
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2827

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3316129219/2019©BEIESP
DOI: 10.35940/ijeat.B3316.129219
Journal Website: www.ijeat.org

Abstract: The SQL injection attack (SQLIA) occurred when

the attacker integrating a code of a malicious SQL query into a
valid query statement via a non-valid input. As a result the
relational database management system will trigger these
malicious query that cause to SQL injection attack. After
successful execution, it may interrupts the CIA (confidentiality,
integrity and availability) of web API. The vulnerability of Web
Application Programming Interface (API) is the prior concern for
any programming. The Web API is mainly based of Simple Object
Access Protocol (SOAP) protocol which provide its own security
and Representational State Transfer (REST) is provide the
architectural style to security measures form transport layer. Most
of the time developers or newly programmers does not follow the
standards of safe programming and forget to validate their input
fields in the form. This vulnerability in the web API opens the door
for the threats and it’s become a cake walk for the attacker to

exploit the database associated with the web API. The objective of
paper is to automate the detection of SQL injection attack and
secure the poorly coded web API access through large network
traffic. The Snort and Moloch approaches are used to develop the
hybrid model for auto detection as well as analyze the SQL
injection attack for the prototype system.

Keywords: Moloch, Snort, Sqlmap, SQLIA, Threats, Web API
vulnerability

I. INTRODUCTION

SQLIA is a query based attack in which attacker infuse the
malicious program to attack database of web applications.
During this process, the attacker integrate the part of
malicious statement in the actual SQL parameter and post the
malicious request to targeted database server. The SQL
injection on web API [15] is the common attack which is
executed by the attacker. SQL injection will not need any
permission to the authentic user, instead of that it will redirect
the information of the database to the attacker. In year I988,
Computer Emergency Response Team (CERT) [14] is
developed by CERT Coordination Center at Carnegie Mellon
University (CMU) which handles the security against
network attacks like a worm, virus, malware, etc. The work
on this paper is to study the SQL injection attack patterns and

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Sandeep Choudhary*, Department of CSE , Ambedkar Institute of

Advanced Communication Technologies & Research, Delhi (India) , Email :
er.sandeepchoudhary@yandex.com

Prof. (Dr) Nanhay Singh, Department of CSE, Ambedkar Institute of
Advanced Communication Technologies & Research, Delhi (India) , Email
: nsingh1973@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

auto detect these pattern using snort method through
signature mapping. All SQL injection possible patterns
stored in snort rules and used to compare with all passing
PCAP packet through snort. There several network attack
data’s are present which is compared with the free available
systems. The goal is an analysis of data at runtime
environment for a large task.

A. SQL Injection Overview

Mainly the SQL injection attacks are executed on
client-server architecture. The web API acts as a thin-client,
where the usersends the query to extract the data from the
database server. The basic architecture for web API and the
database server is illustrated in fig. 1.

Fig. 1. Web Application Architecture

SQLIA attack rankings on the best ten listing of web API
vulnerabilities as indicated by the study of OWASP (open
web application security project) [22]. Although the goals of
SQL injection attacks aren't just for web API but they are also
able to hit on programs, which can be driven by their own
database used SQL. The amount of financial loss resulting
from SQL injection was very high, so it is necessary to find a
scheme to prevent from these type of attack i.e. SQLIA.
Attackers may inject vulnerable code through input fields of
web application forms or by adding directly malicious
queries in the URL of web API. SQL injection provides free
cyber space to hackers, where it develops and execute the
script on the network. The hacker’s developed bots to check
and identify the vulnerability in the websites. The bots
(bots.txt) are run on the network and compromised the server
machine. In most common these type of botnets are created
and used by the attacker while executing the distributed
denial of service attack. DDoS is the most common attack on
the server machine.

B. How SQL Injection Work?

It is a query based attack was user inject the piece of code to
web API. The malicious query will provide the database table
information in the URL parameter. Fig. 2, represents the SQL
injection on a simple website to find the records. The
statement consist of SQL query associated with the code of
data to be injected for
information retrieval.

