNA sequences.  When Cfact 
looks for global matches, GenCompress[3] searches for the 
best approximate match within the text under analysis. It also 
identifies regularities in the genomic sequences such as 
crossover and mutation. The authors claim that 
GenCompress performs better than Cfact. A combination of 
parallel dictionary and adaptive Huffman algorithm is 
proposed by Lin, Lee and Jan[4] for compressing text data. 
The usage of multiple dictionaries of variable length for 
compression and decompression is explained with a sample 
sequence. The fixed length codewords are converted to 
variable length codewords based on approximated AH 
algorithm. Variant approaches to AH (Adaptive Huffman) 
algorithm are discussed and their performance is evaluated. 
The output from Huffman tree is represented as canonical 
Huffman code. The authors bring out the advantage of having 
better compression with parallel dictionaries instead of a 
single dictionary for text data. NML (Normalized Maximum 
Likelihood) based model for DNA sequences is detailed and 
tested for genomic as well as non-genomic data sets by  
Korodi et al. [5]. The compression splits the DNA sequence 
into non-overlapping sequences and assigns a search 
dictionary for each of the blocks with subsequences collected 
from previous data and also complemented palindromes.  
The results, when compared with bzip2, a general purpose 
encoder, showed sufficient 
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advantage in compression. The  
authors further claim a compression ratio of 1.66 bits per 
symbol. The major drawback of LZW (Lempel Ziv Welch) 
based data compression is the size of the dictionary generated 
and that it gets filled up quickly while compressing. 
Parvinder et al.[6] propose a substitution of short sequence by 
long sequences as the dictionary gets filled up. An alternative 
suggestion is to use two dictionaries – a primary dictionary 
and a secondary dictionary. The primary dictionary will 
maintain frequently used entries. When it gets filled up, the 
entries would be moved to the secondary dictionary so that 
there will be more space in the primary dictionary to add new 
code words. XM (eXpert Model)[7] is a statistical 
methodology for compressing biological sequences such as 
genomic sequences and protein sequences. The method 
consists of using statistical properties and repetition within 
sequences for compression. The compressor calculates the 
probability of each symbol based on the observations from 
previous occurrences of the symbol, identifies the probability 
distribution of the symbol and compresses it using a general 
purpose method like arithmetic coding. A comparative 
analysis of different compression algorithms is presented, 
where XM claims to have an average compression rate of 
1.69 bits per symbol. DNAEncodeWG[8] (DNA Encode for 
Whole Genome) is a reference-based compression method 
for Whole Genome sequences. The method identifies the 
presence of query sequence in the whole genome sequence 
and records the properties of the region and the differences 
identified between reference sequence and query sequence. 
The method claims to have an average compression of 0.19 
bits per symbol. Heath et al. [9] proposes a four-stage 
algorithm for compression of genomic sequences, which also 
provides random accession of subsequences. The first step in 
the four-step compression strategy is preprocessing the target 
sequences, where the sequences are grouped based on 
segments or chromosomes, and then multiple sequence 
alignment is performed with the reference genome. In the 
second stage the difference between the target and reference 
sequences is identified. In the third step the differences are 
compressed with Huffman coding. In the last step the 
differences are used to identify mutations in the target 
genome. The authors claim a compression ratio of 0.98 for 
mitochondrial sequences. DNABIT[10] compress uses two 
phases of compression. In the first phase all single bases in 
non-repetitive regions are assigned two bit codes. In the 
second phase based on the number of bases repeated in each 
region, four different coding methods are used, namely 3 bit, 
5 bit, 7 bit and 9 bit. For two or three similar bases 3 bit 
coding is used, for three to eight repeats of same base 5 bit 
coding is used, for two base repeat upto 8 times 7 bit coding is 
used, and if the consecutive 4 bases are the same in the 
subsequence under consideration, 9 bit coding is used. The 
authors conclude on an average compression ratio of 1.53 bits 
per symbol.  Nishad and Chezian[11] proposes a two-stage 
dictionary-based compression technique for DNA sequence 
compression. In the first stage, a fragment of four characters 
is fetched from the sequence and converted to corresponding 
binary sequence. For conversion to binary sequence, each 
character is mapped to binary code as follows: A= 00, C= 01, 
G= 10 and T = 11. The binary string generated is added to the 
dictionary. In the second phase, a binary tree is constructed 

