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Abstract: Over the past years, smartphones have witnessed an 
alarming rise in embedded sensors which enhance their support 
for applications. However, they can be regarded as loopholes as 
seemingly innocuous information can be obtained without any 
user permissions in Android thus invading the user’s privacy. Our 

work establishes a side channel attack by illegitimately inferring 
the information being typed by the user on a smartphone using the 
readings from ‘zero-permission’ sensors like accelerometer and 

gyroscope. This serves as a proof of concept to prevent such 
attacks on mobile devices in the future. While previous research 
has been conducted in this space, our narrative involves a 
predictive model using Recurrent Neural Networks that can 
predict the letters being typed in the keyboard solely based on the 
motion sensor readings, thus inferring the text. Our research was 
able to identify 37.5% of the unseen words typed by the user using 
a very small volume of training data. Our tap detection method 
has shown 92% accuracy which plays a critical role in the text 
inference. This research lays the foundation to further progress in 
this area, thus helping to strengthen the mobile security. 

 
Index Terms— Android, Security, Side-channel attack, LSTM 

I. INTRODUCTION 

The usage of smart mobile devices for personal and business 
purposes has seen immense rise in popularity over the last 
decade. From communication to payments, mobile devices 
have applications in almost all domains. This drastic shift in 
the usage of mobile devices has increased the amount of 
potentially sensitive material and activity performed on them. 
These smartphones have become increasingly personal and 
thus privacy has become a crucial issue and much research 
has been performed on the permissions model governing 
them. Our work explores one particular way to bypass this 
security model such that one application can read the data 
being typed in another application. 

Sensors like gyroscope, accelerometer and orientation 
sensors have originally been designed to monitor a user’s 
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location, movement, orientation, altitude and other such 
potential information.  However, previous research has 
confirmed that motion sensors can act as a side channel for 
inferring the user’s keystroke or input information on 

smartphones. Thus, applications are specifically being 
designed by attackers to collect data from these motion 
sensors and perform text inference attacks with the help of 
machine learning algorithms.  This can prove critical to the 
users as even their sensitive information such as passwords or 
credit card information can be extracted.   
The main objectives of this work are as follows: 
1) To prove that an app in the background can infer the 
information being typed in another application through the 
sensor readings. 
2) To employ Deep Learning and Natural Language 
Processing techniques to deduce the typed information. 

We employ traditional classification methods such as 
RMSE as well as deep neural networks to infer the typed 
sentences. By grouping keyboard keys into larger regions, the 
tap position can be determined more accurately and a 
language model is used to localize the region into one of the 
keys thus improving the overall inference.  
This paper continues in Section 2 with a discussion of the 
academic background to this research, Section 3 then 
explores the system architecture and the design whilst 
Section 4 discusses the analysis of the experimental data. 
Finally, the conclusion of the paper is explored in Section 5. 

II. RELATED WORK 

 According to the work by Genkin et al. [1], the scope of 
applications in smartphones has seen a drastic increase and 
as a result they have become more personal making us 
inseparable from our smartphones. Thus, it becomes 
crucial for us to secure the mobile devices. TouchLogger 
[2] was a smartphone application designed to serve the 
purpose of inferring the keystrokes made on a soft 
keyboard based exclusively on the vibrations recorded by 
the smartphone’s motion sensors.  Their research had 
successfully inferred more than 70% of the keystrokes 
using only the accelerometer sensor of the device. 
However, this work had a restriction as it has been focused 
specifically on inferring the keystrokes from a numeric 
keyboard. Similarly, Xu et al. present TapLogger [3], an 
approach that looks to infer an individual’s taps on a 

numeric keyboard using a smartphone’s accelerometer and 

gyroscope. This work has enhanced functionality as it had 
laid attention on identifying single taps, which are more 
susceptible to distortion by linear drift.  