Safety Measures and Auto Detection against
SQL Injection Attacks

Sandeep Choudhary, Nanhay Singh

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3316.129219&domain=www.ijeat.org

Safety Measures and Auto Detection against SQL Injection Attacks

2828

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3316129219/2019©BEIESP
DOI: 10.35940/ijeat.B3316.129219
Journal Website: www.ijeat.org

Fig. 2. SQL injection in web API to the find the records

II. CLASSIFICATION OF SQLIA

Different ways are available to execute the SQLIA Attack
[16] such as:

A. Boolean-Based Blind Injection (BBBI)

In this, the logical query is attached with the parameter and
the attacker waits for some meaningful search. The malicious
query will redirect some result which is related to Boolean
operation (True or False). The “WHERE” operator is used to

evaluate the tautology of the parameter. Let us consider a
Boolean based malicious string.
http://www.sybertechnologies.com/dvwa/vulnerabilities/sqli
?id=3 AND substring (@@version, 1,2) = 5

B. Time-Based Blind Injection (TBBI)

It uses the time of the server to access the information of the
database. The format for TBBI is applied on any website
URL.http://www.sybertechnologies.com/dvwa/vulnerabilitie
s/sqli/?id=1 AND User=‘admin’ WAIT FOR DELAY

‘00:00:15’

C. UNION Based Injection (UBI)

It uses for merging the two different table row. The only
disadvantage of UBI are (i) Tables structure are same, (ii) the
Same number of row and column is present. UBI used the
“ORDER BY” operator for finding the column.
http://sybertechnologies.com/index.php?id=10 ORDER BY
1 -> OK
http://sybertechnologies.com/index.php?id=10 ORDER BY
2 -> Error

III. LITERATURE REVIEW

There are various studies has been done by different
researchers in the field of SQL injection and database
exploitation. The attackers violate all type of security layers
and protocol’s to access that information. N. Singh et al. [1],
discussed attacks and prevention against SQL injection. They
proposed the firewall technique for the SQL server which
will restrict the privilege of the unregistered users. But for
using this service it needed to be the node to node signature
authentication.V. K. Gudipati et al. [2], uses the
Sp_executesql to execute the syntax in a specific order which
replaces the QUOTENAME. It also manages the permission
at the time of attacks. Kamtuo and Soomlek [3], uses the
machine learning technique for analysis of attacks. It also
extractsinformation for training and testing. R. Karuparthi
and Zhou [4], introduced a User Defined Approach (UDA)
for mapping the attribute to a specific requirement. It also
checks the threshold value for any attacks. R. Dubey and H.
Gupta [5], is uses introduced the filtering mechanism for
sending and receiving the request. N.A. Al Sayid and D.

Aldlaeen [6], introduced a firewall technique to obstruct the
SQL injection attack. A.Shastri and P.N. Chatur [7], uses a
security-based model for checking the signature of the
authentic users. N.A. Al Sayid and D. Aldlaeen [8], proposed
access control policy for user authentication and
identification.P. Ghorbanzadeh et al. [9], introduced firewall
and virtual private for the prevention of unwanted intrusion
on mobile database. Sallam et al. [10],introduced a
Role-based anomaly detection approach for an insider attack.
S. Fatih [11] and F. Mouton et al. [12], introduced a
web-based security approach to protect against the SQL
injection. Orman [13], proposed a Blockchain concept to
verify the genuine nodes of the web server.

IV. RESEARCH METHODOLOGY

After exhaustive study of several research paper, we
proposed a framework for automated detection of SQL attack
using Snort [18] and Moloch [17]. Fig. 3, represents the
outline for the detection system.

Fig. 3. Framework for Auto Detection against SQLIA

It uses the Snort technique for detection of SQL injection. It
also analyzes the huge HTTP network traffic. Snort was first
created by Martin Roesch in the year of 1988 [19] for
network intrusion detection. Traffic acquisition system uses
the Moloch as a default system to gain the visibility of SQL
injection. During the attack, the several packets are not
logged due to the performance reason. It uses the IPv4
packets for detection of the intrusion. The framework is
divided into several components. And each component has
specific work such as:

A. Detection system

It uses the Snort technique for detection of SQL injection. It
also analyzes the huge HTTP network traffic. Snort was first
created by Martin Roesch in the year of 1988 [19] for
network intrusion detection. Fig. 4, represents the basic
framework for Snort. Basically, Snort is a rule based system
which used to match with the each captured packet for
detection of suspicious activity pass through the system.

