
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1132

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3432129219/2019©BEIESP
DOI: 10.35940/ijeat.B3432.129219
Journal Website: www.ijeat.org

Abstract: Over the past years, smartphones have witnessed an
alarming rise in embedded sensors which enhance their support
for applications. However, they can be regarded as loopholes as
seemingly innocuous information can be obtained without any
user permissions in Android thus invading the user’s privacy. Our

work establishes a side channel attack by illegitimately inferring
the information being typed by the user on a smartphone using the
readings from ‘zero-permission’ sensors like accelerometer and

gyroscope. This serves as a proof of concept to prevent such
attacks on mobile devices in the future. While previous research
has been conducted in this space, our narrative involves a
predictive model using Recurrent Neural Networks that can
predict the letters being typed in the keyboard solely based on the
motion sensor readings, thus inferring the text. Our research was
able to identify 37.5% of the unseen words typed by the user using
a very small volume of training data. Our tap detection method
has shown 92% accuracy which plays a critical role in the text
inference. This research lays the foundation to further progress in
this area, thus helping to strengthen the mobile security.

Index Terms— Android, Security, Side-channel attack, LSTM

I. INTRODUCTION

The usage of smart mobile devices for personal and business
purposes has seen immense rise in popularity over the last
decade. From communication to payments, mobile devices
have applications in almost all domains. This drastic shift in
the usage of mobile devices has increased the amount of
potentially sensitive material and activity performed on them.
These smartphones have become increasingly personal and
thus privacy has become a crucial issue and much research
has been performed on the permissions model governing
them. Our work explores one particular way to bypass this
security model such that one application can read the data
being typed in another application.

Sensors like gyroscope, accelerometer and orientation
sensors have originally been designed to monitor a user’s

Revised Manuscript Received on December 30, 2019.

* Correspondence Author
Dr. P Uma Maheswari, School of Computer Science and Engineering,

CEG, Anna University, Chennai, India, Email: dr.umasundar@gmail.com
Mohamed Yilmaz Ibrahim*, School of Computer Science and

Engineering, CEG, Anna University, Chennai, India.
Email: mohamedyilmaz98@gmail.com
Ramkumar B, School of Computer Science and Engineering, CEG,

Anna University, Chennai, India. Email: therealramkumar@gmail.com
Aswin Sundar, School of Computer Science and Engineering, CEG,

Anna University, Chennai, India. Email: aswinsundar17@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

location, movement, orientation, altitude and other such
potential information. However, previous research has
confirmed that motion sensors can act as a side channel for
inferring the user’s keystroke or input information on

smartphones. Thus, applications are specifically being
designed by attackers to collect data from these motion
sensors and perform text inference attacks with the help of
machine learning algorithms. This can prove critical to the
users as even their sensitive information such as passwords or
credit card information can be extracted.
The main objectives of this work are as follows:
1) To prove that an app in the background can infer the
information being typed in another application through the
sensor readings.
2) To employ Deep Learning and Natural Language
Processing techniques to deduce the typed information.

We employ traditional classification methods such as
RMSE as well as deep neural networks to infer the typed
sentences. By grouping keyboard keys into larger regions, the
tap position can be determined more accurately and a
language model is used to localize the region into one of the
keys thus improving the overall inference.
This paper continues in Section 2 with a discussion of the
academic background to this research, Section 3 then
explores the system architecture and the design whilst
Section 4 discusses the analysis of the experimental data.
Finally, the conclusion of the paper is explored in Section 5.

II. RELATED WORK

 According to the work by Genkin et al. [1], the scope of
applications in smartphones has seen a drastic increase and
as a result they have become more personal making us
inseparable from our smartphones. Thus, it becomes
crucial for us to secure the mobile devices. TouchLogger
[2] was a smartphone application designed to serve the
purpose of inferring the keystrokes made on a soft
keyboard based exclusively on the vibrations recorded by
the smartphone’s motion sensors. Their research had
successfully inferred more than 70% of the keystrokes
using only the accelerometer sensor of the device.
However, this work had a restriction as it has been focused
specifically on inferring the keystrokes from a numeric
keyboard. Similarly, Xu et al. present TapLogger [3], an
approach that looks to infer an individual’s taps on a

numeric keyboard using a smartphone’s accelerometer and

gyroscope. This work has enhanced functionality as it had
laid attention on identifying single taps, which are more
susceptible to distortion by linear drift.