for the dictionary, where a child node is designed as a path 
taken from a parent node. New binary codes are generated for 
members of dictionary. Corresponding to each fragment in 
the sequence the new binary code is written to the output file. 
In their subsequent works, [12, 13], Nishad and Chezian, 
introduced compression based on dictionary. They described 
an implementation of LZW with binary searching that 
reduced the time complexity for searching a string later and 
also proposed to use multiple dictionaries in the place of 
single dictionary which would reduce the search complexity. 
The methodology is proposed for general purpose 
compression. The implementation is tested with genomic 
data as well. The decompression is also performed using 
multiple dictionaries and the authors claim a 94% 
compression for text data. 
COMRAD[14] works iteratively to compress a set of DNA 
sequences using the length of substring and a minimum 
frequency threshold as parameters for first iteration. In each 
subsequent iteration, a frequency dictionary is created and 
substitutions are done. In the first iteration, frequency 
dictionary creation step calculates the frequency of each 
substring of pre-specified length. In the first substitution step, 
the substrings that are repeated most frequently are replaced 
by symbols. The result from first iteration would be a mix of 
nucleotides and symbols used in the substitution. In the 
subsequent iterations, these steps are repeated with frequency 
dictionary generation and substitution. The iterations 
terminate when no further substitution is possible. From the 
final frequency dictionary, all those substitutions with 
frequency of less than a threshold value are eliminated by 
replacing the substitution with the original string in the 
sequence. The frequency dictionary generated and the 
substitution strings are encoded using Huffman coding as a 
final step. The compression cost of the method depends on 
the number of iterations performed. The decompression 
works in the reverse order, the first step being Huffman 
decoding and the second step COMRAD decoding. 
COMRAD permits random access across the sequence that is 
compressed. Though it assures pretty good compression, the 
algorithm is memory intensive. SCALCE (Sequence 
Compression Algorithm using Locally Consistent 
Encoding)[15] is a boosting method that works based on local 
parsing method that rearranges the reads to improve 
compression rate and speed with or without a reference 
sequence. SCALCE is combined with Arithmetic coding for 
compressing quality scores and gzip to achieve considerable 
compression on read names resulting in a good compression 
rate and improved running time.  
Giancarlo, Rombo and Utro[16] have listed various methods 
of compression used widely based on research areas as 
collection of  sequences, collection of HTS (High 
Throughput Sequence) reads and compressive sequence 
analysis. The compression techniques are compared based on 
the type of compression, the method of compression and 
availability of random access. 
 Huffman coding and arithmetic coding are identified as 
statistical methods of compression.  
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 Lempel-Ziv data compression is a dictionary-based one, 
which is used along with Huffman coding by COMRAD. For 
an analysis of relative compression, the authors compare 
GRS, GReEN and many other techniques that use reference 
sequence for accomplishing compression. The growth of raw 
sequence data over the years has been analyzed by 
Deorowicz and Grabowski [17], along with the various 
methods of data compression techniques available for 
genomic data, comparing the existing general purpose 
methods of compression using genomic sequences. 
Reference-based compression using FASTQ files and SAM 
files is performed. As data deluge is becoming a fact in the 
biological scientific community, the authors discuss the need 
for compression techniques. They look into the available 
compression methods and their suitability with respect to 
genomic sequence data. They also discuss different file 
formats for data storage. 
Zhu et al.[18] selected a set of genomes from different 
species with respect to origin, length and repeat content. The 
performance evaluation of various compression techniques, 
both reference-based and reference-free, was performed 
based on compression ratio, memory usage and compression 
and decompression time. The author suggests CRAML, 
which is a lossy compression method to give the best 
compression ratio and the best compression and 
decompression time and memory. The authors also point out 
that high throughput sequencing has made personalized 
genomic sequencing affordable, and that encryption 
techniques must be deployed to protect the privacy of 
personalized data. 
Wandelt et al.[19] discuss the key methods of genomic data 
compression. Naïve bit manipulation replaces every base by a 
two bit code. Dictionary-based method adds the entry of a 
codeword to dictionary when encountered. These 
book-keeping details are further used for the decompressing 
purpose. Since high amounts of repetition of bases are the 
prominent features of genomic data, statistical methods are 
also employed in compressing genomic information. 
Huffman coding or arithmetic encoder works based on the 
principle of statistical algorithms. Referential algorithms are 
used only when there is a standard sequence that can be kept 
as reference for compressing similar genomes. The authors 
discuss the usage of each of these techniques in whole 
genome compression as well as read compression. The lack 
of benchmark datasets as well as metrics for comparing 
performance of different methods has been pointed out. They 
suggest rate of compression, time taken for compression and 
decompression and memory usage while compressing and 
decompressing as metrics of performance analysis. 
Pratas and Pinho[20] propose an asymmetric compressor for 
genomic data sequences which parallelize the tasks using two 
FCMs. The sequences are preprocessed by calculating 
probability estimates using symbol counts. The 
preprocessing helps in identifying low complexity areas in 
the sequence. Two finite context models (FCMs) of high and 
low order are run parallel to compete with each other. The 
outputs from each of the FCMs are stored and processed 
separately. The higher order FCM is used to compress 
regions with low information content. The higher order FCM 
also considers the possible inverted repeats (IRs). The high 
FCM consists of a regular chain and an IR chain. The authors 

