
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2840

Retrieval Number: B3364129219/2019©BEIESP
DOI: 10.35940/ijeat.B3364.129219
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Performance Testing in A Multi Tenant Cloud
Architecture using Genetic Algorithm

Vishnu Shankar.S, Sajidha.S.A, Nisha.V.M, Sathis kumar.B

Abstract:Recent researches in cloud discusses about the
application response testing, performance testing, security testing
and many more, but still there is a lack of researches addressing
issues like resource utilization and user interactions in cloud
SaaS testing. The load on the cloud, SaaS instance keeps varying
dynamically with respect to time, it is difficult to find the exact
load at a particular interval of time. One does not know where to
look for the solution and where to start, this made SaaS instances
non deterministic in nature. In order to find a solution for such
non deterministic problems, we make use of Genetic Algorithm
which is considered as a good solution for non-deterministic
problems.We determine the optimized resources that a cloud
instance, would need to manage the dynamic load at all times.
Toaddress the resource utilization of a group of users in Multi-
Tenant Architecture (MTA), we adopt Genetic Algorithm which
uses a popular technique, called neighborhood search and
instance ranking policy. The basic concept of this paper is to
explore the neighbors of an existing solution, that is considered
as the solutions which can be obtained with a specific operation
on the base population. In addition to that,this paper discusses
about the ranking of all the available population and select the
most highly ranked one. Instance ranking policies are aimed at
minimizing the number of nodes in use or maximize the
resources available to each node in an instance.

Keywords: Software-as-a-Service (SaaS), Virtual Machines,
Cloud Multi Tenant Architecture (MTA), Genetic Algorithm
(GA), Non-determinism.

I. INTRODUCTION

Fast advances in cloud computing have brought many new
business opportunities globally. As a result, cloud resource
allocation and their effective utilization have become a
challenge. Although there are a number of recent researches
addressing cloud testing issues, like application performance
testing, response testing and security testing.But there are
very few researches focusing on specific problems like
effective resource utilization, user data synchronization, in
SaaS testing. To address the resource utilization in the
cloud, we adopt Genetic Algorithm (GA) in our work.
In Genetic Algorithm, neighborhood search, has been used
to explore a lot of combinatorial optimizations. The basic
idea is to explore ‘neighbors’ of an existing population by
applying a specific operation on it.

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Vishnu Shankar*, GE Power, Bangalore, India.
Email:vishnushankar.sf@gmail.com
Sajidha.S.A*, Vellore Institute of Technology, Chennai, India.
Email:sajidha.sa@vit.ac.in
Nisha. V.M*, Vellore Institute of Technology, Chennai, India.
Email:nishavm@vit.ac.in
Sathis kumar. B,Vellore Institute of Technology, Chennai, India.
Email:sathiskumar.b@vit.ac.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Variousapproaches for the cloud resource allocation using
time scheduling are discussed in[1], [2], [3]. Most of these
algorithms do not consider the dynamically varying load on
cloud instances. But the major complexity lies here. That
has made cloud resource allocation non-deterministic in
nature. Non-deterministic problems are known to be NP-
Hard. Many heuristic algorithms like genetic algorithm are
there to solve such problems to a near-optimal solution.
However, there is a lack of practical solution for cloud
computing systems because most of them are are multiple-
QoS constrained. The existing genetic algorithms discussed
in [4] are used in the proposed research work because that
may provide an acceptable solution and an optimal solution.
The method discussed in [5] on the other hand, uses slightly
more sophisticated algorithms for cloud instance
optimization, where for each immediate request, it ranks all
the available instances and selects the most highly ranked
one. Instance ranking policies are aimed at minimizing the
number of nodes in use or maximize the resources available
for each node in an instance. Finding the optimum
configuration for nondeterministic entity is one of the
biggest challenges. If this is not configured properly, it
might lead to either under-utilization or overloaded. This
may interrupt the user experience. Optimization in cloud
services [6], [7] Hence an efficient strategy has been
proposed and implemented using Genetic Algorithm [8] to
identify the optimum solution for the resource space.
Proving the real optimum is not possible every time and
hence the solution found by genetic algorithm is considered
as a good solution.

