
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2264

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3515129219/2019©BEIESP
DOI: 10.35940/ijeat.B3515.129219
Journal Website: www.ijeat.org

 Abstract: The deep network model comprises of several
processing layers and deep learning techniques help us in
representing data with diverse levels of abstraction. Based on the
practical importance and the efficiency of machine learning,
optimization of deep models are carried out relating to the
objective functions and its parameters for a particular problem.
The present work focuses on an empirical analysis of the
performance of stochastic optimization methods with regard to
hyperparameters for the deep Convolution Neural Network
(CNN) and to understand the rate of convergence of the
optimization methods in high dimensional parameter spaces.
Experimentation has been carried out in deep CNN model with
different optimization methods viz. SGD, AdaGard, AdaDelta and
Adam. The empirical results are evaluated using benchmark
CIFAR10 and CIFAR100 datasets. The optimal values of the
hyperparameters obtained demonstrates that the optimizer Adam
shows the best results compared to other methods viz. SGD,
AdaGard, and AdaDelta over the considered datasets. Further, it
is noted that classification accuracy can be increased by choosing
the best optimization techniques with hyperparameter tuning to
get the optimal configuration of the deep CNN model.

 Keywords: Optimization techniques, CNN, hyperparameter.

I. INTRODUCTION

 Image classification is one of the crucial jobs in the field
of computer vision. The advancement of Deep Learning
techniques in this area establishes superior performance than
the preceding work and hence its objective is to move
Machine Learning nearer to one of its novel aims: Artificial
Intelligence. Deep learning refers to computational models
containing numerous processing layers and can have
compound levels of representation and abstraction that assist
to make sense of data such as images, sound, and text. A deep
network with multiple hidden layers is capable of
recognizing more complex features. Subsequently, the
combined nodes recombine features from the preceding layer
[1]. Neural Network comprises of a layered set of neurons
connected by links with some synaptic weights, through the
activation functions, and the summation is processed. The
concept of multiple hidden layers or deep network models

Revised Manuscript Received on December 30, 2019.
* Correspondence Author

Munmi Gogoi, Department of Computer Science, Assam University,
Silchar,Assam,India.

Shahin Ara Begum*, Department of Computer Science, Assam
University, Silchar, Assam, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

aroused to solve problems of non-linearly separable domain
and the complexity increases when problems related to
arbitrary decision boundary and arbitrary accuracy with
rational activation functions are encountered. For the
differentiable objective functions, Gradient descent is the
most common optimization method to solve the problem but
most often objective functions are stochastic and stochastic
gradient descent (SGD) is an effective optimization
technique in many machine learning area. With the emerging
trend of deep learning techniques and high dimensionality of
data, this paper focus on optimizing stochastic objective
functions w. r. t. its high dimensional parameter space. The
main purpose of optimizing a network is to minimize the
error by the common gradient descent algorithm m where we
differentiate the error function to get the gradient of the error
and update the weights to make the error smaller i.e. to
minimize an objective function J(θ) parameterized by a
model's parameters θ∈Rd by updating the parameters in the
opposite direction of the gradient of the objective function
∇θJ(θ) w.r.t. to the parameters. The learning rate η
determines the size of the steps we take to reach a global
optimum. The complexity of the network increases as the
number of layers increases and hence the necessity of
optimization techniques. With this hypothesis, section 2
gives a brief description of work related to different
optimization techniques such as SGD, Adam, AdaGard and
AdaDelta. Section 3 describes the deep architecture of the
CNN model and the hyperparameter optimization of the deep
network. Section 4 presents the benchmark dataset from [2]
used for the experimentation. Section 5 presents the
experimental results of optimizing techniques and the
comparison of performance of the optimizing techniques
with regard to hyperparameters for the deep CNN. Section 6
concludes the paper.

II. RELATED WORK

 The traditional machine learning techniques with
hand-engineered feature design consumes much time than
deep learning techniques in trend. Numerous machine
learning problems deal with minimization or maximization of
objective functions concerning some parameters i.e.
optimization of objective functions. Stochastic gradient
descent is the most general method of optimization in various
machine learning task but with the rapid advances in deep
learning many other efficient stochastic optimization
techniques have been developed where stochastic objective
functions with high dimensional parameter spaces are the
matter of concern [3]-[4]-[5]-[6]-[7].