point out that preprocessing can substantially improve the 
memory usage, especially while decompressing. 
Parallelization assures faster compression. GeCo (Genomic 
Compression)[21], a statistical method for genomic data 
compression, uses FCM based on Markov models. Patras, 
Pinho and Ferreira extend the FCMs as XFCM, where the 
probability estimate varies as the conditioning context is 
different. They use the most probable symbol as the 
conditioning context. A pseudo-random synthetic sequence is 
generated and used as reference sequence. It is mutated with a 
predefined substitution rate and genomic sequence with 
several degrees of mutation generated. These resulting 
sequences are compressed using the synthetic reference 
sequence generated. A cache-has memory approach, which 
keeps only the last hashed entries in memory, is used so that 
memory usage is further reduced.  
ERGC (Efficient Referential Genome Compression) [22] 
algorithm works by keeping a sequence as referential 
sequence and the sequence to be compressed as target 
sequence. The algorithm works by splitting the reference 
sequence and target sequence into equal-sized strings. A 
greedy algorithm generates k-mers one at a time, and hashes 
it to a hash table. If no match is found, k-mer is extended by 
one, otherwise it aligns the reference sequence and target 
sequence and extends the alignment until there is a mismatch. 
The mutations and insertions in reference and target sequence 
are also taken care of. 
Though general purpose compression techniques like gzip 
can compress and assist in efficient storage and transmission 
of genomic data, they do not take into advantage the general 
features of genome sequence such as tandem repeats, 
microsatellites, etc., whose presence increases the possibility 
of compression even better. Hence, the scientific world is 
interested in identifying special purpose software that are 
tailored for genomic data compression. Mince’s 

algorithm[23] works by grouping similar sequences. The 
compression is carried out in multiple phases. In the local 
bucketing phase, Mince places similar reads into a bucket. 
All k-mers of a read of length r are checked to see if any of 
the k-mer or its reverse complement has a label matching the 
existing ones. If none matches a new bucket is created. If it 
matches, the read of length ‘r’ is assigned to that bucket using 

an encoding transformation. Comparison with the existing 
methods assures a better compression ratio. The k-mer 
redundancy check exploits the possible sequence similarity 
between the reads, and the read order is chosen randomly 
while compressing. The literature review extensively studies 
various methodologies used in compressing genomic 
sequence data. It is evident from a comparative analysis of 
the existing general purpose methods that they do not 
efficiently compress genomic data. Statistical methodologies 
reap the advantages of high degree of repetition of bases in 
the data, but they are mostly memory intensive. 
Reference-based methods claim to produce maximum 
compression, but it is possible only if a valid reference 
sequence is available. Dictionary-based methods are fast and 
prompt in compression as well as decompression, but size 
and maintenance of dictionary are drawbacks.  
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Parallel dictionaries claim to ease the time complexity in 
compression procedure with reduced number of shifts and 
comparisons. Also, the methodologies discussed are 
experimented in different datasets due to lack of benchmark 
dataset. A quantitative comparison of different methods is 
restricted to a few sequences that overlap different 
methodologies.  