http://www.ijeat.org/
http://www.sybertechnologies.com/dvwa/vulnerabilities/sqli/?id=1%20AND%20User
http://www.sybertechnologies.com/dvwa/vulnerabilities/sqli/?id=1%20AND%20User

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2829

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3316129219/2019©BEIESP
DOI: 10.35940/ijeat.B3316.129219
Journal Website: www.ijeat.org

Fig. 4. Snort Framework

In packet capture is used to collect the request and response
of the system. The pseudo code for packet capturing is given
as follows:
Class Public login(req, resp)
(
String login = req;
Get.parameter(“login”);
String pattern = req; get.parameter(“pattern”);
String qry1 = “SELECT info FROM userTable WHERE”;
if ((!signin. equals(“”)) && (!p_word.equals(“”))) query +=

signin = “‘+ signin+’” AND pass= “‘+p_word +’”

elsequery+ = “‘signin= ‘Guest’’”;
ResultSet result1 = stmt. executeQuery(qry1) ;
if (result1 != null)
showAccount(result1) ;
else
sendAuthentacationFailed();
}
The genuine user is only pass through the authentication
process. If there is a SQL attack then it uses the specific
keywords to identify the attacks. Here is an example to detect
the ICMP packet in ECHO REQUEST.
alert icmp $External_NET
PAC=$_HOME PSC(MSG : "PING"; i_code:00; i_type:08;
class_type: m_activity; s_id:348; rev:8;)
The package of snort is divided in two parts Header and
Body.
The Header is divided into seven different fragments:
(i) Actions
(ii) Protocol
(iii) SourceIP
(iv) SourcePort
(v) Direction
(vi) Dst IP
(vii) Dst Port
These fields are consist of variables or string to match with
the database. The body uses the payload or HTTP headers
of message. The alert is generated by using the fast_output
modules. Example is given as:
[**] [1:374:5] ICMP PING [**]
[Classification: Misc activity] [Priority: 4]
03/12-02:11:09.359780 10.1.1.10 -> 10.0.1.253
ICMP TTL: 30 TOS: 0x0 ID: 38175 IpLen: 15 DgmLen: 92
Type: 7 Code: 1 ID: 32353 Seq: 5 ECHO
Starting statement is used for packet matching. The [**]
symbol is used for starting and ending of the sequence. There
are three values are present in the brackets which is colon
separated.
Generator_ ID (GID) is used in alert module.
Snort_ ID (SID) is used to identify the unique alert.
Revision_ No (REV) is used to trigger the alert.

B. Traffic Acquisition System

It uses the Moloch as a default system to gain the visibility of
SQL injection. During the attack, the several packets are not
logged due to the performance reason. It uses the IPv4
packets for detection of the intrusion. Moloch session uses
the seven tuples:
Moloch_Session = St_Time , Sp_time , Source_IP ,
Dstination_IP , Source_Port , Dstination_Port , Protocol
Moloch is consists of three main parts:

• Elastic Search database: It is used in indexing of
stored sessions. It also managed the captured
sessions. In real-time, the large volume data is
managed by using the network traffic analysis.

• Capture: It separates the network between captured
and network traffic.

• Viewer: It is used for filtering the stored session and it
also exports the stored session.

Moloch is used for HTTP session for filtering. The Moloch
filtering expression is given as:
ip.src == 10.0.0.41 && start_time >= "2019/03/05 22:11:23"
&& port.dst == 8080

C. HTTP Tag Filtering

This is the procedure for Moloch for packet filtering. The
next step is the Analysis Engine. The work of analysis engine
is to analyze the malicious packets. The PCAP analysis is
done by modules. Whereas each module will perform certain
amount of actions on PCAP to return the output from engine.
The database is used to store the information (such as attack
investigation) for analysis.
Protocol = = http && method = = GET && status = = 200
&& stop_tm <= "2019/02/05 12:21:03"

