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     Abstract: The deep network model comprises of several 
processing layers and deep learning techniques help us in 
representing data with diverse levels of abstraction. Based on the 
practical importance and the efficiency of machine learning, 
optimization of deep models are carried out relating to the 
objective functions and its parameters for a particular problem. 
The present work focuses on an empirical analysis of the 
performance of stochastic optimization methods with regard to 
hyperparameters for the deep Convolution Neural Network 
(CNN) and to understand the rate of convergence of the 
optimization methods in high dimensional parameter spaces. 
Experimentation has been carried out in deep CNN model with 
different optimization methods viz. SGD, AdaGard, AdaDelta and 
Adam. The empirical results are evaluated using benchmark 
CIFAR10 and CIFAR100 datasets. The optimal values of the 
hyperparameters obtained demonstrates that the optimizer Adam 
shows the best results compared to other methods viz. SGD, 
AdaGard, and AdaDelta over the considered datasets. Further, it 
is noted that classification accuracy can be increased by choosing 
the best optimization techniques with hyperparameter tuning to 
get the optimal configuration of the deep CNN model. 
 
    Keywords:  Optimization techniques, CNN, hyperparameter.  

I. INTRODUCTION 

 Image classification is one of the crucial jobs in the field 
of computer vision. The advancement of Deep Learning 
techniques in this area establishes superior performance than 
the preceding work and hence its objective is to move 
Machine Learning nearer to one of its novel aims: Artificial 
Intelligence. Deep learning refers to computational models 
containing numerous processing layers and can have 
compound levels of representation and abstraction that assist 
to make sense of data such as images, sound, and text. A deep 
network with multiple hidden layers is capable of 
recognizing more complex features. Subsequently, the 
combined nodes recombine features from the preceding layer 
[1]. Neural Network comprises of a layered set of neurons 
connected by links with some synaptic weights, through the 
activation functions, and the summation is processed. The 
concept of multiple hidden layers or deep network models 
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aroused to solve problems of non-linearly separable domain 
and the complexity increases when problems related to 
arbitrary decision boundary and arbitrary accuracy with 
rational activation functions are encountered. For the 
differentiable objective functions, Gradient descent is the 
most common optimization method to solve the problem but 
most often objective functions are stochastic and stochastic 
gradient descent (SGD) is an effective optimization 
technique in many machine learning area. With the emerging 
trend of deep learning techniques and high dimensionality of 
data, this paper focus on optimizing stochastic objective 
functions w. r. t. its high dimensional parameter space. The 
main purpose of optimizing a network is to minimize the 
error by the common gradient descent algorithm m where we 
differentiate the error function to get the gradient of the error 
and update the weights to make the error smaller i.e. to 
minimize an objective function J(θ) parameterized by a 
model's parameters θ∈Rd by updating the parameters in the 
opposite direction of the gradient of the objective function 
∇θJ(θ) w.r.t. to the parameters. The learning rate η 
determines the size of the steps we take to reach a global 
optimum. The complexity of the network increases as the 
number of layers increases and hence the necessity of 
optimization techniques. With this hypothesis, section 2 
gives a brief description of work related to different 
optimization techniques such as SGD, Adam, AdaGard and 
AdaDelta. Section 3 describes the deep architecture of the 
CNN model and the hyperparameter optimization of the deep 
network. Section 4 presents the benchmark dataset from [2] 
used for the experimentation. Section 5 presents the 
experimental results of optimizing techniques and the 
comparison of performance of the optimizing techniques 
with regard to hyperparameters for the deep CNN. Section 6 
concludes the paper. 

II.  RELATED WORK 

 The traditional machine learning techniques with 
hand-engineered feature design consumes much time than 
deep learning techniques in trend. Numerous machine 
learning problems deal with minimization or maximization of 
objective functions concerning some parameters i.e. 
optimization of objective functions. Stochastic gradient 
descent is the most general method of optimization in various 
machine learning task but with the rapid advances in deep 
learning many other efficient stochastic optimization 
techniques have been developed where stochastic objective 
functions with high dimensional parameter spaces are the 
matter of concern [3]-[4]-[5]-[6]-[7].  
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In 2011 Duchi [8] proposed another optimization 
technique named AdaGard  