This paved a way for more active research in this area to not
only infer the numbers detected from the keyboard but also
text. The work of Aviv et al. [4] builds on the idea of PIN
identification using motion sensors.

Deep Learning and NLP based Side Channel
Attack for Text Inference in Smartphones

P Uma Maheswari, Mohamed Yilmaz Ibrahim, Ramkumar B, Aswin Sundar

http://www.ijeat.org/
mailto:dr.umasundar@gmail.com
mailto:mohamedyilmaz98@gmail.com
mailto:therealramkumar@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3432.129219&domain=www.ijeat.org

Deep Learning and NLP based Side Channel Attack for Text Inference in Smartphones

1133

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3432129219/2019©BEIESP
DOI: 10.35940/ijeat.B3432.129219
Journal Website: www.ijeat.org

Contrary to the single tap identification established by
previous works, their approach brings out the notion of
detecting and inferring the swipe gestures of a victim's PIN.
The other approach has focused on password compromise,
for example, Owusu et al. [5] have used a smartphone’s

accelerometer to infer the characters, both letters and
numbers, contained within a user’s password. Our approach

looks to identify the text which has been inputted by the user
on a qwerty keyboard which provides a much more robust
identification method. The work of Miluzzo et al [6] on Tap
Prints builds on this idea of keypress identification by
attempting to determine the tap location on the screen. This
was used initially to understand the icons that may have been
tapped, and later for the applications
that were launched. Their work tries to
take this concept further by identifying
individual keystrokes on a virtual keyboard. However, their
work has involved a group of 10 volunteers but our work
involves inferring typing patterns through an application and
predicting the results in real time. Our work collects only
around 100 characters per participant in the form of 3
sentences for training as well as testing, as our focus has been
to minimize the amount of data as possible to correctly
identify a user’s keystrokes. Ping et al. [7] attempt to infer
long text such as mail messages or tweets. They have used
machine learning algorithms to roughly predict the input text

and then use linguistic models to further correct the wrong
predictions. The accuracy of about 30% after machine
learning has significantly improved to 65% after using the
linguistic models. However, client applications on
smartphones have inherent drawbacks, because these
applications cannot be executed unless users download them
to their own devices, and these applications can only run on a
specific operating system. Thus, some researchers wanted to
design web applications to circumvent these problems. More
recently Shen et al. [8] have built in the approach taken by
TapLogger with taps being recorded with the accelerometer,
gyroscope and the magnetometer to infer the tap positions.
According to Felt et. Al [9], the common approach is a
security model based on permissions, which allows users to
perform a relatively complex risk-based security decision in
order to access potentially sensitive information or capability
(such as location sensors). This complicated model has been
difficult to manage for most users. The reason for this
complexity can be either due to the unavailability or
unpreparedness of the users to completely understand the risk
behind giving permissions to an app or because apps are over
privileged, meaning they request for extra permissions than
that are required to work. Mehrnezhad et al. [10] have
proposed PINlogger.js to steal users’ privacy when users

input PINs on web browsers. However, their one-phase
prediction accuracy has not been ideal on some devices
because of the sampling rate restriction on motion sensors.
WebLogger [11] was designed to overcome this problem and
improve the prediction accuracy on web platforms by
introducing the weighted voting algorithm in model training
phase. All the existing works didn't make use of the language
structure or the pattern in the language being typed. Our work
aims to use a language model to infer the text. Using the
language information, the errors can be handled during the
classification and thus results in better accuracy.

III. SYSTEM DESIGN

A. System Architecture

The block diagram of the entire system is shown in the Fig.
1.

An android application for data collection is developed to

collect sensor values of accelerometer and gyroscope in the
background. The application currently used in our
experiment is a basic notepad application. It can be extended
to any other application as well. The app also collects key
presses while being in the foreground. The sensor data
collected along with the key presses forms a labelled data that
represents the phone motion while tapping each key. Again,

on test data we try to infer the tapped keys from only the
sensor readings of Accelerometer and Gyroscope. In our
experiment, we begin by identifying taps on the test data
using a statistical technique. Then we divide the qwerty
keyboard into six regions numbered from 1 to 6. The
keyboard regions are shown in the Fig 2.

