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Abstract: Evolution of smart grid concept aims to address the 

imbalance between electricity demand and supply. Owing to 
consideration on sustainable energy, user comfort, and cost 
efficiency, residential Demand Response (DR) has gained a 
remarkable popularity over the past few years. To further enhance 
these benefits, herein we propose a residential appliance 
scheduling algorithm inspired by Least Slack Time (LST) 
algorithm. The conventional LST algorithm is amended with 
consumption thresholds and waiting factor constraints to derive 
proposed Minimum Slack Time (MST)  algorithm, which increase 
cost and comfort efficiency during DR. Proposed algorithm was 
experimented in a simulated residential community consists of 50 
houses. Further experiments were conducted by aggregating 
renewable energy sources using aggregated MST (AMST) 
algorithm. All instances were compared with an existing 
scheduling mechanism to assure superiority of proposed MST and 
AMST algorithms, in terms of grid electricity consumption, cost, 
Peak-to-Average Ratio (PAR), and waiting time. 
 

Keywords: Cost efficient scheduling, Minimum slack time, 
Peak load reduction, Residential demand response, User 
convenience  

I. INTRODUCTION 

Conventional grids were evolved into smart grids with the 
advancements in communication technologies, energy 
storages, renewable energy sources, and Advanced Metering 
Infrastructures (AMI) [1, 2]. Although smart grids have 
promoted cost reduction, demand management, and 
renewable energy utilization, unceasingly escalating energy 
demand remains as a critical challenge in the modern world 
[3]. Hence, global attention was drawn towards small-scale 
power plants embed with renewable energy generators e.g. 
photovoltaic (PV) panels and wind turbines [4]. Moreover, 
Demand Response (DR) programs were introduced at the 
demand end to efficiently manage energy usage patterns. 
Adjustments in usage patterns aim to obtain cost benefits, 
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while maintaining the balance between electricity demand 
and supply [5-8].  DR programs alter energy consumption 
behaviors of users to maximize cost efficiency and renewable 
energy utilization, meanwhile reducing the dependency on 
grid electricity [9, 10]. DR programs are in two types, namely 
incentive driven and price driven. Incentive driven programs 
offer incentives to consumers considering their load 
adjustments. Whereas in price driven DR, consumers are 
enforced to get the maximum benefit from time varying 
tariffs. Price driven DR aims to reduce overall energy 
consumption and cost by shifting peak loads to off peak 
hours, in order to maximize utilization of periods with lower 
tariffs. Time of Use (ToU), Real-Time Pricing (RTP), 
Critical Peak Pricing (CPP), and Inclined Block Rate (IBR) 
pricing are some widely used price driven DR approaches. 

Recently, a lot of insightful works on price drive DR have 
been proposed to encourage optimal utilization of lower 
tariffs. Nevertheless, a majority of these works were 
proposed for single house scenarios [10-17]. A greedy 
method based appliance scheduler that incorporates neural 
networks with multiple energy sources has been proposed by 
Shukla et al. [14] to improve energy efficiency. Multiple 
schemes for autonomous appliance scheduling based on price 
driven DR were proposed by Khan et al. and Silva et al., in 
order to preserve energy, while reducing cost on energy 
[15-17]. Muratori et al. proposed a multi-ToU based dynamic 
domestic energy management approach to obtain a flat 
demand for a particular day [8]. Another price driven DR 
program for residential community was proposed in [18]          
using a mutation operator integrated ant colony optimization 
algorithm. Zhao et al. proposed a domestic DR program using 
IBR and RTP to avoid new peak formation problem arise 
with RTP based DR [19]. A task priority based appliance 
scheduling scheme was proposed by Rastegar et al. 
incorporating Value on Lost Load (VOLL) mechanism [20]. 
This mechanism schedules tasks according to given task 
priorities and allows forceful termination of low priority 
tasks, in order to maintain demand curve. Regardless of 
valuable contributions from previous works, still a larger 
room remains for research in DR in real-world aspect, due to 
unceasing growth in energy demand, depletion of 
non-renewable energy sources, increasing carbon emission, 
and volatility of energy cost.Herein, we propose a Least 
Slack Time (LST) inspired Minimum Slack Time (MST) 
based appliance scheduling algorithm incorporating price 
driven DR to manage residential electricity demand.  
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have been proposed during last few years, a majority of these 
works focused on single house scenarios, which restrict the 
implementation feasibility in real world context. Hence, the 
proposed algorithm’s performance was evaluated for a 