D. Attacker IP Details

The attacker IP is very trivial to find by any IDS. Attackers
often hide their IPs and location server o secure their personal
information. According to CloudFlare, there are 90% of the
request is came from Tor browser which is very
unpredictable to find the genuine request. The IP address is is
consist of:

(i) (i) The owner IP address,
(ii) (ii) Origin of Internet Service Provider (ISP),

(iii) CIDR notation,
(iv) E-mail contact,
(v) Tor node check
All the information are retrieved from Regional Internet
Registries (RIRs). All Tor node is present publically and it
uses as encrypted traffic to access the HTTPs.

http://www.ijeat.org/

Safety Measures and Auto Detection against SQL Injection Attacks

2830

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3316129219/2019©BEIESP
DOI: 10.35940/ijeat.B3316.129219

E. Web Server Detail

It uses to find out the details of the target server. The analysis
engine doesn’t have access to analyze the web server, so it

uses the pattern matching technique for finding the details.
Wappalzer is an open source tool to detect the web server,
content management system (CMS), and JavaScript libraries.

F. Statistical analysis

If there is a crime there also evidence, the attacker leaves the
fingerprint in the form of the entry point. In statistical
analysis, the PCAP pattern is observed to find the evidence of
the SQL injection. The analysis engine is used to identify the
outline in traffic, network endpoints.

G. Database Canary

The attacker will usually try to retrieve the information such
as table name and columns. The work of Canary is to add an
appropriately long string which replaces the information of
the database. It also sends the SQL injection successful
message to the server, but instead of the actual table, it sends
the empty table to the attacker. Canary is generated by 256
bits string which is placed in the database. This will not
provide the security against time-based blind injection.

H. Connections

 It captures the network subnet and provides the list of the
host. Using Moloch will provide this information in the API
panel.

I. Analysis engine

It is used for task scheduling. There are several steps are
present in the analysis engine:
(i) Status : It monitors the task status such as “PENDING” or
“PROGRESS”.
(ii) PCAP from Moloch: It analyze the HTTP traffic
between source and destination. The alert is generated by
using (/sessions.pcap endpoint). Moloch traffic filter is done
by following: port.dest == { dest_port} & protocols ==

http & ip_src == { src_ip} & ip_dest == { dest_ip}

the Moloch has observed the initial alert such as

Start_Time, Stop_Time, and expression.
(iii) Database entry update: It changes the entry to success

or
error for task analysis engine.
(iv) Modules : It uses the command for analysis of module .
module_ results = module(opt, pcap_ path , config) . boot
strap() opt = source IP, destination IP alert.
(v) Pcap path: It retrieves the PCAP stored file.
(vi) Config : it manages the RethinkDB host and port,
Celery broker. bootstrap() return the stored from the
database.

J. Storage and Web Interface

It uses the Rethink DB document based NoSQL database and
API for real-time application. Traditional database will not
provide the analysis functionality. Rethink DB will execute
on separate machine using remote server or ReQL wire.
The command for NoSQL database is given as:

cursor = r.table(‘analyses’).filter(r.row[‘dst_ip’] ==

‘10.0.0.1’).run() for document in cursor: print(document)

The analysis is done by the web interface to analyze the
source IP, destination IP. PCAP retrieve the Moloch
information. The Snort and Moloch are both monitor host
information. It supervised the running task by using the
uWSGI, Celery, and Alert forwarder. The visualization of
analysis is shown in the web API and it is also used to analyze
the results. The individual results are offered in the form of
table and map.

V. SYSTEM EVALUATION

The prerequisites for deployments are Snort 2.9.15 ,
winPcap4.1.3 , Proofpoint, PulledPork instances to generate
the signature map. The working of Snort is to generate the
intrusion logs in a binary form called unified2.
The log is consist of several alerts such as
(i) Alert-syslog
(ii) Alert-fast
(iii) Alert-full
(iv) Alert-unixsock
(v) Log-tcpdump

There are few things needed to setup the Snort log session in
Moloch. The Moloch needs the subnet address as a
development point, the timestamp in the UTC standard,
REST API with self-signed SSL certificate, and PCAP
(Packet Capture) which deletes the old unwanted session.