II. PROPOSED APPROACH

The aim of the proposed work is to provide an efficient
algorithm to monitor the performance and resource
allocation of cloud, SaaS Instances [9],[10]. The main idea
behind multi-tenancy in a SaaS system is to provide a single
code-based polymorphic application that is customizable
and scalable to meet the demands of different types of
applications in multi-tenant environment. It is a trend for
SaaS vendors to construct SaaS programs with high multi-
tenancy to achieve cost-reduction in software production
and maintenance.One does not know where to look for the
solution and where to start, to find a solution for such
problem we make use of Genetic Algorithm which is often
considered as a good solution, to determine the optimized
resources that a cloud SaaS application would need.
Dynamically varying load in the cloud is discussed in
research work mentioned in [11], [12], [13], [14]. To test the
cloud instance performance over dynamically varying load,
we create three separate tenants where each tenant has an
application instance running for its user, on this instance, we
apply virtual load by making use of a tool named “WapT
pro” to calculate

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:vishnushankar.sf@gmail.com
mailto:sajidha.sa@vit.ac.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3364.129219&domain=www.ijeat.org

Performance Testing in A Multi Tenant Cloud Architecture using Genetic Algorithm

2841

Retrieval Number: B3364129219/2019©BEIESP
DOI: 10.35940/ijeat.B3364.129219
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

various parameters likeAverage response time, overall
bandwidth, successful hits, errors and etc., these results are
tabulated and used as input for the genetic algorithm.
Inorder to relate with the useage of the biological terms,
herein our case, we make an assumption between actual
cloud instance test results and genetic algorithm biological
values, like successful hits per second is considered as
uniform rate, average response time is considered as
mutation rate, active users are considered as tournament
Sizeas shown inTable 1. The above obtained values are
given as an input to our genetic algorithm and optimal
performance of each tenant is obtained, and the results are
compared with three other tenants. Finally the tenant that
achievesthe best fit in the least number of generations is
considered as the best working tenant.This assumption is
made by considering the instance parameters that best fits
the biological value genetic algorithm.

Table 1:

Actual Values
Obtained

Biological consideration

Successful Hits/ Sec
(SFH)

Uniform Rate (SFH)

Average Response
Time (ART)

Mutation Rate (ART/2)

Active Users (AU) Tournament Size (AU)

These values are passed as input to our genetic algorithm
and optimal performance of each tenant is obtained, and the
same is repeated for other two tenants also, and the results
are compared with each other tenant. Finally the tenant that
achieve the best fit in the least number of generations is
considered as the best working tenant.

III. DESIGN OF THE SYSTEM

A. System Architecture

The structure, behavior and overall views of the system is
represented using the system Architecture which is a
conceptual model.
Fig.1. shows the architecture where multiple tenants are
created on “Mirantis Openstack provider” where each tenant

has its own instance running for a dedicated application, and
Software testing tools are used on these instances to test
their application performance and their values are
represented using graph charts.From these charts we derive
the input assumptions to our Genetic Algorithm.

Fig.1

B. Calculating the performance of each Virtual Machine

Here we make use of a tool named “WapT pro” for Load

testing on each of the virtual machines, where Load testing
with “WAPT Pro” is simple and straightforward. It can
emulate the activity of hundreds or even thousands of real
users from a single testing machine. The program replaces
human users with virtual users.
Here each tenant, initially starts with a minimum user load
of 5 users/second that eventually increases to 25
users/second (i.e. 5x5 users) and each user to keep accessing
the instance critical memory, while we count the different
parameters like applications such as average response time,
overall band width, successful hits, errors and etc. and these
values are used as input to our genetic algorithm.

IV. IMPLIMENTATION OF THE SYSTEM

A. Introduction

The implementation is done in the Mirantis Cloud platform
by creating tenants with Virtual Instance and the required
load testing graphs are obtained using “WapT Pro” tool, and
JAVA IDE is used to implement Genetic Algorithm.

B. Tools Used

Mirantis Cloud Openstack Platform: The below Fig.2
shows Mirantis free Openstack Cloud service provider
where they provide us with enterprise-grade OpenStack
environment for our development and building and assigns a
dedicated technical account manager to facilitate us. Along
with real-time monitoring and support includes SLAs that
ensure our cloud SaaS is available for users.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2842

Retrieval Number: B3364129219/2019©BEIESP
DOI: 10.35940/ijeat.B3364.129219
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Fig.2. Mirantis Cloud Openstack Platforms

Creating a test scenario:We use “WapT pro” tool and

floating IP address is given as an input to the “WapT pro”
tool with prefixed virtual load on each cloud instances.When
we start executing the test, on instance, simultaneously
graphs are generated which states the different parameters
like applications average response time, overall bandwidth,
successful hits, errors and etc. and these values are used as
input to our genetic algorithm.