Fig. 1 System Architecture

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1134

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3432129219/2019©BEIESP
DOI: 10.35940/ijeat.B3432.129219
Journal Website: www.ijeat.org

Fig. 2 Keyboard regions

A classifier model is used to classify the test data taps to

one of the 6 regions based on the labelled sensor readings.
Thus, for each tap, we now know the keyboard region where
the tap has happened. After obtaining a sequence of keyboard
tap regions for a word, all possible English words matching
the region sequence are generated using sequence models
such as RNN and language models.

B. UI Design

For data collection purpose, the android application lets the
user to record sensor recording on tap of a button with his
consent. Once the sensor data recording starts, three
randomly chosen sentences are shown to the user. The user is
asked to type the sentences and click stop to end the session.
The application automatically uploads this to the Firebase
data storage. The remaining part of the project uses CLI to
process the sensor logs and to view the inferred word
suggestions.

C. Methods

Data Collection: When the user types in our android
application, it records key presses along with the readings of
accelerometer and gyroscope for supervised learning. This
facilitates the inference of victims typing in other apps using
the sensor readings. This app initially explains the user about
the work and gets consent from the user to collect the data.
Once the user completes typing, the log files get uploaded
automatically to the online firebase storage.
Tap Detection: Given the time series sensor data collected
from the application, this module detects the taps on the
screen and outputs a list of timestamps where the taps have
occurred. Z-score algorithm is one of the most common
signal peak detection algorithms. This uses a robust version
of Z-score to detect peaks in the signal and to effectively
perform an anomaly detection. The anomalies in the signal
are taps. The peak signal detection algorithm is made more
robust by replacing the mean with the median and also
median absolute deviation is considered in place of standard
deviation. This has given us profound results with better
accuracy than the previous method.
Tap Extraction: Given the timestamp of the taps, the sensor
data are windowed near the taps. A window of a predefined
millisecond duration cuts out sensor readings starting from a
defined time period before a tap and ending at a defined time

period after the tap. For each tap we get a 6D vector, (3
accelerometer axis and 3 gyroscope axis). This 6D vector
represent the movement of the phone during the
corresponding tap. Since this vector is non- uniformly
sampled, it is resampled uniformly using linear interpolation.
Then the vectors are standardized by subtracting mean and
dividing them by the standard deviation. A finalised 6D
vector is obtained after interpolation and standardization.
This set of 6D vectors obtained from each tap in the training
data is labelled with the corresponding tap region and stored.
Region Classification: Given a 6D vector, the closest match
is obtained by comparing the given sample with all the
available 6D vectors from the reference data. Distance of this
6D vector from all other samples is calculated using the RMS
distance. RMSE is a technique used to compare two time
series data. An ensemble scoring based method is used with
the distance metric to come up with a tap region.
Word Prediction: Given the sequence of keyboard regions as
tapped by the user, the probable sentences or words typed are
derived by using the knowledge of letter probabilities and the
English language. A character is trained on an English corpus
to predict the next probable character given a sequence of
characters. The RNN outputs the probabilities of all the
characters in the vocabulary, to be the next character. The top
3 probable letters that are present in the next keyboard region
are selected. They are appended to the current word and thus
the finalised words are obtained.
Sentence Prediction with LSTM Approach: Given a sequence
of keyboard regions as tapped by the user and a trained
model, this module makes use of a predictive keyboard to
infer the next probable words typed by using the knowledge
of letter probabilities in the English language. A two-layer
128 neuron LSTM network with an additional SoftMax layer
is trained on an English corpus to predict the next n probable
completions of a word given a sequence of characters. The
words are predicted until a space character is obtained The
LSTM outputs 10 probable word completions for the
character sequence. By using region mapping mechanism,
the most probable word can be inferred. This works well for
some of the cases.

IV. ANALYSIS AND EXPERIMENTAL RESULTS

The analysis was performed on data obtained from Samsung
Galaxy s6 edge running Android 7.1. A paragraph of about 3
sentences is typed to create samples for each tap region.
Following that, 24 words (10 unique) are typed while holding
the phone in the same position. From the samples, the we try
to infer the 24 words.