A. Alert forwarding

Snort is used the analysis engine to send the alert to the log
processing system. The log system is constantly examined
the new records. The manual implementation uses the
“idstools” package in python to monitor the log record.
Pseudo Code: from ids_ tools import unified2;
reader1 = unified2(.)Spool_ Event_ Reader[dir,
follow,pre-fix=1(true)];
for reader event;
 # event of process;
 # ...

B. Signature Mapping

It is a process of setting a numeric signature ID to the textual
representation. The pseudo code for the signature mapping id
done by using “idstools” package.
import maps from ids tools
sigmap1 = maps1.signature_map()
sigmap1.ldr_sig_map(open(‘sid_msg.map’))
sigmap1.ldr_gentr_map(open(‘gid_msg.map’))
sigmap. get(g_id, s_id)
Additional task of Snort alert forwarding is (i) Signature
filtering and (ii) Bookmarking.
In signature, filtering is used to provide the alert of SQL
injection Id only. Bookmarking will help in to keep track of
all the event of the analysis engine.

C. Creating Analysis

IDS will generate multiple alerts at the time of SQLIA attack.
The analysis engine is used to retrieve load traffic using the
API. The alerts are generated in the form of time frame and it
is a cluster in one analysis. The similar alert are checked with
the prescribed cluster.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-9, Issue-2, December 2019

2831

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3316129219/2019©BEIESP
DOI: 10.35940/ijeat.B3316.129219

There are three tuples are present in the alert. alert = (
source_IP , destination_IP , source_port)

D. Task Queue

It uses the task in the distributed form means each task is
executed in different processors. The Celery is an open
source Python software for parallel processing. Celery is
work on master and slave model, where master distributes the
task for different processor and slave will run those task in
parallel. The API will handle the entry of the database. The
entry is consist of timestamp and task status of pending data.

VI. IMPLEMENTATION

For implementation , the experiment is conducted on linux
platform using Ubuntu 18.1, MySQL database, Damn
Vulnerable Web App (DVWA) and snort 2.9.15 package
with winPcap 4.1.3 for capturing the packets. The Sqlmap
[20] is a penetration tool used to inject the malicious query
code in DVWA and Snort used for detection of these
malicious code by matching with the designed rules. The
workflow of experiment is divided into six steps:
Step 1: Setup: Sqlmap (version-1.3.12.1#dev) use as a
independent penetration tool for injecting malicious SQL
query and try to exploit the database of target system
(DVWA). It needed some basic configuration such as:
Specify the entry pointy of Target URL, HTTP header,
Proxy, Tamper Scripts. It also detects the Web Application
Firewall (WAF) and Protected Web Server (IWS) to access
the information of operating system.
Step 2: Enumeration: Sqlmap also retrieves the tables and
columns of the database using brute-force attack. It uses the
dictionary attack for hash protected data.
Step 3 : Signature mapping : It uses the fingerprints and rule
based expressions of the Snort before passing to web server
for crucial data .
Step 4: Snort Detection: it checks the entry point of the links
and signature of captured packets (PCAP) by winPcap.
Step 5 : Moloch session storage: it used in large network
traffic to gain the visibility of SQLIA and stored session of
seven tuples as discussed in part B of section IV.
 Step 6: Alert : Snort detect the malicious expressions based
on the setup rules and gives an alert to log file .

VII. RESULT AND DISCUSSION

For testing, we execute the 10 sqlmap (version 1.0.5.27)
attacks by injecting malicious query on DVWA and using the
Snort 2.9.15 package we able to detect the SQL injection
based on 3 adhoc rules designed by us. The alerts are
analyzed by proper PCAP (packet capture) using winPcap
4.1.3 package. Sqlmap also identifies the canary string at the
response. Snort will generate the 20 different alerts for every
sqlmap attack.
In the process of designing the rule expression for snort, we
used some special strings, characters or combination of both
used in SQL query, these are (HAVING), (JOIN), ((LIMIT),
(DEFAULT), (DATABASE), (UID) and (UNION)), (AND),
(OR), (%00 to %FF) including their hexadecimal values.
Rule 1: This rule is specially designed for the detection of
Boolean Based Blind Injection (BBBI) Attack.
alert tcp code = $localhost code (message:" Alert : Boolean
Based Blind Injection Attack "; pcre: " /(@\%0c)||(#&/?‘’)
AND*/ =x"; class_type:BBBI; uid:100; res:01;)

Injection of Malicious code to target website using Sqlmap :
python sqlmap.py –r
“http://www.sybertechnologies.com/dvwa/vulnerabilities/sql
i_blind/?id=1&Submit=Submit# ‘--cookies’ " —dbs
Action: Snort will now start capturing the packet (PCAP)
using winPcap and signature matching of packets with the
designed rules.