 Optimizing Deep Network for Image
 Classification with Hyper Parameter Tuning

Munmi Gogoi, Shahin Ara Begum

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3515.129219&domain=www.ijeat.org

Optimizing Deep Network for Image Classification with Hyper Parameter Tuning

2265

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3515129219/2019©BEIESP
DOI: 10.35940/ijeat.B3515.129219
Journal Website: www.ijeat.org

In 2011 Duchi [8] proposed another optimization
technique named AdaGard

where optimization takes place with sparse gradients. It
has the same updating rule with SGD but has a different
learning rate for each parameter. The final update rule for
AdaGard is given in (1) [8].

1 1 2()k k kG G J
− −

= +
(1) 1

1
. ()

()
k k k

k
J

sqrt G

 − −

−
= −

 (1)
 where, ⋅ and sqrt are element-wise operations. The historical
gradient information is considered as G and it stores the sum
of squares of its all historical gradients for each parameter
and to scale up the learning rate, the calculated sum is used
later. For each of the parameters, the AdaGrad learning rate is
dissimilar from SGD. The learning rate is bigger for the
parameters where the historical gradient is relatively small
and the learning rate is smaller for greater historical
gradients. AdaGard stores the sum of the square of its entire
historical gradient (G) of each parameter which has been used
to scale the learning rate later on. To overcome the weakness
of AdaGard, Zeiler [9] introduced AdaDelta with respect to
the learning rate converging to zero with augment of time. In
contrast to AdaGard, AdaDelta uses only the current time
window to scale the learning rate rather than consider the
entire historical gradient like AdaGard. Adadelta combines
two notions though - the first one uses only the recent time
window gradient information rather considering the whole
for scaling up the learning rate, and the second one comes up
with the concept of acceleration term similar to momentum,
and for that Adadelta use the component that serves an
acceleration term. The update rules for Adadelta first
computes the gradient gt at current time t, then accumulates
gradients as in (2) [9].

2 2 2
1[] [] (1)t t tE g E g g −= + − (2)

After accumulating the gradients, (3) computes the Update,
where, E[g2]t and E[∆x2]t is the accumulation variable and
update variable respectively at time t.

2
1

2

[]

[]

t
t t

t

E x
x g

E g

− +
 = −

+
 (3)

where, the parameter ρ is decay constant and ϵ (very small
number) is considered for numerical stability. Another
optimization algorithm Adam is one of the best choices for
the neural network community. Adam [10] is an algorithm
for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of
lower-order moments. The Adam method has some
advantages over other methods and it includes
straightforward implementation, efficiency, and less memory
requirement. Adam is the appropriate choice for bigger
problems in terms of data and parameter, this method is also
suitable for the problems with very noisy and sparse gradients
and Adam method works well for non-stationary objectives
as well. The update rule for Adam is determined based on the
estimation of first (mean) and second raw moment of
historical gradients. Adam update rule first computes the

gradient gt at current time t and then update biased
first-moment estimate as in (4).

1 1 1(1)t t tm m g −= + −
 (4)

where, mt is the first-moment vector and β1 is the decay rate
for the moment estimates. Then, updates biased second raw
moment estimate as in (5) where v and β2 is the
second-moment estimate and decay rate respectively, after
updating biased for first and second raw moment, the (6) and
(7) equation computes biased raw moment for first and
second raw moment accordingly.

2
2 1 2(1)t t tv v g −= + −

 (5)

11
t

t t

m
m

=
−

 (6)

21
t

t t

v
v

=
−

 (7)

Finally, the Adam optimizer updates the parameters as in (8),
where θ is the parameter for stochastic objective function
f(θ).