This paved a way for more active research in this area to not 
only infer the numbers detected from the keyboard but also 
text. The work of Aviv et al. [4] builds on the idea of PIN 
identification using motion sensors.  
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Contrary to the single tap identification established by 
previous works, their approach brings out the notion of 
detecting and inferring the swipe gestures of a victim's PIN. 
The other approach has focused on password compromise, 
for example, Owusu et al. [5] have used a smartphone’s 

accelerometer to infer the characters, both letters and 
numbers, contained within a user’s password. Our approach 

looks to identify the text which has been inputted by the user 
on a qwerty keyboard which provides a much more robust 
identification method. The work of Miluzzo et al [6] on Tap 
Prints builds on this idea of keypress identification by 
attempting to determine the tap location on the screen. This 
was used initially to understand the icons that may have been 
tapped, and later for the applications 
that were launched. Their work tries to 
take this concept further by identifying 
individual keystrokes on a virtual keyboard.  However, their 
work has involved a group of 10 volunteers but our work 
involves inferring typing patterns through an application and 
predicting the results in real time. Our work collects only 
around 100 characters per participant in the form of 3 
sentences for training as well as testing, as our focus has been 
to minimize the amount of data as possible to correctly 
identify a user’s keystrokes. Ping et al. [7] attempt to infer 
long text such as mail messages or tweets. They have used 
machine learning algorithms to roughly predict the input text 

and then use linguistic models to further correct the wrong 
predictions. The accuracy of about 30% after machine 
learning has significantly improved to 65% after using the 
linguistic models. However, client applications on 
smartphones have inherent drawbacks, because these 
applications cannot be executed unless users download them 
to their own devices, and these applications can only run on a 
specific operating system. Thus, some researchers wanted to 
design web applications to circumvent these problems. More 
recently Shen et al. [8] have built in the approach taken by 
TapLogger with taps being recorded with the accelerometer, 
gyroscope and the magnetometer to infer the tap positions. 
According to Felt et. Al [9], the common approach is a 
security model based on permissions, which allows users to 
perform a relatively complex risk-based security decision in 
order to access potentially sensitive information or capability 
(such as location sensors). This complicated model has been 
difficult to manage for most users. The reason for this 
complexity can be either due to the unavailability or 
unpreparedness of the users to completely understand the risk 
behind giving permissions to an app or because apps are over 
privileged, meaning they request for extra permissions than 
that are required to work. Mehrnezhad et al. [10] have 
proposed PINlogger.js to steal users’ privacy when users 

input PINs on web browsers. However, their one-phase 
prediction accuracy has not been ideal on some devices 
because of the sampling rate restriction on motion sensors. 
WebLogger [11] was designed to overcome this problem and 
improve the prediction accuracy on web platforms by 
introducing the weighted voting algorithm in model training 
phase. All the existing works didn't make use of the language 
structure or the pattern in the language being typed. Our work 
aims to use a language model to infer the text. Using the 
language information, the errors can be handled during the 
classification and thus results in better accuracy. 

III. SYSTEM DESIGN 

A. System Architecture 

The block diagram of the entire system is shown in the Fig.  
1.  

 
An android application for data collection is developed to 

collect sensor values of accelerometer and gyroscope in the 
background. The application currently used in our 
experiment is a basic notepad application. It can be extended 
to any other application as well. The app also collects key 
presses while being in the foreground.  The sensor data 
collected along with the key presses forms a labelled data that 
represents the phone motion while tapping each key. Again, 

on test data we try to infer the tapped keys from only the 
sensor readings of Accelerometer and Gyroscope. In our 
experiment, we begin by identifying taps on the test data 
using a statistical technique. Then we divide the qwerty 
keyboard into six regions numbered from 1 to 6. The 
keyboard regions are shown in the Fig 2. 

Fig. 1 System Architecture 

http://www.ijeat.org/


International Journal of Engineering and Advanced Technology (IJEAT) 
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019 

1134 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: B3432129219/2019©BEIESP 
DOI: 10.35940/ijeat.B3432.129219 
Journal Website: www.ijeat.org 

 
Fig. 2 Keyboard regions 

 
A classifier model is used to classify the test data taps to 

one of the 6 regions based on the labelled sensor readings. 
Thus, for each tap, we now know the keyboard region where 
the tap has happened. After obtaining a sequence of keyboard 
tap regions for a word, all possible English words matching 
the region sequence are generated using sequence models 
such as RNN and language models. 