where optimization takes place with sparse gradients. It 
has the same updating rule with SGD but has a different 
learning rate for each parameter. The final update rule for 
AdaGard is given in (1) [8]. 
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 where, ⋅ and sqrt are element-wise operations. The historical 
gradient information is considered as G and it stores the sum 
of squares of its all historical gradients for each parameter 
and to scale up the learning rate, the calculated sum is used 
later. For each of the parameters, the AdaGrad learning rate is 
dissimilar from SGD.  The learning rate is bigger for the 
parameters where the historical gradient is relatively small 
and the learning rate is smaller for greater historical 
gradients. AdaGard stores the sum of the square of its entire 
historical gradient (G) of each parameter which has been used 
to scale the learning rate later on. To overcome the weakness 
of AdaGard, Zeiler [9] introduced AdaDelta with respect to 
the learning rate converging to zero with augment of time. In 
contrast to AdaGard, AdaDelta uses only the current time 
window to scale the learning rate rather than consider the 
entire historical gradient like AdaGard. Adadelta combines 
two notions though - the first one uses only the recent time 
window gradient information rather considering the whole 
for scaling up the learning rate, and the second one comes up 
with the concept of acceleration term similar to momentum, 
and for that Adadelta use the component that serves an 
acceleration term. The update rules for Adadelta first 
computes the gradient gt at current time t, then accumulates 
gradients as in (2) [9]. 
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After accumulating the gradients, (3) computes the Update, 
where, E[g2]t and  E[∆x2]t is the accumulation variable and 
update variable respectively at time t. 
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where, the parameter ρ is decay constant and ϵ (very small 
number) is considered for numerical stability. Another 
optimization algorithm Adam is one of the best choices for 
the neural network community. Adam [10] is an algorithm 
for first-order gradient-based optimization of stochastic 
objective functions, based on adaptive estimates of 
lower-order moments. The Adam method has some 
advantages over other methods and it includes 
straightforward implementation, efficiency, and less memory 
requirement. Adam is the appropriate choice for bigger 
problems in terms of data and parameter, this method is also 
suitable for the problems with very noisy and sparse gradients 
and Adam method works well for non-stationary objectives 
as well. The update rule for Adam is determined based on the 
estimation of first (mean) and second raw moment of 
historical gradients. Adam update rule first computes the 

gradient gt at current time t and then update biased 
first-moment estimate as in (4). 

1 1 1(1 )t t tm m g −= + −           
 (4) 

where, mt is the first-moment vector and β1 is the decay rate 
for the moment estimates. Then, updates biased second raw 
moment estimate as in (5) where v and β2 is the 
second-moment estimate and decay rate respectively, after 
updating biased for first and second raw moment, the (6) and 
(7) equation computes biased raw moment for first and 
second raw moment accordingly. 
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Finally, the Adam optimizer updates the parameters as in (8), 
where θ is the parameter for stochastic objective function 
f(θ).  
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III. CONVOLUTION NEURAL NETWORK MODEL 

A.  Convolution Neural Network (CNN) Architecture 

The Convolution Neural Network (CNN) is a special kind of 
neural network which is composed of one or more 
convolution layers. A CNN convolves learned features with 
input data and uses a 2D convolution layer that makes this 
architecture well suited to processing 2D data, such as 
images.  In the area of image classification and recognition, 
CNN has been used extensively and has proven very effective 
in this domain [4]. CNN model has a greater learning 
capacity compared to other feed-forward neural networks in 
the domain of image classification as the model has to go 
through millions of images to learn the latent pattern of the 
images for correct assumptions about the object images.  The 
capability of a CNN model depends upon the parameters 
associated with it such as depth and breadth of the model. The 
training of a CNN model is much easier as compared to the 
similar-sized multilayer neural network as the CNN model 
has much fewer connections and parameters. An image is 
directly given as an input to the network and passes through 
various layers of convolution and pooling. Finally, the 
outcomes from these operations are given to one or more 
fully connected layers for the desired output often known as 
class label. Convolution layers detect local conjunctions from 
features and polling layers combine analogous features into 
one [11]. CNN uses convolutions instead of matrix 
multiplication in the convolution 
layers [12].  
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A typical CNN structure contains chains of convolutional 
layers, nonlinear activation layers, pooling layers and finally 
for output classification labels a fully connected layer is 
added in CNN architecture.  

 The deep model learns from low-level features to get more 
abstract features i.e. the feature detectors (filter) learn from 
minor regions of an image and sum up them to figure out 
more abstract features. Later on, these abstract features have 
been used by the fully connected layer for output the 
classification labels into different classes based on the 
training dataset. In the fully connected layer, every neuron of 
the layer is associated with every neuron of the previous 
layer. This layer computes class scores and that will decide 
the output of the network.  