III. METHODS AND METHODOLOGY 

An analysis of different compression techniques brings out 
the pros and cons of the various techniques used. Most of the 
methods described for compression are laid down for 
compressing text data. Of the methods discussed for text data 
compression usage of multiple dictionary in compression 
claims to be of less overhead and lossless. Since lossless 
compression is unquestionable LZW is the best option for 
compression. The LZW with single dictionary [24] is laid 
down for compressing text data. Since the character set is 
smaller for genomic data, the basic algorithm is modified to 
suit the character set. Also, for faster search and retrieval of 
data, multiple dictionaries[25] are used in compression and 
decompression, which facilitate faster and efficient storage 
and transmission of genomic data. 
A. Compression 
Each character read from the input file is concatenated with 
the previous char or subsequence; its presence is verified in 
the corresponding dictionary. If the string is present in the 
dictionary DL where L is the length of the previous substring 
and the character read from the input file, the subsequence is 
extended by reading in the next character from the file. 
Otherwise, a new entry corresponding to the subsequence is 
made in the dictionary DL with the index calculated using the 
subsequence. The procedure is laid down in following steps: 
1. Set dictionary D1 with initial character set A, G, C and T 
and assign to them CODE 1, 2, 3 and 4 respectively. 
2. Read first character from input file to STRING 
3. Initialize M:= 2, CODE := 5 
4. Repeat the following steps till end of file 
5. Assign CHAR := Next character from input file 
6. Assign  
L:= Lengthof(STRING+CHAR) 
7. Assign 
INDEX:=CALCULATE_INDEX(STRING+CHAR, M) 
8. Search for INDEX in Lth dictionary 
a. If INDEX found 
AssignFLAG:= Search(STRING+CHAR, L) 
b. OTHERWISE 
i.Create INDEX in Lth dictionary 
9. If FLAG is TRUE  
a. STRING := STRING+CHAR 
10. ELSE 
a. Write CODE to output file 
b. Add CODE. STRING+CHAR to Lth dictionary 
c. CODE:= CODE+1 
d. STRING:=CHAR  
11. Repeat from step 5 
12. STOP 
13. Function CALCULATE_INDEX(X,M) 
Return(∑ (𝐻𝐸𝑋(𝑡𝑜𝑙𝑜𝑤𝑒𝑟(𝑋𝑖)𝑀𝑂𝐷5)) ∗ 4

𝑀−𝑖𝑀
𝑖=1 ) 

The codes are written in the output file as ascii characters 
corresponding to their values. This eliminates the possibility 
of wrongly reading the codes while decompressing. 
B. Decompression 
The decompression starts by reading in codes from the 
compressed file. An initial dictionary D1 is created with 
character set A, G, C, T assigned with codes 1, 2, 3, 4 
respectively. For each code read from the compressed file, if 
it is updated in the dictionary, write the corresponding 
character or subsequence to the output file. Otherwise assign 
the previous subsequence value to the dictionary and update 
the code value.  
1. Set dictionary D1 with initial character set A, G, C and T 
and assign to them CODE 1, 2, 3and 4 respectively. 
2. Initialize M: = 2, CODE:= 4, L: = 1 
3. Assign OCODE:= Character(First character read from 
compressed file) 
4. Write OCODE to output file. 
5. Repeat the steps till end of file 
a. Assign NCODE := Next character from input file 
b. Assign FLAG:= Search Dictionary(L, NCODE) 
i.If FLAG is FALSE 
Assign STRING:= OCODE + CHAR 
ii.ELSE 
1. Assign STRING := NCODE 
2. L=L+1 
3. Write STRING to output file 
c. Assign CHAR=STRING[1] 
d. CODE = CODE+1 
e. Assign L = Lengthof(OCODE+CHAR) 
f. Update Lth dictionary with CODE,  
OCODE+CHAR 
g. OCODE = NCODE 
6. STOP 
14. Function CALCULATE_INDEX(X,M) 
Return (∑ (𝐻𝐸𝑋(𝑡𝑜𝑙𝑜𝑤𝑒𝑟(𝑋𝑖)𝑀𝑂𝐷5)) ∗ 4

𝑀−𝑖𝑀
𝑖=1 ) 

IV. RESULTS AND DISCUSSION 

The proposed algorithm is implemented on Intel® Core™ i7 

(2.40GHz 8GB RAM) running on Windows 10 with Python 
3.6. The experimental analysis was carried out on Nvidia 
GeForce GTX 1060 GPU (Intel Core i7, 32GB RAM). A set 
of standard DNA sequences that were tested with other 
compressing algorithms were compressed and compared with 
available compression ratio of WinZip and CTW, which are 
general purpose compression algorithms, and CTW+LZ, 
BIOCOMPRESS, GENCOMPRESS, DNACOMPRESS, 
XM and DNAEncodeWG which are genomic compression 
algorithms. The test data includes five human gene sequences 
(HUMDYSTROP, HUMGHCSA, HUMHBB, 
HUMHDABCD AND HUMHPRTB) that are commonly 
used in most of DNA compression publications. Along with 
these MOUSE CHROMOSOME2 and BAKER’s YEAST 