B.  UI Design 

For data collection purpose, the android application lets the 
user to record sensor recording on tap of a button with his 
consent.  Once the sensor data recording starts, three 
randomly chosen sentences are shown to the user. The user is 
asked to type the sentences and click stop to end the session. 
The application automatically uploads this to the Firebase 
data storage. The remaining part of the project uses CLI to 
process the sensor logs and to view the inferred word 
suggestions. 

C.  Methods 

Data Collection: When the user types in our android 
application, it records key presses along with the readings of 
accelerometer and gyroscope for supervised learning. This 
facilitates the inference of victims typing in other apps using 
the sensor readings. This app initially explains the user about 
the work and gets consent from the user to collect the data.  
Once the user completes typing, the log files get uploaded 
automatically to the online firebase storage. 
Tap Detection: Given the time series sensor data collected 
from the application, this module detects the taps on the 
screen and outputs a list of timestamps where the taps have 
occurred. Z-score algorithm is one of the most common 
signal peak detection algorithms. This uses a robust version 
of Z-score to detect peaks in the signal and to effectively 
perform an anomaly detection. The anomalies in the signal 
are taps. The peak signal detection algorithm is made more 
robust by replacing the mean with the median and also 
median absolute deviation is considered in place of standard 
deviation. This has given us profound results with better 
accuracy than the previous method. 
Tap Extraction: Given the timestamp of the taps, the sensor 
data are windowed near the taps.  A window of a predefined 
millisecond duration cuts out sensor readings starting from a 
defined time period before a tap and ending at a defined time 

period after the tap. For each tap we get a 6D vector, (3 
accelerometer axis and 3 gyroscope axis). This 6D vector 
represent the movement of the phone during the 
corresponding tap. Since this vector is non- uniformly 
sampled, it is resampled uniformly using linear interpolation. 
Then the vectors are standardized by subtracting mean and 
dividing them by the standard deviation. A finalised 6D 
vector is obtained after interpolation and standardization. 
This set of 6D vectors obtained from each tap in the training 
data is labelled with the corresponding tap region and stored. 
Region Classification: Given a 6D vector, the closest match 
is obtained by comparing the given sample with all the 
available 6D vectors from the reference data. Distance of this 
6D vector from all other samples is calculated using the RMS 
distance. RMSE is a technique used to compare two time 
series data. An ensemble scoring based method is used with 
the distance metric to come up with a tap region. 
Word Prediction: Given the sequence of keyboard regions as 
tapped by the user, the probable sentences or words typed are 
derived by using the knowledge of letter probabilities and the 
English language. A character is trained on an English corpus 
to predict the next probable character given a sequence of 
characters. The RNN outputs the probabilities of all the 
characters in the vocabulary, to be the next character.  The top 
3 probable letters that are present in the next keyboard region 
are selected. They are appended to the current word and thus 
the finalised words are obtained. 
Sentence Prediction with LSTM Approach: Given a sequence 
of keyboard regions as tapped by the user and a trained 
model, this module makes use of a predictive keyboard to 
infer the next probable words typed by using the knowledge 
of letter probabilities in the English language. A two-layer 
128 neuron LSTM network with an additional SoftMax layer 
is trained on an English corpus to predict the next n probable 
completions of a word given a sequence of characters. The 
words are predicted until a space character is obtained The 
LSTM outputs 10 probable word completions for the 
character sequence. By using region mapping mechanism, 
the most probable word can be inferred. This works well for 
some of the cases. 

IV. ANALYSIS AND EXPERIMENTAL RESULTS 

The analysis was performed on data obtained from Samsung 
Galaxy s6 edge running Android 7.1. A paragraph of about 3 
sentences is typed to create samples for each tap region. 
Following that, 24 words (10 unique) are typed while holding 
the phone in the same position. From the samples, the we try 
to infer the 24 words. 