 

Fig. 1. Image Classification pipeline (CNN)[4] 

B. Hyperparameter for CNN 

Hyperparameter tuning is essentially used to make the 
network better and faster, and they deal with managing 
optimization functions and model selections during training 
with learning algorithms. It focuses on ensuring the two 
major problems of a deep network such as over-fitting and 
under-fitting of the training dataset while learning.  
Hyperparameter related to training algorithm includes 
learning rate, momentum, batch size, and number of epochs, 
etc. Learning rate refers to how fast a network is learning and 
it deals with the problem of slow convergence. A good choice 
of learning rate depends upon the optimizers used in the 
model such as SGD, Adam, AdaGard, and AdaDelta. The 
parameter "number of the epoch” defines one cycle through 

the training dataset and the number of epoch increasing 
depends upon the validation accuracy and training accuracy 
of the training data. Network parameter batch size is the 
number of samples given to the network after network 
parameter updates take place. CNN is sensitive to batch size; 
basically, minibatch size is preferable. To find out the method 
of hyperparameter selection [13] cast some light on 
hyperparameter optimization on large hierarchical models 
such as Deep belief network models. Bengio demonstrates 
empirically and theoretically that random search technique is 
more preferable over grid and manual search because not all 
the hyperparameters are mandatory to tune. In 2007, [14] 
experiments gird search and reports that grid search allocates 
too many trails to the investigation of dimensions and 
experiences poor convergence as compared to random 
search. 

IV. EXPERIMENTAL SETUP AND DATASET 

In this empirical analysis, the organizational design of the 
CNN model contains three alternating 5x5 convolution 

filters, 3x3 max pooling with stride 2 and a fully connected 
layer with 1000 rectified linear hidden units. The 
experimentation has been carried out on the HPC 
environment with Python language using the TensorFlow 
libraries. The description of hardware for this 
experimentation includes 16 Intel core processors, 16 GB 
RAM, with 2GB Nvidia Geforce GTX graphics card. 

 
 

Fig. 2. CIFAR-10 dataset [2]. 
Experimentation has been conducted using CIFAR10 and 
CIFAR100 datasets. CIFAR stands for the Canadian Institute 
for Advanced Research [2]. The images of the dataset were 
composed by Alex Krizhevsky, Vinod Nair, and Geoffrey 
Hinton. In the CIFAR10 dataset, "10 classes" are present and 
it comprises 50,000 training images and 10,000 test images. 
CIFAR-10 has 32 x 32 color real-world objects such as an 
airplane, automobile, cat, etc. 
CIFAR100 datasets is similar to CIFAR10 dataset and has 
100 class labels. Fig. 2 illustrates the diverse classes in the 
CIFAR10 dataset and ten random images from each one of 
the classes. 

V. RESULTS AND ANALYSIS 

To empirically evaluate the performance of different 
optimization techniques the experimentation has been 
conducted over the deep CNN model. Using a large model 
and dataset, the performance is measured in terms of 
accuracy and loss rate. The classification accuracy is 
presented in Table I and Table II over CIFAR 100 and 
CIFAR 10 dataset respectively. From the tables it is observed 
that the classification accuracy of Adam optimizer is higher 
than other stochastic optimization techniques viz. AdaGard, 
AdaDelta, SGD. 

Table - I: Comparisons of optimization techniques over 
the CNN model with CIFAR 100 

Classification Accuracy 

      Optimizer Accuracy Loss 

Adam 90.55% 9.5% 

AdaGard 59.45% 40.55% 

AdaDelta 24.19% 75.81% 

SGD 59.91% 40.09% 
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Table - II: Comparisons of Optimization techniques over 
the CNN model with CIFAR 10 