multiple houses context occupied by multiple users. The 
utmost goals of the proposed work are to minimize grid 
electricity consumption and cost, while maximizing user 
comfort and renewable energy usage. Proposed algorithm 
performance was evaluated for two instances. MST instance 
evaluates the algorithm without aggregating renewable 
energy sources. Whereas aggregated MST (AMST) evaluates 
the performance of same algorithm by additionally 
introducing renewable energy sources. Performance 
evaluations were compared with a no scheduling (NS) 
instance and a VOLL scheduling instance proposed by 
Rastegar et al. VOLL scheduling was selected considering its 
operational similarity to proposed algorithm, since both 
algorithms operate according to dynamic priorities. As the 
breakthrough of the MST and AMST, consumption 
thresholds, waiting factor, and renewable energy sources 
were introduced to the conventional LST algorithm. Results 
obtained from experiments reveal the superiority of proposed 
algorithm and thus, we can claim introduced amendments to 
the LST led MST and AMST towards remarkable 
performance improvements in domestic energy management 
tasks. 

II.  METHODOLOGY 

A. Overview 

Energy usage behaviors of users are uncertain and as a 
result energy management in real-world context remains 
challenging. Hence, experts in both academia and industry 
aim to fine-tune energy management strategies such as DR to 
reduce energy wastage, cost, grid energy utilization, and peak 
demand, while preserving user comfort. In order to achieve 
these goals, this article proposes a price driven DR approach 
based on LST algorithm. Similar with conventional LST, 
proposed MST algorithm schedules energy related tasks 
considering the slack time of a task. Slack time is the time 

difference between desired deadline and actual deadline, if a 
task starts its operation right at this moment. Fig. 1 clearly 
presents the definition of slack time. Proposed MST 
algorithm prioritize tasks in ascending order of slack time. In 
other words, highest priority will be given the tasks with least 
slack time. MST inherits its characteristics from conventional 
LST algorithm. Hence, MST becomes highly potential for 
scheduling uncertain tasks such as users’ energy requests, 

since it does not consider prior assumptions on task 
occurrence rate. Appliance load profiles and user requests 
influence electricity consumption patterns of a household. 
Therefore, an effective appliance scheduling program should 
essentially consider load profiles of appliances and user 
requests. In proposed MST scheduler, three types of load 
shift models were considered namely, generic shifting model 
(GSM), flexible shifting model (FSM), and periodic shifting 
model (PSM), which are elaborately discussed in one of our 
previous works [16]. GSM consists of appliances with partial 
flexibility, whereas appliances with additional flexibility 
belong to FSM. PSM is applied on appliances with periodic 
operational load profiles. 

 

 
Fig.  1. Overview of task slack time 

In proposed scenario all houses in the residential 
community are equipped with a smart meter that facilitates 
bidirectional communication between users and utility, PV 
panels and an ESS. MST scheduler is aware about all 
appliances and sensors deployed in the house and disclose 
any required information to the grid.   

Fig.  2. Overview of the proposed MST scheduling system for the residential community 
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B. MST Scheduler 

The experimented residential community ( X ) consists of 
50 houses ( x ), where x X ,  1 2 3 50, , ,...,X x x x x= . Each 

house consists of ten appliances ( a ) and total appliance set 
for the community is given by A , 

where a A ,  1 2 3 500, , ,...,A a a a a= . Further, each house 

resides four consumers ( c ) and total consumer set of the 
community is given by C , where 

c C ,  1 2 3 200, , ,...,C c c c c= . Operation parameters namely 

earliest start aes , latest finish alf , task duration atd , and 

power consumption apc are defined by the consumer 

according to desired comfort measures and electricity tariffs. 
ToU pricing is used as the price driven DR mechanism to 
calculate electricity bill. Grid electricity, PV panels, and ESS 
are connected to the MST scheduler to optimize energy 
utilization. As illustrated in Fig. 2, ToU tariff from utility and 
user requests are the inputs to the MST scheduler. 
Accordingly, MST scheduler determines the operational 
schedule for residential energy tasks using MST algorithm. 