A. Tap Detection 

The Accelerometer and Gyroscope sensor logs are shown in 
the Fig 3 and Fig 4 respectively. The color bars represent the 
taps.  
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Fig 3. Accelerometer Sensor readings 

 
 Fig 4. Gyroscope Sensor readings 

 
The deflection in the sensors during tap can be clearly seen 
and thus a peak detection algorithm is used to detect taps in 
time series data. One of the two sensors would suffice to 
perform the task and so accelerometer was chosen.  

The magnitude of the 3 values from the accelerometer can 
be picked or only the z-dimension can be chosen alternatively 
to obtain similar results. The 3-axis accelerometer readings 
are converted into a single time series data by calculating the  
magnitude. This time series data is running through Z-score 
to detect the taps. The precision of tap detection is calculated 
by Equation 1. The recall metric of tap detection is calculated 
by Equation 2. 
       precision = No. of actual taps detected 
                            Total No. of taps detected    (1) 
 

recall = No. of actual taps detected 
           No. of actual taps       (2) 
 
The F1 score is given by Equation 3 
 
           F1 score = 2 x    precision x recall 
                             precision + recall     (3) 
 
The threshold factor of the Z-score algorithm can be used to 
balance between the precision and recall. Increasing the 
threshold will reduce the false positives and also the recall. 
Reducing the threshold will shoot up the recall and at the 
same time decrease the precision because of the false 
positives obtained. The results from Z-score and robust 
Z-score are compared for further analysis. The robust Z-score 
gave a f1 score of 0.921 whereas the normal Z-score gave a f1 

score of 0.801. The Figure 5 shows the three metrics against 
the 24 sample test data. 

 
 

Fig. 5 Tap detection result 
 
From the Figure 5, it can be seen that there is not much 
consistency across the experiment. Change in hand stress 
during taps seem to affect the results and thus accounting for 
the lesser f1 score in certain test cases.  

B. Region Classification 

6D vectors: From the labelled reference data obtained from 
data collection, 6D vectors are extracted for each tap and 
labelled with the tap region. The obtained 6D vector for 
keyboard region 1 is shown in the Figure 6. 

 
Fig. 6 6D vector - Region 1 

 
Fig. 7 6D vector - Region 3 

It can be seen that the 6D vector differs from the one 
corresponding to the tap in Region 3 shown in Figure 7. For 
each keyboard region, more than one reference 6D vectors as 
shown in Figures 6 and 7 are 
extracted. 
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Tap region classification: From the tap timestamps obtained 
from the tap detection and 6D sample vectors from reference 
data, each test data tap needs to be classified among one of 
the 6 keyboard regions. The samples contain 6D vectors for 
each region representing the movement of the phone during a 
tap in that region. Initial research started with using common 
machine learning models such as SVM, Random Forest for 
the classification task. The 6D vector is under sampled and 
flattened to form the feature vector which is labelled against 
the corresponding region. This intuition however seems not 
suitable as the samples is very less. The reference data is 
dependent on the user, mobile device and the hand posture. 
Thus, a more flexible approach is needed. 

RMS (Root mean square) distance can be used to compare 
the similarity of two data series. Employing RMS distance by 
comparing the unseen 6D vector to every sample 6D vector 
and the taking closest match seemed to work. Since the 
closest match could be an outlier, a scoring algorithm is 
introduced to improve the classification. Instead of the 
closest match, all the distances are sorted and assigned a 
score based on its position in the sort. The closest gets the 
highest score. The scores are added grouping by keyboard 
region. The output class is determined by the region with 
highest score. By this, even if the closest match is wrong, 
many correct regions below will add up to handle the outlier. 
For this scoring to work, all the regions should have equal 
number of 6D samples, else the classifier will be biased to the 
region with more samples. The accuracy of the classification 
is calculated by Equation 4. 
 

Accuracy = No. of correctly classified regions 
                          Total No. of taps       (4) 

The average accuracy of region classification from the 24 test 
cases is 0.5612. The Figure 8 compares the metric between 
scoring and closest match. 