A. Tap Detection

The Accelerometer and Gyroscope sensor logs are shown in
the Fig 3 and Fig 4 respectively. The color bars represent the
taps.

http://www.ijeat.org/

Deep Learning and NLP based Side Channel Attack for Text Inference in Smartphones

1135

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3432129219/2019©BEIESP
DOI: 10.35940/ijeat.B3432.129219
Journal Website: www.ijeat.org

Fig 3. Accelerometer Sensor readings

 Fig 4. Gyroscope Sensor readings

The deflection in the sensors during tap can be clearly seen
and thus a peak detection algorithm is used to detect taps in
time series data. One of the two sensors would suffice to
perform the task and so accelerometer was chosen.

The magnitude of the 3 values from the accelerometer can
be picked or only the z-dimension can be chosen alternatively
to obtain similar results. The 3-axis accelerometer readings
are converted into a single time series data by calculating the
magnitude. This time series data is running through Z-score
to detect the taps. The precision of tap detection is calculated
by Equation 1. The recall metric of tap detection is calculated
by Equation 2.
 precision = No. of actual taps detected
 Total No. of taps detected (1)

recall = No. of actual taps detected
 No. of actual taps (2)

The F1 score is given by Equation 3

 F1 score = 2 x precision x recall
 precision + recall (3)

The threshold factor of the Z-score algorithm can be used to
balance between the precision and recall. Increasing the
threshold will reduce the false positives and also the recall.
Reducing the threshold will shoot up the recall and at the
same time decrease the precision because of the false
positives obtained. The results from Z-score and robust
Z-score are compared for further analysis. The robust Z-score
gave a f1 score of 0.921 whereas the normal Z-score gave a f1

score of 0.801. The Figure 5 shows the three metrics against
the 24 sample test data.

Fig. 5 Tap detection result

From the Figure 5, it can be seen that there is not much
consistency across the experiment. Change in hand stress
during taps seem to affect the results and thus accounting for
the lesser f1 score in certain test cases.

B. Region Classification

6D vectors: From the labelled reference data obtained from
data collection, 6D vectors are extracted for each tap and
labelled with the tap region. The obtained 6D vector for
keyboard region 1 is shown in the Figure 6.

Fig. 6 6D vector - Region 1

Fig. 7 6D vector - Region 3

It can be seen that the 6D vector differs from the one
corresponding to the tap in Region 3 shown in Figure 7. For
each keyboard region, more than one reference 6D vectors as
shown in Figures 6 and 7 are
extracted.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

1136

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3432129219/2019©BEIESP
DOI: 10.35940/ijeat.B3432.129219
Journal Website: www.ijeat.org

Tap region classification: From the tap timestamps obtained
from the tap detection and 6D sample vectors from reference
data, each test data tap needs to be classified among one of
the 6 keyboard regions. The samples contain 6D vectors for
each region representing the movement of the phone during a
tap in that region. Initial research started with using common
machine learning models such as SVM, Random Forest for
the classification task. The 6D vector is under sampled and
flattened to form the feature vector which is labelled against
the corresponding region. This intuition however seems not
suitable as the samples is very less. The reference data is
dependent on the user, mobile device and the hand posture.
Thus, a more flexible approach is needed.

RMS (Root mean square) distance can be used to compare
the similarity of two data series. Employing RMS distance by
comparing the unseen 6D vector to every sample 6D vector
and the taking closest match seemed to work. Since the
closest match could be an outlier, a scoring algorithm is
introduced to improve the classification. Instead of the
closest match, all the distances are sorted and assigned a
score based on its position in the sort. The closest gets the
highest score. The scores are added grouping by keyboard
region. The output class is determined by the region with
highest score. By this, even if the closest match is wrong,
many correct regions below will add up to handle the outlier.
For this scoring to work, all the regions should have equal
number of 6D samples, else the classifier will be biased to the
region with more samples. The accuracy of the classification
is calculated by Equation 4.

Accuracy = No. of correctly classified regions
 Total No. of taps (4)

The average accuracy of region classification from the 24 test
cases is 0.5612. The Figure 8 compares the metric between
scoring and closest match.

Fig. 8 Tap region classification result

Again, it can be seen that the accuracy isn’t consistent among

the files. Since the regions are tightly placed in the keyboard,
there isn’t much difference between the 6D vectors of

adjacent regions. In fact, the samples of adjacent regions
overlap. This inference of tap region can be serious threat to
user privacy. Given the personal details of the user and this
keyboard tap regions, the user’s password could be inferred.