The MST algorithm is executed for a duration of 24 hours. 
Total duration ( T ) is subdivided to intervals ( t ) of one hour, 

where  1 2 3 24, , , ,...,t T T t t t t = . Each time interval belongs 

strictly to a single demand phase ( x ). Demand phase can be 

either off-peak ( 1 ), average-peak ( 2 ), or peak ( 3 ) 

phases. Demand phase for each t interval is given as below.  
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In price driven DR, electricity bill calculation depends on 

demand phase and corresponding energy consumption. MST 
algorithm incorporated ToU based DR. ToU defines energy 
cost per unit ( xR ) respective to the demand phase as below. 
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In proposed MST, consumption threshold ( x ) is defined 

for each demand phase and these thresholds contribute to the 
performance improvement in terms of reducing grid 
electricity utilization and increasing renewable energy 
utilization. Further, consumption thresholds distinguish MST 
from conventional LST algorithm. Consumption thresholds 
for each demand phase is given as below. 
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(3) 

Let aE  denotes energy consumption of appliance a  for a 

single operation cycle. Energy consumption of appliance a  
during t  and energy consumption of all appliances during t  
are denoted by atE  and AtE  respectively. Accordingly, 

energy consumption of a during total period and energy 
consumption of all appliances during total period are denoted 
by aTE and ATE as defined below.  

a a aE pc td=  (4) 
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Let a determines cost of a single operational task. 

at , At , aT , and AT calculates energy costs respective 

to atE , AtE , aTE , and ATE . 

a x aR E =  (9) 
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AMST facilitates alternative energy utilization through PV 
panels or ESS. PV panels are used to charge ESS or to 
operate domestic appliances during peak hours. Although PV 
energy generation depends on the angle of the sunlight, 
herein we considered only the duration with direct sunlight. 
The proposed work assume that duration of direct sunlight 
( D ) is 5 hours. PV energy duration during t interval is 
denoted by t  and determined by rated generation capacity 

of a PV panel ( PVP ) and number of PV panels ( PVN ). Let 

PVE  denotes total energy generation for experimented 

period, when D is total duration with direct sunlight 
and t D . 

t PV PVP N =  (14) 

PV tE D=   (15) 

In all instances, ESS status ( ESS ) is either charging (1) or 

discharging (0) and represented as a Boolean variable. Flow 
constraints and capacity constraints are defined for both 

statuses. Let ,
c
r maxESS and ,

d
r maxESS denote maximum 

charging and discharging flow rates. Capacity constraints 
regulate maximum capacity ( maxESS ) during charging and 

minimum capacity ( minESS ) during discharging, when 

ESS denotes current storage level of the ESS.  
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1ESS = ,  maxESS ESS   AND  ,
c c
r r maxESS ESS  (17) 

0ESS = ,  minESS ESS   AND  ,
d d
r r maxESS ESS  (18) 
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Reducing PAR value is another objective proposed MST. 
PAR value reduction depends on energy consumption of all 
houses in the residential community. Hence, comPAR  is 

defined as below for the community, when ,t xE  denotes 

maximum energy utilization of thx  house during t time.  

,

,
1 1
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t x
com X T

t x
x t
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E
T = =

=
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  

  
 

 
(19) 

In contrasting to existing works that do not quantifies user 
convenience during scheduling, proposed work 
quantitatively determines waiting time according to user 
preference. Waiting time ( aw ) is calculated from maximum 

desired waiting time ( maxw ) defined by users and waiting 

factor ( f ). The minimal waiting time is determined by 

considering maxw ,  f , and expected operation period ( a ) 

of a task, when ( ),a a a aes lf td  − . Let f is a real value 

between zero and one. 
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(20) 

maxa f ww =  (21) 

MST algorithm defines the objective function as a 
minimization function of cost and waiting factor. Cost of grid 
electricity, cost of uninterrupted frame allocation, and 
waiting factor are the optimization variables. Below given 
objective function was evaluated using mixed integer linear 
programming (MILP).  
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(22) 

 Inverse correlation between cost and comfort is 
demonstrated using user defined cost priority constant ( 1 ) 

and comfort priority constant ( 2 ), where 1 2 1 + = . 

Appliance status ( a ) can be either on (1) or off (0). 

Requirement for uninterrupted frame allocation comes with a 
cost and denoted by a , where 1a =  requires continuous 

frames and 0a = is otherwise as per to user demand.        