Table- I: Experimental Result Based on Rule 1

SQLIA
True False

(C)

Success Rate of
Detection

(A/A+B+C) Positive (A)
Negative

(B)

BBBI 09 01 00 0.90

TBBI 05 03 02 0.50

UBI 00 02 08 00

After detection of malicious packets with high rate of
success belongs to BBBI and it will throw an exception of
alert to log file.

Rule 2: This rule is specially designed for the detection of
Timer Based Blind Injection (TBBI) Attack.
alert tcp code = $localhost code (message:" Alert : Timer
Based Blind Injection Attack ";
pcre:":/(@\%0123456789)||(&/? ‘:’)AND+/=/x@%4f@";
classtype:TBBI; sid:200; res:01;)
Malicious code injection to target website using Sqlmap :
python sqlmap.py –r
“http://www.sybertechnologies.com/dvwa/vulnerabilities/sql
i_blind/?id=1 AND user= ‘anonymous’ WAIT FOR DELAY
‘00:00:30’ ‘--cookies’ " —dbs

Action: Snort react slowly in detection of TBBI because it
force the database associated with the target website to wait
for certain amount of time (in seconds).

Table- II: Experimental Result Based on Rule 2

SQLIA
True False

(C)

Success Rate of
Detection

(A/A+B+C) Positive (A)
Negative

(B)

BBBI 06 02 02 0.60

TBBI 08 01 01 0.80

UBI 00 03 07 00

After detection of malicious packets with high rate of success
belongs to TBBI and it will throw an exception of alert to log
file.
Rule 3: This rule is specially designed for the detection of
Union Based Injection (UBI) Attack.
The third SNORT rule is designed for UNION rule based
signature and with all of its possible hexadecimal values. We
try to execute this rule on relational tables having same
structure in a database. We used code signature (%u%)* for
UNION in our rules, which mean any characters or string
between UNION of two relational table.
alert tcp code = $localhost code (message:" Alert : Union
Based Injection Attack ";
pcre:"/((((\%10)|(p)|(\%25))((\%0c)|(q)|(\%1f))((\%39)|(r)|(\
%65))((\%2a)|(s)|(\%3d))((\%6b)|(t)|(\%2a)))[%u%]*(((\%
20)|(p)|(\%50))((\%0d)|(q)|(\%5f))((\%65)|(r)|(\%5))((\%2e)|
(s)|(\%3a))((\%8b)|(t)|(\%2c))))/n"; classtype: UBI; uid:312;
rev:23;)

http://www.sybertechnologies.com/dvwa/vulnerabilities/sqli_blind/?id=1&Submit=Submit
http://www.sybertechnologies.com/dvwa/vulnerabilities/sqli_blind/?id=1&Submit=Submit

Safety Measures and Auto Detection against SQL Injection Attacks

2832

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3316129219/2019©BEIESP
DOI: 10.35940/ijeat.B3316.129219

Malicious code injection to target website using Sqlmap :
Before injecting malicious code to target using sql map it is
required to retrieve the following information from the
vulnerable website:
• Find the no. of columns using order by clause in relational

tables .
• Find out and check the union function exist in database.
• Retrieve name of table & columns names.
• Fire the malicious query to exploit the database of target

website using sqlmap :
python sqlmap.py –r
“http://www.sybertechnologies.com/dvwa/vulnerabilities/
sqli/?id=4%20union%20all%20select%201,2,3,4/‘--
cookies’ " —dbs
python sqlmap.py –r
“http://www.sybertechnologies.com/dvwa/vulnerabilities/
sqli/?id=4 AND 1=1 ‘--cookies’ " —dbs

 Action: Union based injection is not easier to target as it
required the no. of malicious query execution to retrieve the
information related to relational tables in database .
Malicious query used in initial stage for UBI to retrieve
information is also detected by our set rule 1 & 2. When we
try to inject malicious code containing the UNION clause,
our designed rule 3 start to work and snort detect the UBI
attack by matching the signature with captured packets.