Given this tap regions, the password wordlist for brute force
attack can be made much shorter and thus posing a security
issue. Also, by employing this technique on the entire screen,
the app usage behaviour of the user can also be inferred.

C. Text Inference

Word Inference: From a sequence of keyboard regions
tapped, the probable words matching that needs to be
generated. The challenge here is that the region sequence
itself isn’t accurate. A two-layer RNN with 512 GRU each
and a third fully connected layer is trained on a corpus1 of top
10000 English words. The RNN outputs probability for the
next character given the current character along with its state.
RNN is robustly made to generate all probable words by
taking top three possible matches for each character position.
The RNN output probabilities for the nth character is filtered
by the nth tap region to include only the keys in that region.
Given the nth tap region and the probabilities of the keys in it
to be the nth character, top three characters are chosen and
added to the word. Since the RNN doesn’t have state for

predicting the first character of the word, All the keys in the
first tap region are taken. Repeating this, robust word
generation creates a set of 3l-1 x No. of keys in first tap’s

region words. Since the word generation is robust and
considered 3 possible character for each position, the words
that are not close to English are removed. Then the words are
autocorrected to account for the errors in the region sequence.
The resulting bag of words are the inferred probable words
for the given region sequence. This robust generation gave an
inference rate of 0.375 (9 out of 24 inferred). This can also be
extended to inferring sentences, given that the spaces can be
detected with high accuracy.
Region size: The number of keyboard regions can be reduced
by having a greater number of keys per region. This increases
the accuracy of region classification as the regions become
larger and number of target classes is reduced. On the other
hand, increasing the number of regions favor the word
inference as the number of probable words for a given region
sequence is reduced.
The experimental results are shown in Table-I.

Table-I: Metrics
S. No Technique Metric

 Tap Detection Detection Rate

1 Standard z-score 0.8017

2 Median z-score 0.9210

 Region Classification Accuracy

3 RMS Distance 0.5212

4 RMS Distance with
Scoring

0.5612

 RNN Test Cases Avg. Accuracy on
100 samples

5 While standing 0.375

6 While moving 0.0

7 Phone on table 0.0

https://github.com/first20hours/google-10000-english/blob/master/google-10000-engli
sh.txt

http://www.ijeat.org/
https://github.com/first20hours/google-10000-english/blob/master/google-10000-english.txt
https://github.com/first20hours/google-10000-english/blob/master/google-10000-english.txt

Deep Learning and NLP based Side Channel Attack for Text Inference in Smartphones

1137

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3432129219/2019©BEIESP
DOI: 10.35940/ijeat.B3432.129219
Journal Website: www.ijeat.org

V. CONCLUSION AND FUTURE WORK

In our research, we have proposed an approach to identify
the user tap positions even if we do not have any large
historical sensory data of this particular user. We have
obtained an accuracy of 37.5% which proves to be better than
the previous methods which have been used in this research.
The experimental results demonstrate that our proposed
method can predict tap sequences and can generate words
matching the sequence.

This research can be extended to infer passwords which
would prove to be a potential threat to user’s security. The

character RNN can be trained on a password wordlist, so that
it generates password patterns. Using such an RNN with the
knowledge of keyboard tap regions obtained from our tap
region classification method, can help generate probable
passwords making the password brute-force attack much
more feasible. Another extension would be to infer sentences
with context using a LSTM model. One major challenge with
using such a complex language model is that one wrong
inference due to error in tap region sequence propagated
through modules, could result in the change of context and
hence affect all the corresponding sentences we have to infer.

APPENDIX

A. List of Abbreviations

NLP - Natural Language Processing
CLI - Command Line Interface
UI - User Interface
RMSE - Root Mean Squared Error
RNN - Recurrent Neural Network
LSTM - Long Term Short Memory Network
6D - Six Dimensional

REFERENCES

1. Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and
Yuval Yarom, “Ecdsa key extraction from mobile devices via

non-intrusive physical side channels”, In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, pp. 1626–1638. ACM, 2016.

2. Liang Cai and Hao Chen, “Touchlogger: Inferring keystrokes on
touchscreen from smartphone motion.” Hotsec vol. 11, pp. 9–9, 2011.

3. Zhi Xu, Kun Bai, and Sencun Zhu, “Taplogger: Inferring user inputs

on smartphone touchscreens using on-board motion sensors”,
WiSec’12 - Proceedings of the 5th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, 04 2012.