C. Experiment Setting 

The community energy management system was simulated 
on Visual Studio 2016 on .NET framework 4.6 using Visual 
C# language. The community consists of 50 houses, where 
each house resides four consumers and deploys ten 
appliances. Appliances belong to GSM, FSM, and PSM 
shifting profiles. Refrigerator and light bulbs are considered 
as non-schedulable appliances. Uncertain behavior of 
consumers is replicated in the experiment setting using a 
random variable to initiate consumer requests. Simulation 
period was 24 hours divided in to off-peak, average-peak, and 
peak hours. Simulation was simultaneously executed for NS, 
VOLL, MST, and AMST instances to maintain consistency 
of consumer requests and energy demand. Grid energy 
allocated for the community per hour is 2500 kWh. In AMST 

instance, ESS and PV panels are integrated to the house. Each 
house installs ten PV panels with 250 W rated energy to 
cover 16.35 m2 roof area (1 panel = 65” x 39”) and generates 

solar power with direct sunlight for a period of six hours. 
Each ESS stores 10 kWh with a 90% depth of discharge 
(DoD). ToU tariffs corresponding to each demand phase are 
given in below Table I.  
Table I. ToU tariffs corresponding to demand phases and 

operational intervals 
Demand phase ( x ) Interval ( t ) Tariff (cents) 

1  
0 6t   

5.5 
22 24t   

2  
6 10t   

10.5 
20 22t   

3  10 20t   14.5 

III. RESULTS AND DISCUSSION 

Despite of the remarkable efforts made in energy 
management domain, still a big room left for research in 
terms of reducing energy cost and preserving consumer 
comfort simultaneously. Using all results generated for NS, 
VOLL, MST, and AMST, performance was evaluated for 
community energy consumption, community energy cost, 
renewable energy source influence, PAR value, and waiting 
time parameters.  

 Fig. 3 illustrates energy consumption results of NS, 
VOLL, and MST instances for 50 houses during 24 hours. As 
clearly visible in Fig. 3(a), off-peak energy consumption was 
increased in all houses for VOLL and MST compared to NS 
due to load shifting. As shown in Fig. 3(b), load profiles of 
community during average-peak hours varied closely in all 
three instances due lack of flexibility arise with consumption 
thresholds and tariffs. Peak energy consumption profiles of 
all houses are shown in Fig. 3(c) and clearly indicates the 
significant load reduction of MST compared to VOLL and 
NS. Although VOLL reduced peak load, it resulted 3.11% 
load lost from total load. Total energy consumption of the 
community and average consumption per house are presented 
in Fig. 3(d). Total peak load reduction obtained by VOLL and 
MST are 180 kWh and 264 kWh respectively. In community 
perspective, MST reduced peak load by 7.89% compared to 
VOLL scheduling without any lost load. Corresponding 
average standard deviation values for average energy 
consumption are given below in Table II. 

 
Table II. Standard deviation values for average energy 
consumption in residential community for NS, VOLL, 

MST scheduling 
 NS VOLL MST 
Off-peak 1.62 2.19 2.46 
Average-peak 2.01 2.21 2.03 
Peak 5.11 4.52 4.30 
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Fig.  3. Energy consumption of residential community. (a) Off-peak energy consumption (kWh); (b)  Average-peak 

energy consumption (kWh); (c) Peak energy consumption (kWh); (d) Total and average energy consumption ((kWh) 
for each demand phase. 

 

 
Fig.  4. Energy cost of residential community. (a) Off-peak energy cost (cents); (b)  Average-peak energy cost (cents); 

(c) Peak energy cost (cents); (d) Total and average energy cost (cents) for each demand 
phase. 
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Community cost profiles for NS, VOLL, MST instances 
are presented in Fig. 4. All cost profiles correlate with 
consumption profiles in Fig. 3. Monetary value of energy 
consumed by each house during off-peak, average-peak, and 
peak hours are illustrated in Fig. 4(a), 4(b), and 4(c) 
respectively. It is clear from the results that MST reduced 
cost on energy than VOLL scheduling without introducing 
any lost load. Total and average cost profiles for the 
community during each demand phase are presented in Fig. 
4(d). Total cost reduction achieved by VOLL and MST are 
1214.5 cents and 1962.5 cents respectively. Average cost on 
energy during the day is reported as 438 cents, 413 cents, and 
398 cents for NS, VOLL, and MST and corresponding 
standard deviations are given below in Table III. 
Table III. Standard deviation values for average energy 

cost in residential community for NS, VOLL, MST 
scheduling 

 NS VOLL MST 
Off-peak 8.90 12.09 13.57 
Average-peak 21.08 23.26 21.37 
Peak 68.98 61.68 57.61 

AMST instance integrates ESS and PV panels as 
alternative energy sources. Fig. 5 illustrates energy 
consumption profile of each house corresponding to energy 
source. AMST consumption profiles were compared only 
with proposed MST, since MST achieved superior 
performance over NS and VOLL with only grid electricity. 