 
Fig. 8 Tap region classification result 

 
Again, it can be seen that the accuracy isn’t consistent among 

the files. Since the regions are tightly placed in the keyboard, 
there isn’t much difference between the 6D vectors of 

adjacent regions. In fact, the samples of adjacent regions 
overlap. This inference of tap region can be serious threat to 
user privacy. Given the personal details of the user and this 
keyboard tap regions, the user’s password could be inferred. 

Given this tap regions, the password wordlist for brute force 
attack can be made much shorter and thus posing a security 
issue. Also, by employing this technique on the entire screen, 
the app usage behaviour of the user can also be inferred. 
 

C. Text Inference 

Word Inference: From a sequence of keyboard regions 
tapped, the probable words matching that needs to be 
generated. The challenge here is that the region sequence 
itself isn’t accurate. A two-layer RNN with 512 GRU each 
and a third fully connected layer is trained on a corpus1 of top 
10000 English words. The RNN outputs probability for the 
next character given the current character along with its state. 
RNN is robustly made to generate all probable words by 
taking top three possible matches for each character position. 
The RNN output probabilities for the nth character is filtered 
by the nth tap region to include only the keys in that region. 
Given the nth tap region and the probabilities of the keys in it 
to be the nth character, top three characters are chosen and 
added to the word. Since the RNN doesn’t have state for 

predicting the first character of the word, All the keys in the 
first tap region are taken. Repeating this, robust word 
generation creates a set of 3l-1 x No. of keys in first tap’s 

region words. Since the word generation is robust and 
considered 3 possible character for each position, the words 
that are not close to English are removed. Then the words are 
autocorrected to account for the errors in the region sequence. 
The resulting bag of words are the inferred probable words 
for the given region sequence. This robust generation gave an 
inference rate of 0.375 (9 out of 24 inferred). This can also be 
extended to inferring sentences, given that the spaces can be 
detected with high accuracy. 
Region size: The number of keyboard regions can be reduced 
by having a greater number of keys per region. This increases 
the accuracy of region classification as the regions become 
larger and number of target classes is reduced. On the other 
hand, increasing the number of regions favor the word 
inference as the number of probable words for a given region 
sequence is reduced. 
The experimental results are shown in Table-I. 
 

Table-I: Metrics 
S. No Technique Metric  

 Tap Detection Detection Rate 

1 Standard z-score 0.8017 

2 Median z-score 0.9210 

 Region Classification Accuracy 

3 RMS Distance 0.5212 

4 RMS Distance with 
Scoring 

0.5612 

 RNN Test Cases Avg. Accuracy on 
100 samples 

5 While standing 0.375 

6 While moving 0.0 

7 Phone on table 0.0 

 
https://github.com/first20hours/google-10000-english/blob/master/google-10000-engli
sh.txt 
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V. CONCLUSION AND FUTURE WORK 

In our research, we have proposed an approach to identify 
the user tap positions even if we do not have any large 
historical sensory data of this particular user. We have 
obtained an accuracy of 37.5% which proves to be better than 
the previous methods which have been used in this research. 
The experimental results demonstrate that our proposed 
method can predict tap sequences and can generate words 
matching the sequence.  

This research can be extended to infer passwords which 
would prove to be a potential threat to user’s security. The 

character RNN can be trained on a password wordlist, so that 
it generates password patterns. Using such an RNN with the 
knowledge of keyboard tap regions obtained from our tap 
region classification method, can help generate probable 
passwords making the password brute-force attack much 
more feasible.  Another extension would be to infer sentences 
with context using a LSTM model. One major challenge with 
using such a complex language model is that one wrong 
inference due to error in tap region sequence propagated 
through modules, could result in the change of context and 
hence affect all the corresponding sentences we have to infer. 

APPENDIX 

A. List of Abbreviations 
 
NLP - Natural Language Processing  
CLI - Command Line Interface  
UI - User Interface  
RMSE - Root Mean Squared Error  
RNN - Recurrent Neural Network  
LSTM - Long Term Short Memory Network  
6D - Six Dimensional  
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