C. Implementation of Genetic Algorithm

Genetic Algorithm is proposed to better support the
software instance testing in the cloud. The proposed
architecture, mainly contains application running on virtual
instances and their response to the dynamically varying load
with respect to time and optimization its resource utilization
in the cloud.

i) Procedure for Implementing Genetic Algorithm: In order
to improve the overall performance of the cloud application,
without need of additional resources and providing best end
user experience is the most challenging aspect. Even though
many methods and techniques were proposed to compensate
the demand, none could give a lifetime solution to the
challenge; here we make an approach by implementing
genetic algorithms to cloud applications that produce an
optimal solution.

a) Initial Population: The keyfactors that are
consideredarethe population sizeand howto choose the
individuals. A meaningful search is possible only if the size
of the population isminimum.
For finding the right population size-
(a) Create an initial population, which can be generated

randomlywith a desired size.
(b) Selecting initialization is random from only a few

individuals to thousands.
(c) Consider a population of size in multiples of 5,and that

each gene has 5 alleles say ‘𝑚’, labeled 0…4, and the
values of alleles in each ‘column’ are generated using

randompermutation
after whichmodulo 5 is computed on each value to get
values in the range 0 to 𝑚 − 1.

b) Termination: GA isa stochastic search technique that
would run for ever compared to simple neighborhood search
methods that terminate when a local optimum is reached. In
real time cases,a termination criterion is needed; In order to
select the termination criterion, the usual practices are based
on clock time of the computer or setting up of a limit based

on the number of fitness evaluations or based on
population’s diversity track. The search is stopped when this
value falls below a fixed threshold. Here the diversity could
be relatedto either the genotype or the phenotype or to the
fitness’s.This is mostly measured by the genotype statistics.
For example, termination of a run can be done when the
fraction of one particular allel at every locum exceeded
above 90%.
c)Ranking: Ordering or ranking the chromosomes based on
the fitness may cause some information to be lost. Hence,
we use linear ranking to select the 𝑘𝑡ℎ rank string from the
population which is represented as𝑃[𝑘] given by the
equation (for linear ranking), where α and β are constants.

𝑃[𝑘]
= (α + kβ) Eq. 1.

Let the probability distribution be denoted by 𝑃[𝑘], the
other parametercan be chosen in a way we tune the selection
pressure.
Selection pressure,

∅ =
𝑃𝑟𝑜𝑏[𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝐹𝑖𝑡𝑡𝑒𝑠𝑡 𝑆𝑡𝑟𝑖𝑛𝑔]

𝑃𝑟𝑜𝑏[𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑡𝑟𝑖𝑛𝑔]
 Eq.2.

In the case of linear ranking the average is interpreted as
meaning the median string, so tha

𝛷 =
𝛼+𝛽𝑀

𝛼+𝛽(𝑀+1)/2
Eq.3

(So the population size is assumed as odd, but for the even
number, the analysis holds mutatis mutandis) that can be
defined with simple algebra

𝛽 =
2(𝜙+1)

𝑀(𝑀−1)
 and 𝛼 =

2𝑀−𝜙(𝑀+1)

𝑀(𝑀−1)
 Eq. 4.

that implies that 1 ≤ 𝛷 ≤ 2 With this framework, it is
observed that, in terms of the sum of an arithmetic
progression, the cumulative probability distribution can be
stated, so that identifying appropriate value for𝑘 for a given
pseudo-random number 𝑟will become simple, i.e. Eq.5
gives the quadratic equation to solve 𝑘, which can be
computed in in O(1) time.

𝑘 =
−(2𝛼+𝛽)±√(2𝛼+𝛽)2−4𝛽𝑟

2𝛽
 Eq.5

Other than linear ranking, many other functions can be

used. But most of the applications usethe above
mentionedtechniqueas it is more flexible.
d) Tournament Selection:One majorbenefit of tournament
selection above all the remaining techniques is that it only
needs the pairs or groups of strings be orderd according to a
specific preference, and hence, it can cope up with resource
optimization situations.

However, it is noted thatarbitrary stochastic effects have
an impact onthe tournament selection in the same way as
roulette-wheel selection, there is no guarantee that every
string will appear in a given cycle. In fact, using sa mpling
with replacement there is a probability of
approximately0.368(͂ 𝑒−1) at a given string will not appear
at all.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Performance Testing in A Multi Tenant Cloud Architecture using Genetic Algorithm

2843

Retrieval Number: B3364129219/2019©BEIESP
DOI: 10.35940/ijeat.B3364.129219
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

To string missing we need 𝜏 items to be drawn 𝑀times,
so we simply construct 𝜏 random permutationsof the
numbers 1, … . . 𝑀 i.e. the indices of the individuals in the
population. These are concatenated into one long sequence
which is then chopped up into 𝑀 pieces, each one
containing the 𝜏 indices of the individuals to be used in the
consecutive tournaments.