Table- III: Experimental Result Based on Rule 3

SQLIA
True False

(C)

Success Rate of
Detection

(A/A+B+C) Positive (A)
Negative

(B)

BBBI 06 02 02 0.60

TBBI 05 01 04 0.50

UBI 07 02 01 0.70

After detection of malicious packets with high rate of success
belongs to UBI and it will throw an exception of alert to log
file.
we have observed different results on various SQLIA attack
based on design three adhoc rules by snort. All rules executed
on basis of tautology and signature matching of malicious
code with the rules. we tries to customize rules to reach
malicious packet detection up to the possible maximum
success rate but snort is not deal efficiently on temper scripts
like base64 conversion. Boolean based blind SQLIA
achieved maximum detection up to 90 % by snort using rule
1, Timer based blind SQLIA achieved maximum detection up
to 80% by snort using rule 2 and UBI achieved 70 % by snort
using rule 3.All rules have executed concurrently on each
malicious query passing through snort to target website i.e
DVWA and output of these query detection belong to
different category true positive (TP), true negative (TN) and
failed to detect under false category . We consider only the
true positive (TP) to evaluate the success rate of detection of
malicious captured packets passing through the Snort.

VIII. CONCLUSION

SQLIA attack is the most hazardous threat for poorly coded
web API and till now there are number of techniques have
been purposed for detection and prevention from SQLIA
attacks. Most often, attackers found the vulnerability in web
API to bypass these techniques and solutions. The temper

scripts like base64 conversion is not be detected by using
Snort. In this paper, author presents a novel automated
detection system using Snort and Moloch and system can be
implemented in the large network traffic against SQLIA
where thousands of system is communicated rapidly to web
application based architecture. Sqlmap is used for the code
injecting process and our methodology is to find out the
successful SQL injection against these malicious code. This
system use the combination of existing technology for
analysis and collects the information automatically in real
time. It is signature-based system which has some limitations
at the time of detection. Further we are going to enhance the
proposed methodology to make a hybrid model for auto
detection of cross site scripting (XSS) attack for poorly coded
web applications in real time.

ACKNOWLEDGMENTS

I heartiest thanks to my mentor Prof. Nanhay Singh for
guiding me towards the right path. I also thanks to faculty
members from department of computer science &
engineering, AIACT&R for their valuable support and
inputs.

REFERENCES

1. N. Singh, M. Dayal, R. S. Raw,and S. Kumar, "SQL injection:
Types, methodology, attack queries and prevention," 2016 3rd
International Conference on Computing for Sustainable Global
Development (INDIACom), New Delhi, 2016, pp. 2872-2876.

2. V. K. Gudipati, T. Venna, S. Subburaj, and O. Abuzaghleh, “Advanced

automated SQL injection attacks and defensive mechanisms,” 2016
Annual Connecticut Conference on Industrial Electronics, Technology
& Automation (CT-IETA), Oct. 2016.

3. K. Kamtuo and C. Soomlek, “Machine Learning for SQL injection
prevention on server-side scripting,” 2016 International Computer

Science and Engineering Conference (ICSEC), Dec. 2016.
4. R. P. Karuparthi and B. Zhou, “Enhanced Approach to Detection of

SQL Injection Attack,” 2016 15th IEEE International Conference on
Machine Learning and Applications (ICMLA), Dec. 2016.

5. R. Dubey and H. Gupta, “SQL filtering: An effective technique to
prevent SQL injection attack,” 2016 5th International Conference on
Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), Sep. 2016.

6. N. A. Al-Sayid and D. Aldlaeen, “Database security threats: A survey
study,” 2013 5th International Conference on Computer Science and

Information Technology, Mar. 2013.
7. A. A. Shastri and P. N. Chatur, “Efficient and effective security model

for database specially designed to avoid internal threats,” 2015

International Conference on Smart Technologies and Management for
Computing, Communication, Controls, Energy,and Materials (ICSTM),
May 2015.