1

t

t t

t

m

v

−

= −

+

 (8)

III. CONVOLUTION NEURAL NETWORK MODEL

A. Convolution Neural Network (CNN) Architecture

The Convolution Neural Network (CNN) is a special kind of
neural network which is composed of one or more
convolution layers. A CNN convolves learned features with
input data and uses a 2D convolution layer that makes this
architecture well suited to processing 2D data, such as
images. In the area of image classification and recognition,
CNN has been used extensively and has proven very effective
in this domain [4]. CNN model has a greater learning
capacity compared to other feed-forward neural networks in
the domain of image classification as the model has to go
through millions of images to learn the latent pattern of the
images for correct assumptions about the object images. The
capability of a CNN model depends upon the parameters
associated with it such as depth and breadth of the model. The
training of a CNN model is much easier as compared to the
similar-sized multilayer neural network as the CNN model
has much fewer connections and parameters. An image is
directly given as an input to the network and passes through
various layers of convolution and pooling. Finally, the
outcomes from these operations are given to one or more
fully connected layers for the desired output often known as
class label. Convolution layers detect local conjunctions from
features and polling layers combine analogous features into
one [11]. CNN uses convolutions instead of matrix
multiplication in the convolution
layers [12].

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2266

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3515129219/2019©BEIESP
DOI: 10.35940/ijeat.B3515.129219
Journal Website: www.ijeat.org

A typical CNN structure contains chains of convolutional
layers, nonlinear activation layers, pooling layers and finally
for output classification labels a fully connected layer is
added in CNN architecture.

 The deep model learns from low-level features to get more
abstract features i.e. the feature detectors (filter) learn from
minor regions of an image and sum up them to figure out
more abstract features. Later on, these abstract features have
been used by the fully connected layer for output the
classification labels into different classes based on the
training dataset. In the fully connected layer, every neuron of
the layer is associated with every neuron of the previous
layer. This layer computes class scores and that will decide
the output of the network.

Fig. 1. Image Classification pipeline (CNN)[4]

B. Hyperparameter for CNN

Hyperparameter tuning is essentially used to make the
network better and faster, and they deal with managing
optimization functions and model selections during training
with learning algorithms. It focuses on ensuring the two
major problems of a deep network such as over-fitting and
under-fitting of the training dataset while learning.
Hyperparameter related to training algorithm includes
learning rate, momentum, batch size, and number of epochs,
etc. Learning rate refers to how fast a network is learning and
it deals with the problem of slow convergence. A good choice
of learning rate depends upon the optimizers used in the
model such as SGD, Adam, AdaGard, and AdaDelta. The
parameter "number of the epoch” defines one cycle through

the training dataset and the number of epoch increasing
depends upon the validation accuracy and training accuracy
of the training data. Network parameter batch size is the
number of samples given to the network after network
parameter updates take place. CNN is sensitive to batch size;
basically, minibatch size is preferable. To find out the method
of hyperparameter selection [13] cast some light on
hyperparameter optimization on large hierarchical models
such as Deep belief network models. Bengio demonstrates
empirically and theoretically that random search technique is
more preferable over grid and manual search because not all
the hyperparameters are mandatory to tune. In 2007, [14]
experiments gird search and reports that grid search allocates
too many trails to the investigation of dimensions and
experiences poor convergence as compared to random
search.

IV. EXPERIMENTAL SETUP AND DATASET

In this empirical analysis, the organizational design of the
CNN model contains three alternating 5x5 convolution

filters, 3x3 max pooling with stride 2 and a fully connected
layer with 1000 rectified linear hidden units. The
experimentation has been carried out on the HPC
environment with Python language using the TensorFlow
libraries. The description of hardware for this
experimentation includes 16 Intel core processors, 16 GB
RAM, with 2GB Nvidia Geforce GTX graphics card.

Fig. 2. CIFAR-10 dataset [2].
Experimentation has been conducted using CIFAR10 and
CIFAR100 datasets. CIFAR stands for the Canadian Institute
for Advanced Research [2]. The images of the dataset were
composed by Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton. In the CIFAR10 dataset, "10 classes" are present and
it comprises 50,000 training images and 10,000 test images.
CIFAR-10 has 32 x 32 color real-world objects such as an
airplane, automobile, cat, etc.
CIFAR100 datasets is similar to CIFAR10 dataset and has
100 class labels. Fig. 2 illustrates the diverse classes in the
CIFAR10 dataset and ten random images from each one of
the classes.

V. RESULTS AND ANALYSIS

To empirically evaluate the performance of different
optimization techniques the experimentation has been
conducted over the deep CNN model. Using a large model
and dataset, the performance is measured in terms of
accuracy and loss rate. The classification accuracy is
presented in Table I and Table II over CIFAR 100 and
CIFAR 10 dataset respectively. From the tables it is observed
that the classification accuracy of Adam optimizer is higher
than other stochastic optimization techniques viz. AdaGard,
AdaDelta, SGD.