𝑃[𝑘] = 𝛼 + 𝛽 𝑘

 Fig.3 Roulette Wheel

 The M needs to be an exact multiple of 𝜏 otherwise, there
is the small possibility for some distortion in the
permutations join, but this is a relatively minor problem.

e) Crossover: The process of replacing some of the genes in
one parent by the corresponding genes of the other is termed
as crossover. One-point crossover (1X) or two point
crossover (2X) or uniform crossover(X).
In our approach we make use of uniform crossover, where
the obtained new off springs will contain 50% characters if
1st parent string and 50% characters of the 2nd parent string.
An indistinguishable prescription can be given form-point
crossover where m > 1.

f) Mutation: It is used for the genetic diversity from one
generation to the successor generation. Assuming that the
concept of mutation is much simpler compared to
crossover, and that the chromosomescan be represented as a
bit-string,usingBernoulli distribution, a mask such as
 0 1 0 0 0 1
can be generated at each locus. In the above example new
allele values are assigned for the 2nd and 6th gene.Apart
from this technique that are other ways that can be used to
implement this idea which can significantly improve the
performance of a GA. A simple idea is to select a random
number for every gene in the string which is compared with
µ. The computational complexity of this method increases
when the strings become longer and when there is huge
population.
For m mutations, we draw m random numbers (without
replacement) uniformly distributed between 1 and l in order
to specify the loci where mutation is to producing new allele
for the farther crossover to produce the fittest.

g) New Population: A generative approach is used here:
Until a new set of 𝑀 individuals were generated, the
process of selection, recombination and mutation were
executed on a population of 𝑀 chromosomes,.This set is
considered as the new population. To acheive optimization,
a considerable amount of effort has been spent to achieve a
good solution, to avoid the risk of it from participating in
further reproduction.Hence, concepts of elitism and
population overlapswere introduced.This elitist strategy is
simple andguarantees the best individual got so far to
survive by preserving it. Only the remaining (𝑀 – 1)

members of the population are replaced with new strings.
Populationsoverlaps replaces only a fraction𝐺 (the
generation gap) of the population at each generation which
is much more simplified. By applying these steady-state or
incremental strategies,at each stage one new chromosome
(or a pair) is generated.
There are different strategies, commonly used in the GA
community, which traditionally designates them either
𝜆. µ + (𝜆 + µ).In the first case,µ(˃ 𝜆)offspring is generated
from 𝜆parents, and the best 𝜆of these offspring are chosen to
start the next generation. For the + strategy,µoffspring is
generated and the best 𝜆individualsare chosen from the
combined set of parents and offspring.In the case of
incremental reproduction it is also necessary to select
members of the population for deletion. Some GA’s

assumed that parents are replaced by their children and
delete the worst member of the population, this exerts a very
strong selective pressure on the search, which may need
fairly large populations and high mutation rates to prevent a
rapid loss of diversity. A milder prescription is to delete one
of the worst 𝑃% of the population (for example, Reeves
used P = 50i.e., selection from those worse than the
median). This is used when rank-based selection is used.

V. PERFORMANCE EVALUATION OF
GENETIC ALGORITHM

The implementation of the GENETIC ALGORITHM is
done using JAVA IDE. We analyze the performance of the
proposed Genetic Algorithm; by using tools like “WapTpro”
to test application response of the dynamically varying load
and the results are recorded, which are then, used as input in
our GENETIC ALGORITHM and JFreeChart graph is used
to display the output in graph between Generation and
Fittest.

Environment Parameters
Various parameters are considered in the design of the

GENETIC ALGORITHM. All those parameters are
tabulated in table 2.

Table 2 :Parameters and Values
Parameters Values

Operating System CentOS 6.5 x64

RAM 2GB and 512MB

Virtual Central Processing Units(VCPU) 1
Virtual Disk Drive 20GB and 10GB

VI. RESULTS AND DISCUSSION

As we observed in the previous sections, the
implementation of proposed approach is done using NET
BEANS-IDE. In this project, we implemented Genetic
Algorithm on the obtained load test values The test is
performed on 3 Tenants, where each tenant consist of
minimum one Virtual Machine with above specified
configurations.

i) TENANT 1 - Gmail:

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2844

Retrieval Number: B3364129219/2019©BEIESP
DOI: 10.35940/ijeat.B3364.129219
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Table 3: Tenant 1 Gmail VM Test results

Fig.4. Overall Performance of Gmail VM

The test results are obtained from “WapT Pro” tool are
plotted in Table 3 are used as input to the Genetic
Algorithm, where the results shows the Overall Performance
like active users, pages per second and successful hits per
second and etc. it is shown in Figure.4.