CHROMOSOME 2 were also compressed, for which 
comparative values for other algorithms were unavailable. 
The compressions were compared using compression ratio 
calculated as number of bits/base. Table 1 gives the 
comparison of sequence size before and after compression, 
and the time taken for 
compression. 
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Table 1: Comparing sequence size before and after compression using multiple dictionaries based on LZW 

Name of Sequence 
Uncompressed size (in 

KB) 
Compressed Size(in 

KB) Compression Ratio Exec time (in sec) 

MOUSECHR2 218.1 86 0.394314535 6.342 

BAKERSYEASTCHR1 231 94 0.406926407 6.898 

HUMDYSTROP 38.77 16 0.412690224 6.283 

HUMGHCSA 64.495 24 0.37212187 6.139 

HUMHBB 73.323 31 0.422786847 6.408 

HUMHDABCD 58.864 25 0.424707801 7.15 

HUMHRPTB 56.737 24 0.423004389 5.917 

Average 105.9 42.86 0.41 6.45 

The compression time (in secs) for seven sequences are presented graphically as follows: 

Figure 1: Graph presenting compression time (in secs) for the seven sequences compressed 

A. Comparing the proposed implementation (MDLZW) with the existing algorithms: 

Table 2: Compression ratios given by different general purpose and genomic compression algorithms for compressing 
five human genes. 

DNA 
SEQUENCE 

Win
Zip 

BIO 
COMPRESS 

GEN 
COMPRESS 

Normal 
CTW 

CTW
+ 

LZ 

DNA 
COMPRESS 

XM 
DNA  

Encode  
WG 

MDLZW 

HUMDYSTROP 2.38 1.9262 1.9231 1.92 1.9175 1.9116 1.9031 0.1729 0.4069 
HUMGHCSA 2.34 1.3074 1.0969 1.3638 1.0972 1.0272 0.9828 0.2732 0.4127 

HUMHBB 2.33 1.88 1.8204 1.8928 1.8082 1.7897 1.7513 0.2744 0.3721 
HUMHDABCD 2.29 1.877 1.8192 1.8973 1.8218 1.7951 1.6671 0.1422 0.4247 

HUMHRPTB 2.32 1.9066 1.8466 1.9132 1.8433 1.8165 1.7361 0.1111 0.423 

 

 
Figure 22: Comparing compression ratio (bits per base) obtained by different algorithms on five human genes 
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The comparative analysis of compression ratio by different 
algorithms is presented in the Figure 2. The compression 
rates in Figure 2 are obtained from existing literature[8] 
except the last column, which gives the experimental results 
in the proposed method. The general purpose compression 
algorithms give the highest compression ratio. The best 
compression among the compared algorithms is given by 
DNAEncodeWG with an average compression ratio of 
0.1948 bits per base, which is a reference-based algorithm. A 
reference-based algorithm works well only if a valid 
reference is available. Hence, it cannot be considered as a 
convincing method for compressing sequences resulting from 
experiments. Hence, the proposed algorithm gives a better 
compression ratio than other compression algorithms 
discussed and compared. Also, it is evident that general 
purpose algorithms are not suitable for compressing the 
genomic sequences as they do not take in to account the high 
amount of repetitiveness in the sequence data. 

V. CONCLUSION 

The paper presents an efficient compression algorithm based 
on LZW with the modification of using multiple dictionaries. 
LZW has been proven as the best among the compression 
algorithms for lossless compression. For compressing DNA 
sequence data, lossless compression is mandatory and hence 
LZW is the basic methodology chosen. The main drawback 
of LZW is the dictionary size as well as time consumption in 
searching the dictionary. This is overcome by using multiple 
dictionaries that are indexed. Also, the dictionaries are 
created dynamically during compression as well as 
decompression, and the dictionary is not stored for later use. 
Hence, memory overhead of dictionary storage is overcome. 
Only the compressed file is stored and transmitted. The 
proposed method MDLZW for Genomic Sequence data has 
an average compression rate of 0.41bits per base, which is the 
best among the compression rates compared. The 
decompression algorithm performs a lossless decompression 
in comparable time.  
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