4. Adam J Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M Smith,
“Practicality of accelerometer side channels on smartphones”, In

Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 41–50. ACM, 2012.

5. Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy
Zhang, “Accessory: Password inference using accelerometers on

smartphones”, In Proceedings of the Twelfth Workshop on Mobile
Computing Systems & Applications, HotMobile ’12, pp. 9:1–9:6,
New York, NY, USA, 2012, ACM.

6. Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and
Romit Roy Choudhury, “Tapprints: your finger taps have

fingerprints”, In Proceedings of the 10th international conference on
Mobile systems, applications, and services, pp. 323–336. ACm,2012.

7. Dan Ping, Xin Sun, and Bing Mao, “Textlogger: inferring longer

inputs on touch screen using motion sensors”, In Proceedings of the
8th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, p. 24. ACM, 2015.

8. Chao Shen, Shichao Pei, Zhenyu Yang, and Xiaohong Guan,“Input

extraction via motion-sensor behavior analysis on
smartphones”,Computers & Security , vol. 53, pp. 143–155, 2015.

9. Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney,
Erika Chin, and David Wagner, “Android permissions: User attention,

comprehension, and behaviour”, In Proceedings of the eighth

symposium on usable privacy and security, p. 3. ACM, 2012.
10. Maryam Mehrnezhad, Ehsan Toreini, Siamak F Shahandashti, and

Feng Hao, “Stealing pins via mobile sensors: actual risk versus user

perception”, International Journal of Information Security vol. 17,
num. 3, pp. 291–313, 2018.

11. Rui Song, Yubo Song, Qihong Dong, Aiqun Hu, and Shang Gao,
“Weblogger: Stealing your personal pins via mobile web
application”,2017 9th International Conference on Wireless

Communications and Signal Processing (WCSP), pp. 1–6, 2017.

AUTHORS PROFILE

 Dr.P. Uma Maheswari M.E., M.B.A. Ph.D., is
being an Associate Professor, Department of
Computer Science and Engineering, College of
Engineering, Guindy,Anna University, Chennai.
She completed her B.E., degree in the Computer
Science and Engineering discipline, M.E., in
Software Engineering and PhD in Data Mining from
Anna University. During the tenure of service of

about 22 years, Dr.P.Uma Maheswari played various roles and known for her
contribution leading to value-creation and value-addition in various sectors
such as overall administration, academic affairs, education and research. She
organized many international, national and regional conferences, workshops,
faculty development programs and has delivered 100+ guest lectures,
seminars and workshops. Her research interest includes Artificial
Intelligence, Machine Learning, Character Recognition from Ancient
scripts, Image Processing, Deep Learning, Internet of Things, Natural
Language Processing and intelligent computing. Her contribution to the
research is well understood through her 93 research publications in reputed
research journals with 154 citations with 6 h-index, and 3 i-index, more than
10 technical reports and 8 text books. As a recognized Research supervisor
of Anna University, Dr. Uma Maheswari has produced 12 PhD awarded and
4 awaiting thesis evaluation report and doctoral Committee member for more
than 30 Ph.D. scholars. She is being a reviewer of many reputed journals and
evaluator of ISSRD student projects. She is an active member in professional
bodies of ISTE, IEEE and CSI.

Mohamed Yilmaz Ibrahim -A final year Computer
Science undergraduate at the College of Engineering
Guindy, Anna University, Chennai. He has interned in
Cyber Security at the Indian Institute for Development
and Research in Banking Technology, Hyderabad as
well as in NLP at the L3S Research Centre, Leibniz
Universität Hannover, Germany. His research interests
include Cyber Security, Machine Learning and Natural

Language Processing.

Ramkumar B -A final year Computer Science
undergraduate at the College of Engineering Guindy,
Anna University. He has interned at Samsung Research
& Development Institute Bangalore, India. His research
interests include Cyber Security, Android and Machine
Learning.

Aswin Sundar -A final year Computer Science
undergraduate at the College of Engineering Guindy,
Anna University. He has interned in Android App
Development at GoBumpr - Northerly Automotive
Solutions Private Ltd., Chennai, India. His research
interests include Cyber Security, Machine Learning and
Android App Development.

http://www.ijeat.org/