Noteworthy that PV energy is not aggregated during off-peak 
and average peak hours, since direct sunlight is not available 
during those time intervals. According to Fig. 5(a) and 5(b) 
AMST considerably reduced grid energy consumption 
during off-peak and average-peak hours, owing to ESS 
integration. Although Fig. 5(c) shows that cumulative peak 
load consumption of AMST is higher than MST, in all houses 
grid energy consumption is reduced owing to integration of 
PV panels and ESS. In other words, ESS and PV panels acted 
as alternative energy sources that take over peak load burden 
on grid. This phenomena improved consumer comfort by 
assuring minimal waiting time during peak hours. Fig. 5(d) 
depicts total and average energy consumption of the 
community with respect to energy sources. As depicted, in all 
demand phases, grid energy consumption of AMST is 
considerably less than MST. Since AMST outperforms MST, 
it is evident from the results that AMST certainly performs 
better than VOLL. Table IV presents standard deviations for 
average energy consumption with respect to energy source.  
Table IV. Standard deviation values for average energy 

consumption in residential community for MST and 
AMST with respect to energy source 

 MST AMST_GRID AMST_PV AMST_ESS 
Off-peak 2.46 1.69  - 0.58 
Average-peak 2.03 1.96  - 0.43 
Peak 4.30 5.05  1.10 0.88 

 

 
Fig.  5. Energy consumption of residential community with respect to energy source. (a) Off-peak energy consumption 

(kWh); (b)  Average-peak energy consumption (kWh); (c) Peak energy consumption (kWh); (d) Total and average 
energy consumption ((kWh) for each demand phase 
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Fig.  6. Grid energy cost of residential community for MST and AMST. (a) Off-peak energy cost (cents); (b)  

Average-peak energy cost (cents); (c) Peak energy cost (cents); (d) Total and average energy cost (cents) for each 
demand phase. 

 
Cost profiles of all houses in the community for grid 

energy utilization with MST and AMST DR are shown in 
Fig. 6. As clearly revealed in Fig. 6 (a), 6(b), and 6(c), 
reduction of grid energy utilization has replicated in all 
corresponding cost profiles. In community aspect, total 
energy cost for grid electricity was reduced by 5490 cents and 
average cost per house was reduced by 109 cents in AMST 
scheduling and distributed as in Fig. 6(d). Total cost 
reduction achieved by AMST with respect to NS, VOLL, and 
MST are given in Table V. 

PAR value is the ratio between peak demand and average 
demand. Fig. 7(a) demonstrates PAR variation throughout 
the day for the whole community. PAR curve without any DR 
program (NS) has the steepest curve and several significant 
peaks. Although all other mechanisms have flattened the 
PAR curve to a certain extent, AMST has obtained the most 
flattened curve without any significant peaks. Hence, it is 
clear from the results that proposed MST and AMST manage 
grid peak demand without forming new peaks. 

 
 

 
Fig.  7. PAR curve and waiting factor variation. (a) PAR value variation during the day for the community; (b) 

Correlation between waiting factor and cost reduction 
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Table V. Cost reduction percentage achieved by AMST 
with respect to NS, VOLL, and MST 

AMST 
against 

Cost reduction (%) 

1  2  3  1 2 3  + +  

NS 21.44 21.70 38.21 34.40 
VOLL 47.79 31.71 27.57 30.45 
MST 57.65 31.28 21.08 27.94 

Generally, DR programs compromise consumer comfort 
due to load shifting. Nevertheless, proposed work 
quantitatively minimizes waiting time to preserve maximum 
consumer convenience. Aggregating PV panels and ESS 
along with consumer defined constants contributed towards 
this goal. The objective function optimizes waiting factor and 
waiting time is calculated accordingly. The simulated 
scenario considered 1 2 0.5 = = . Cost variation with 

waiting factor is illustrated in Fig. 7(b). In the instance 
without any DR program, waiting factor did not influence 
energy cost, since operations are immediate. In VOLL, MST, 
and AMST instances energy cost was reduced with 
increasing waiting factor. However, as illustrated AMST has 
the optimal cost reduction with respect to f . Worthy to 

note VOLL scheduling obtained afore stated cost reduction 
with a small portion of lost load.  