Genetic Algorithm on TENANT 1 Gmail

Fig.5. Graph is plotted between Generation and Fittest

 Figure 5 represents the Fittest and number of generations
obtained.Generations -141 and the Fittest - 63.

ii) TENANT 2 - Facebook:

Table 4: Tenant 2 Facebook VM Test results

Fig.5. Overall Performance of Facebook VM

The test results are obtained from “WapT Pro” tool are
plotted in Table 4 and Fig.5 are used as input to the Genetic
Algorithm, where the results shows the Overall Performance
like active users, pages per second and successful hits per
seccond and etc.

Genetic Algorithm on TENANT 2 Facebook

Fig.6. Graph is plotted between Generation and Fittest

 Figure-6 represents the Fittest and number of generations
obtained.Generations -587 and the Fittest - 40.

iii) TENANT 3 YouTube:

Table 5: Tenant 3 YouTube VM Test results

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Performance Testing in A Multi Tenant Cloud Architecture using Genetic Algorithm

2845

Retrieval Number: B3364129219/2019©BEIESP
DOI: 10.35940/ijeat.B3364.129219
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Fig.7. Overall Performance of YouTube VM

The test results are obtained from “WapT Pro” tool are
plotted in Table 5 and Fig.7 are used as input to the Genetic
Algorithm, where the results show the Overall Performance
like active users, pages per second and successful hits per
second and etc.

Genetic Algorithm on TENANT 3 YouTube

Fig.8. Graph is plotted between Generation and Fittest

 Figure- 8 represents the Fittest and number of generations
obtained.Generations -809 and the Fittest - 39.
iv) Validation of Proposed System: From the above test we
have determined that Tenant 3 is working with minimal
resource utilization under dynamic load. As it could achieve
fittest generation at 39th generation which has less
generations compared to others.
Now tenant 3 characteristics were applied for the new
instance named “Genetic YouTube” in the cloud, which is
provided with only one fourth resource of our previous
“YouTube” instance i.e. 2GB RAM is reduced to 512MB
and 20GB Hard Disk space is reduced to 10GB leaving the
Operating System as CentOS 6.5 x64 and number of Virtual
CPU as 1. Now we validate our new instance by executing
all the above test cases on it, the output gives the desired
application performance at less resource utilization as shown
below 5.3.5.

Table 5 Tenant 1 Genetic YouTube VM Test results

Fig.9. Overall Performance of Genetic YouTube VM

The test results are obtained from “WapT Pro” tool are
plotted in Table 5 and Figure 9 are used as input to the
Genetic Algorithm, where the results show the Overall
Performance like active users, pages per sec and successful
hits per sec and etc.
v)Genetic YouTube tenant response: And tenant 3
characteristics were applied for the new tenant named
“Genetic YouTube” in cloud and all the above test cases are
executed on it as shown below,

Genetic Algorithm on Genetic YouTube tenant

Fig.10. Graph is plotted between Generation and Fittest

 Figure-10 represents the Best Fit and number of generations
obtained-overall Generations-178 and the Fittest 46. From
the obtained graphs and results we can say that our tenant
delivers desired performance even when the
providedresources for this tenant are less than the actual
provisioning.

VII. CONCLUSION AND FURURE WORK

This paper explain about various perspectives of SaaS
testing at the practical level. By highlighting the special
testing features in genetic algorithm. we believe there is an
urgent need to develop new techniques, standards,
platforms, solutions for cloud SaaS instance, where it is
difficult to find the exact load at a particular instance at a
given time Probably GA is unique for the above need, one
does not know where to look for the solution and where to
start, as SaaS instances is non-deterministic in nature, to find
solution for such problem we make use of Genetic
Algorithm which is often considered as a good solution, to
determine the optimized resources in cloud application,

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2846

Retrieval Number: B3364129219/2019©BEIESP
DOI: 10.35940/ijeat.B3364.129219
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

which would need the implementation of variations in
population size, in initialization methods, in fitness
definition, in selection and replacement strategies, in
crossover and mutation are obviously possible. Parallel
processing is also possible with genetic algorithm.
Parallelization can be extended to very sophisticated
implementations that add spatial aspect to the algorithm.