Classification Accuracy 

      Optimizer Accuracy Loss 

Adam 90.55% 9.5% 

AdaGard 59.45% 40.55% 

AdaDelta 24.19% 75.81% 

SGD 59.91% 40.09% 

The classification accuracy of different optimization methods 
after the hyperparameter tuning is shown in Table I and Table 
II respectively and from the tables it is seen that Adam shows 
best result in both the CIFAR 10 and CIFAR 100 datasets. 
Table III presents the performance of all the optimizers when 
the hyperparameters are set to an optimal value. Among all 
these hyperparameters, we considered the following three 
parameters during the experimentation, viz. epoch, learning 
rate, and batch size. The number of epoch considered is 15, 
30 and 60 as the number of epochs is up surged till the gap 
between the test error and the training error is minimum. 
During the experimentations conducted a scale of 10 
comparisons of learning rate has been carried out. However, 
in Table III only the optimal values have been shown for 
learning rate 0.001 and 0.002. For each learning rate of 0.001 
and 0.002 the considered batch size is 32 and 64, the convnet 
is sensitive to batch size and in the learning process of 
convnet Mini-batch is generally desirable [13]. The range of 
16 to 128 is a better choice to test with so the experimentation 
is carried out on that scale and the optimal results have been 
shown in Tale III with batch size 32 and 64. The 
experimentation is carried out on the CIFAR10 and CIFAR 
100 dataset and from Table III, it is seen that the performance 
of Adam optimizer is best when the hyperparameters are set 
to an optimal value (highlighted in bold in Table III). 
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Fig.3. Accuracy and validation graph of CNN model 
using different optimization methods (a)Adam (b) SGD 

(c) AdaGrad (d) AdaDelta 

The classification accuracy is increased when the value of 
hyperparameters is changed i.e. a good value of 
hyperparameter optimizes the network performance. In Table 
III. It is shown that the accuracy of Adam optimizer increases 
to 90.55 % at epoch 60, batch size 64 and learning rate 0.001. 
In Fig.3, the classification accuracy and validation of 
different optimizers are shown where Adam shows a better 
result as compared to other optimization methods viz. 
AdaGard, AdaDelta, SGD. 

 

Fig.4.Comparison of Adam, SGD, AdaGrad, and 
Adadelta with respect to accuracy and validation over the 

CIFAR100 dataset. 

In the above Fig.4 depicts the comparisons of all the 
optimizers viz.  Adam, SGD, AdaGard, and AdaDelt over 
CIFAR 100 dataset where Adam shows better results 
compared to other optimization methods. 

VI. CONCLUSION 

This paper presents an empirical analysis of optimization 
techniques in a supervised architecture of the deep CNN 
model. Experimentation has been carried out to analyze the 
effect of different optimizers and the model has been tested 
over the CIFAR 10 and CIFAR 100 datasets. Along with the 
optimization methods, experimentations are conducted to 
identify optimal value for hyperparameters and to understand 
the rate of convergence of the optimization methods in high 
dimensional parameter spaces. From the experiments, it may 
be concluded that compared to other optimization techniques 
viz. AdaGard, AdaDelta and SGD - Adam shows better 
performance in nonconvex optimization problems. The 
experiments conducted confirm that classification accuracy 
can be increased by choosing the best optimization 
techniques with sophisticated hyperparameter tuning to get 
the optimal configuration of the deep CNN model.  However, 
for general applicability further experimentation is required 
on different benchmark datasets. 

. 
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Table  - III: Comparison of Optimizers with  hyperparameter tuning over CIFAR100 dataset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Table. 3 Comparison of Optimizers with hyperparameter tuning over CIFAR100 dataset 

Optimizer Epoch Learning Rate Batch Size Accuracy 

Adam 

 
15 

0.001 
32 76.32 

64 77.31 

0.002 
32 74.11 

64 74.12 

30 

 
0.001 
 

           32 80.49 

64 80.60 

0.002 
32 76.23 
64 76.50 

60 
0.001 

32 80.51 

64 90.55 

0.002 
32 75.54 
64 75.60 

AdaGrad 

 
15 

0.001 
32 56.72 

64 56.80 

0.002 
32 55.12 

64 55.23 

30 
0.001 

32 57.34 
64 58.45 

0.002 
32 54.67 
64 56.89 

60 

0.001 
32 59.21 
64 59.45 

0.002 
32 54.80 

64 55.76 

SGD 

 
 
 
15 

0.001 
32 53.12 

64 54.11 

0.002 
32 53.15 

64 54.67 

30 

0.001 
32 58.45 
64 58.90 

0.002 
32 57.45 

64 57.78 

60 

0.001 
32 59.90 
64 59.91 

0.002 
32 57.12 

64 57.16 

AdaDelta 

 
 
 
15 

0.001 
32 22.13 

64 23.12 

0.002 
32 22.11 

64 22.13 

30 

0.001 
32 24.15 

64 24.17 

0.002 
32 22.11 

64 22.14 

60 
0.001 

32 24.18 

64 24.19 

0.002 
32 23.89 
64 23.65 
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