Table - I: Comparisons of optimization techniques over
the CNN model with CIFAR 100

Classification Accuracy

 Optimizer Accuracy Loss

Adam 90.55% 9.5%

AdaGard 59.45% 40.55%

AdaDelta 24.19% 75.81%

SGD 59.91% 40.09%

http://www.ijeat.org/

Optimizing Deep Network for Image Classification with Hyper Parameter Tuning

2267

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3515129219/2019©BEIESP
DOI: 10.35940/ijeat.B3515.129219
Journal Website: www.ijeat.org

Table - II: Comparisons of Optimization techniques over
the CNN model with CIFAR 10

Classification Accuracy

 Optimizer Accuracy Loss

Adam 90.55% 9.5%

AdaGard 59.45% 40.55%

AdaDelta 24.19% 75.81%

SGD 59.91% 40.09%

The classification accuracy of different optimization methods
after the hyperparameter tuning is shown in Table I and Table
II respectively and from the tables it is seen that Adam shows
best result in both the CIFAR 10 and CIFAR 100 datasets.
Table III presents the performance of all the optimizers when
the hyperparameters are set to an optimal value. Among all
these hyperparameters, we considered the following three
parameters during the experimentation, viz. epoch, learning
rate, and batch size. The number of epoch considered is 15,
30 and 60 as the number of epochs is up surged till the gap
between the test error and the training error is minimum.
During the experimentations conducted a scale of 10
comparisons of learning rate has been carried out. However,
in Table III only the optimal values have been shown for
learning rate 0.001 and 0.002. For each learning rate of 0.001
and 0.002 the considered batch size is 32 and 64, the convnet
is sensitive to batch size and in the learning process of
convnet Mini-batch is generally desirable [13]. The range of
16 to 128 is a better choice to test with so the experimentation
is carried out on that scale and the optimal results have been
shown in Tale III with batch size 32 and 64. The
experimentation is carried out on the CIFAR10 and CIFAR
100 dataset and from Table III, it is seen that the performance
of Adam optimizer is best when the hyperparameters are set
to an optimal value (highlighted in bold in Table III).

.

Fig.3. Accuracy and validation graph of CNN model
using different optimization methods (a)Adam (b) SGD

(c) AdaGrad (d) AdaDelta

The classification accuracy is increased when the value of
hyperparameters is changed i.e. a good value of
hyperparameter optimizes the network performance. In Table
III. It is shown that the accuracy of Adam optimizer increases
to 90.55 % at epoch 60, batch size 64 and learning rate 0.001.
In Fig.3, the classification accuracy and validation of
different optimizers are shown where Adam shows a better
result as compared to other optimization methods viz.
AdaGard, AdaDelta, SGD.

Fig.4.Comparison of Adam, SGD, AdaGrad, and
Adadelta with respect to accuracy and validation over the

CIFAR100 dataset.

In the above Fig.4 depicts the comparisons of all the
optimizers viz. Adam, SGD, AdaGard, and AdaDelt over
CIFAR 100 dataset where Adam shows better results
compared to other optimization methods.

VI. CONCLUSION

This paper presents an empirical analysis of optimization
techniques in a supervised architecture of the deep CNN
model. Experimentation has been carried out to analyze the
effect of different optimizers and the model has been tested
over the CIFAR 10 and CIFAR 100 datasets. Along with the
optimization methods, experimentations are conducted to
identify optimal value for hyperparameters and to understand
the rate of convergence of the optimization methods in high
dimensional parameter spaces. From the experiments, it may
be concluded that compared to other optimization techniques
viz. AdaGard, AdaDelta and SGD - Adam shows better
performance in nonconvex optimization problems. The
experiments conducted confirm that classification accuracy
can be increased by choosing the best optimization
techniques with sophisticated hyperparameter tuning to get
the optimal configuration of the deep CNN model. However,
for general applicability further experimentation is required
on different benchmark datasets.