8. N. A. Al-Sayid and D. Aldlaeen, "Database security threats: A survey
study," 2013 5th International Conference on Computer Science and
Information Technology, Amman, 2013, pp. 60-64.
doi: 10.1109/CSIT.2013.6588759.

9. P. Ghorbanzadeh, A. Shaddeli, R. Malekzadeh, and Z. Jahanbakhsh,
“A survey of mobile database security threats and solutions for it,” The

3rd International Conference on Information Sciences and Interaction
Sciences, Jun. 2010.

10. A. Sallam, Q. Xiao, E. Bertino, and D. Fadolalkarim, “Anomaly

Detection Techniques for Database Protection Against Insider Threats
(Invited Paper),” 2016 IEEE 17th International Conference on

Information Reuse and Integration (IRI), Jul. 2016.
11. S. Fatih; KOÇAK, “A second pre-image attack and a collision attack to

cryptographic hash function lux,” Communications Faculty Of Science

University of Ankara Series A1Mathematics and Statistics, vol. 66, no.
1, pp. 254–266, 2017.

12. F. Mouton, M. M. Malan, L. Leenen, and H. S. Venter, “Social

engineering attack framework,” 2014 Information Security for South
Africa, Aug. 2014.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-9, Issue-2, December 2019

2833

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3316129219/2019©BEIESP
DOI: 10.35940/ijeat.B3316.129219

13. H. Orman, “Blockchain: the Emperors New PKI?” IEEE Internet
Computing, vol. 22, no. 2, pp. 23–28, Mar. 2018.

14. H. Meyer, “A computer emergency response team policy,” Computers

& Security, vol. 15, no. 4, p. 320, Jan. 1996.
15. J. Clarke, “Exploiting SQL Injection,” SQL Injection Attacks and

Defense, pp. 137–218, 2009.
16. E. Pollack, “Protecting Against SQL Injection,” Dynamic SQL, pp.

31–60, Dec. 2018.
17. J. Uramova, P. Segec, M. Moravcik, J. Papan, T. Mokos, and M. Brodec,

“Packet capture infrastructure based on Moloch,” 2017 15th

International Conference on Emerging eLearning Technologies and
Applications (ICETA), Oct. 2017.

18. Z. Zhou, Chen Zhongwen, Zhou Tiecheng, and Guan Xiaohui, “The

study on network intrusion detection system of Snort,” 2010

International Conference on Networking and Digital Society, May 2010.
19. Martin Roesch, “Snort - Lightweight Intrusion Detection for Networks,”

In Proceedings of the 13th USENIX conference on System
administration (LISA '99). USENIX Association, Berkeley, CA, USA,
229-238, 1999.

20. S.-D. AXINTE, “SQL Injection Testing in Web Applications Using

SQLmap,” International Journal of Information Security and
Cybercrime, vol. 3, no. 2, pp. 61–68, Dec. 2014.

21. Antunes, N. and M. Vieira, “Defending against Web Application

Vulnerabilities.” Computer, 2012. 45(2): p. 66-72.
22. (OWASP), “O.W.A.S.P. Top 10 Vulnerabilities.”; Available from :

https://www.owasp.org/index.php /Top_10 2013.

AUTHORS PROFILE

Sandeep Choudhary, received his B.Tech. degree in
computer science and engineering from G.G.S.I.P.U,
New Delhi and M.Tech. (P) degree in information
security from AIACT&R , Delhi (India). He is having
more than 06 yrs. of experience in web API development,
cloud solutions and IT security administration. His area of

interest includes cyber security, cryptography, cloud computing, IOT and
advanced web technologies.

Dr. Nanhay Singh, working as professor and HOD in
department of computer science & engineering,
AIACT&R, Delhi (India). He received his Ph.D degree in
computer science and technology and M.Tech. degree in
computer science and engineering from Kurukshetra
University, Haryana . He is having more than 20 yrs, of

rich experience in teaching and research. His area of research includes data
mining, web engineering, and distributed computing, cloud computing, IoT
and mobile ad-hoc network.

https://www.owasp.org/index.php%20/Top_10%202013