IV. DISCUSSION 

Although uncertainty of consumer patterns increase the 
complexity of DR programs, considering the uncertain nature 
of user behaviors is crucial for developing any successful DR 
program. Optimizing energy utilization to reduce monetary 
cost, while preserving consumer convenience is the utmost 
goal of any DR program.  Nevertheless, this goal is tedious to 
achieve in real-world context due to the inverse correlation 
between cost and comfort. Many works reported in literature 
[13, 19-22] including our previous works [15, 16] 
successfully optimized electricity cost. However, these works 
did not focus on optimizing user convenience simultaneously 
and a majority of these works aimed to optimize energy 
consumption patterns of a single house, which mitigates the 
feasibility of realistic implementation. In order to address 
these challenges, herein we proposed a price driven DR 
program that optimizes energy utilization of a residential 
community, while independently preserving consumer 
convenience at each household.  

Proposed MST algorithm was developed considering the 
concepts of LST algorithm. LST algorithm is less complex 
and widely used for real-time scenarios. Owing to dynamic 
priority driven nature of LST, proposed MST does not 
require a priori task information. [23]. In general, LST is well 
suited for preemptive tasks scheduling. Even though all tasks 
in a household are not preemptive, proposed MST alleviated 
this disadvantage by defining all appliances as state 
machines. Accordingly, non-preemptive tasks that get 
interrupted simply changes the state from active to sleep 
without terminating task operation. Performance of MST and 
AMST were compared with NS and VOLL, where VOLL is 
another DR program based on dynamic priority.  

A shown in Fig. 3, both VOLL and MST disseminated 
energy demand across three demand phases. Although peak 
load demand was reduced in both VOLL and MST, unlike 
MST, VOLL achieved peak reduction with a portion of lost 

load that correlates with task priority. This causes lack of 
consumer satisfaction and was successfully addressed in 
proposed MST. Fig. 4 revealed that both VOLL and MST 
reduced electricity cost. VOLL is a price driven DR based on 
2-tier IBR. During peak hours MST obtained the optimal 
cost, whereas VOLL optimized the cost to a certain extent by 
terminating low priority tasks. Hence, performance gains of 
MST can be explained as positive outcomes of introduced 
consumption thresholds and priority constants on cost and 
comfort. Fig. 5 and Fig. 6 presents consumption and cost 
profiles for MST scheduling after aggregating PV panels and 
ESS. As expected, these integrations significantly improved 
grid energy utilization and monetary expense on grid 
electricity. Hence, notable performance improvements of 
AMST can be explained as a consolidated result of 
aggregating alternative energy sources and afore stated 
characteristics of MST. PAR curve flattening in Fig. 7(a) 
achieved by MST and AMST is another remarkable benefit 
gained through consumption thresholds. These thresholds 
assure load dissemination among load phases without new 
peak formation. Cost reduction with waiting time is 
significant in proposed work as shown in Fig. 7(b), since the 
objective function quantitatively evaluates both cost and 
comfort. Users can determine maximum desired waiting time 
and priorities for cost and comfort. Owing to these 
characteristics, MST and AMST achieved superior 
performance over existing VOLL scheduling in terms of peak 
load shifting, cost reduction, grid energy utilization, PAR 
value reduction, and consumer convenience.  

V. CONCLUSIONS 

A ToU based energy management scheme based on LST 
algorithm was proposed for a residential community consists 
of 50 houses as a DR solution with less complexity and faster 
execution. Proposed MST scheduling was executed for 24 
hours. The utmost objective of the work was to minimize 
electricity cost with aid of load shifting and alternative 
energy sources, while preserving consumer convenience. 
Propose work addressed uncertainty of consumer behaviors 
to mimic realistic operation. Underlying LST concepts 
assured that proposed MST is less complex and suitable for 
real-time scenarios. Further, consumption thresholds in MST 
ensured optimal load dissemination without new peak 
formation. Unlike other DR programs, priority constants 
defined in objective function simultaneously addressed cost 
and convenience parameters quantitatively. Moreover, 
optimal load dissemination flattened the PAR curve 
maintaining the balance between load demand and supply. 
Results revealed that proposed work successfully obtained 
minimal cost with minimal peak load compared to VOLL 
scheduling, which is an existing price driven DR program 
based on dynamic priority. Hence, results evidently claim 
that proposed MST and AMST works improve community 
energy utilization with preserved consumer satisfaction. 
Thus, proposed work will be a promising DR program that 
fits for futuristic smart communities.  
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