.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2268

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3515129219/2019©BEIESP
DOI: 10.35940/ijeat.B3515.129219
Journal Website: www.ijeat.org

Table - III: Comparison of Optimizers with hyperparameter tuning over CIFAR100 dataset

 Table. 3 Comparison of Optimizers with hyperparameter tuning over CIFAR100 dataset

Optimizer Epoch Learning Rate Batch Size Accuracy

Adam

15

0.001
32 76.32

64 77.31

0.002
32 74.11

64 74.12

30

0.001

 32 80.49

64 80.60

0.002
32 76.23
64 76.50

60
0.001

32 80.51

64 90.55

0.002
32 75.54
64 75.60

AdaGrad

15

0.001
32 56.72

64 56.80

0.002
32 55.12

64 55.23

30
0.001

32 57.34
64 58.45

0.002
32 54.67
64 56.89

60

0.001
32 59.21
64 59.45

0.002
32 54.80

64 55.76

SGD

15

0.001
32 53.12

64 54.11

0.002
32 53.15

64 54.67

30

0.001
32 58.45
64 58.90

0.002
32 57.45

64 57.78

60

0.001
32 59.90
64 59.91

0.002
32 57.12

64 57.16

AdaDelta

15

0.001
32 22.13

64 23.12

0.002
32 22.11

64 22.13

30

0.001
32 24.15

64 24.17

0.002
32 22.11

64 22.14

60
0.001

32 24.18

64 24.19

0.002
32 23.89
64 23.65

http://www.ijeat.org/

Optimizing Deep Network for Image Classification with Hyper Parameter Tuning

2269

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3515129219/2019©BEIESP
DOI: 10.35940/ijeat.B3515.129219
Journal Website: www.ijeat.org

REFERENCES

1. Hinton, Geoffrey,. "Deep neural networks for acoustic modeling in
speech recognition." IEEE Signal processing magazine 29 (2012).

2. Krizhevsky, Alex, and Geoffrey Hinton. Learning multiple layers of
features from tiny images. Vol. 1. No. 4. Technical report, University of
Toronto, 2009.

3. Deng, Li, et al. "Recent advances in deep learning for speech research at
Microsoft." 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2013.

4. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in
neural information processing systems. 2012.

5. Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the
dimensionality of data with neural networks." science 313.5786 (2006):
504-507.

6. Hinton, Geoffrey, et al. "Deep neural networks for acoustic modeling in
speech recognition." IEEE Signal processing magazine 29 (2012).

7. Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. "Speech
recognition with deep recurrent neural networks." 2013 IEEE
international conference on acoustics, speech and signal processing.
IEEE, 2013.

8. Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient
methods for online learning and stochastic optimization." Journal of
Machine Learning Research 12.Jul (2011): 2121-2159.

9. Zeiler, Matthew D. "ADADELTA: an adaptive learning rate method."
arXiv preprint arXiv:1212.5701 (2012).

10. Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic
 optimization." arXiv preprint arXiv:1412.6980 (2014).
11. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning."

nature 521.7553 (2015): 436-444.
12. Goodfellow, I., Y. Bengio, and A. Courville. "Deep Learning (Book in

preparation)." (2016).
13. Bergstra, James, and Yoshua Bengio. "Random search for

hyper-parameter optimization." Journal of Machine Learning Research
13.Feb (2012): 281-305.

14. Larochelle, Hugo, et al. "An empirical evaluation of deep architectures
on problems with many factors of variation." Proceedings of the 24th
international conference on Machine learning. ACM, 2007.

AUTHORS PROFILE

Ms. Munmi Gogoi pursed Bachelor of Computer
Application from Punjab Technical University in 2010
and Master of Computer Application from Dibrugarh
University, Assam, India, in the year 2013. She is
currently pursuing Ph. D. degree in Department of
Computer Sciences, Assam University, Silchar, India,
since 2015. Her research work focuses on Artificial

Neural Network and Deep Learning.

Dr. Shahin Ara Begum pursed her Bachelor of
Science from Bangalore University in 1994 and
Master of Science from Jamia Millia Islamia
University, India, in 1997. She has pursued her Ph.
D. from Assam University, Silchar and currently
working as Associate Professor in the Department
of Computer Science, Assam University Silchar,
India. She has published more than 30 research

papers in reputed international journals including Thomson Reuters (Scopus
& Web of Science) and conference papers of repute. Her research work
focuses on Machine Learning and Soft Computing Techniques.

http://www.ijeat.org/