 REFERENCES

1. Chana, Inderveer, and Ajay Rana. "Empirical evaluation of cloud-
based testing techniques: a systematic review." ACM SIGSOFT
Software Engineering Notes 37.3 (2012): 1-9.

2. Gao, Jerry, Xiaoying Bai, and Wei-Tek Tsai. "Cloud testing-issues,
challenges, needs and practice." Software Engineering: An
International Journal 1.1 (2011): 9-23.

3. Booker, Lashon B., David E. Goldberg, and John H.
Holland. "Classifier systems and genetic algorithms." Artificial
intelligence 40.1-3 (1989): 235-282.

4. Rechenberg .Evolutions strategic: Optimierung technischer Systeme
nachPrinzipen der biologischen Evolution, Frommmann-Holzboog
Verlag, Stuttgart(2nd edition 1993).

5. Mitchell, Melanie, John H. Holland, and Stephanie Forrest. "When will
a genetic algorithm outperform hill climbing." Advances in neural
information processing systems. 1994.

6. H.-P.Schwefel (1999).Numerische Optimierung von Computer-
modellen mittelsder Evolutionsstrategie, Birkhäuser Verlag, Basel.
(English edition: Numerical Optimization of Computer Models, John
Wiley & Sons, Chichester, 1990).

7. Agrawal, Dipanshu, et al. "An Evolutionary Approach to Optimizing
Cloud Services." (2012).

8. Portaluri, Giuseppe "A power efficient genetic algorithm for resource
allocation in cloud computing data centers." 2014 IEEE 3rd
International Conference on Cloud Networking (CloudNet). IEEE,
2014

9. Maqableh, Mahmoud, and Huda Karajeh. "Job scheduling for cloud
computing using neural networks." Communications and Network 6.03
(2014): 191

10. Patil, S. D. and S. C. Mehrotra. "Resource allocation and scheduling in
the cloud." Int J Emerg Trends Technol Comput Sci (IJETTCS) 1.1
(2012): 47-52.

11. Li, Li Erran, and Thomas Woo. "Dynamic load balancing and scaling
of allocated cloud resources in an enterprise network." U.S. Patent
Application No. 12/571,271.

12. Chen, Shang-Liang, Yun-Yao Chen, and Suang-Hong Kuo. "CLB: A
novel load balancing architecture and algorithm for cloud services."
Computers & Electrical Engineering 58 (2017): 154-160.

13. Ningning, Song, et al. "Fog computing dynamic load balancing
mechanism based on graph repartitioning." China Communications
13.3 (2016): 156-164.

14. Mesbahi, Mohammadreza, and Amir Masoud Rahmani. "Load
balancing in cloud computing: a state of the art survey." Int. J. Mod.
Educ. Comput. Sci 8.3 (2016): 64

AUTHORS PROFILE

Mr. Vishnu Shankar, has 4+ years industry
experience as enterprise application engineer,
currently working for GE Power, India.
Implemented Business solutions for clients across
Asia Pacific, US and Nordics regions on
Salesforce.com platform. Completed master’s in
computer science with specialization in cloud

Computing from VIT University, India.

Prof. Sajidha S.A, has completed her M.E (CSE) from
Anna University andsubmitted a research thesis
fromfromVIT University. She has about 20 years of
teaching experience at various levels and presently
working as an Assistant Professor(selection grade) in the
School of Computing Science, VIT University, Chennai.
She has published several papers inreputed International
Journals and her area of interest includesdata analytics,

cloud Computing, machine Learning and data mining.

Prof. Nisha V.M, has completed her M.E (CSE)
from Anna University and submitted a research
thesisfrom VITUniversity . She has about 14 years of
teaching experience at various levels and presently
working as an Assistant Professor(senior grade) in
the School of Computing Science, VIT University,
Chennai. She has published several papers in
International Journals and her research interest

includes cellular automata, cloud Computing anddata analytics.

Dr. B. Sathis Kumar, has completed his M.E (CSE)
from Anna University and Ph.D from Anna
University . He has about 20 years of teaching
experience at various levels and presently working as
an Associate Professor in the School of Computing
Science, VIT University, Chennai. He has published
15 papers at International Journals and International
Conferences. His research interest includes Software

Engineering, Big Data analytics, Cloud Computing, Machine Learning and
IoT.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

