
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2289

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3612129219/2019©BEIESP
DOI: 10.35940/ijeat.B3612.129219
Journal Website: www.ijeat.org

Abstract: Reusing the code with or without modification is

common process in building all the large codebases of system
software like Linux, gcc , and jdk. This process is referred to as
software cloning or forking. Developers always find difficulty of
bug fixes in porting large code base from one language to other
native language during software porting. There exist many
approaches in identifying software clones of same language that
may not contribute for the developers involved in porting hence
there is a need for cross language clone detector. This paper uses
primary Natural Language Processing (NLP) approach using
latent semantic analysis to find the cross language clones of other
neighboring languages in terms of all 4 types of clones using
latent semantic analysis algorithm that uses Singular value
decomposition. It takes input as code(C, C++ or Java) and
matches all the neighboring code clones in the static repository in
terms of frequency of lines matched.
 Keywords : Cross language Clones, Porting, Natural Language
Processing

I. INTRODUCTION

Because of several MLOC’s of code available on Internet,

code search is becoming more common now a day’s [1]. It is
easier for developers to get code online than to start coding
from scratch [1]. But reusing code snippet from the online
source adds maintenance cost and software quality [1] or may
violate software licenses [1]. Google and other text search
engines cannot search source code directly, but can find
similar code based on the text search. Existing clone detection
techniques can find clones of same language and very few
recent studies show that they can find clones of same families.
To help the managers and team leaders who involve in porting
the code from one language to another, there needs a single
code matching process that matches similar code clones in
neighboring languages from large online or offline
repositories [1].There are many approaches in finding the
clones of similar languages [25],[26],[27],[28],[29]. With the
invent of many mobile operating systems that provide similar

Revised Manuscript Received on December 30, 2019.
* Correspondence Author

Sanjay Ankali*, department of Computer Science & Engineering,
KLECET Chikodi,,India.

Dr. Latha Parthiban, department of Computer Science, Pondicherry
University,India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

features the popularity of multi language code clone match is
on immediate need.
Research question if there are two large codebases of C,
C++ & Java, can we find the software clones of same
language and cross language? To answer this question
through our work let us first define the types of clones.

Type 1. This is also referred as exact clone that has identical
code fragment with comments and whitespace tolerance [28].
Example consider following codes.[32]

if (A>=B) { if(A>=B){
M = A + B; M=A+B //comment1
N = A-B;} // Comment1 N=A-B }
else else
Z = A*B; //Comment2 Z=A*B //comment2
Type 2: two or more code fragments identical in syntactic
and structural point of view with change in identifier names,
variation in comments and indentation [23]. For example
consider following code fragments.[32]
if(a1!=b1) if(m1>n1)//comment1
{ d1 = d1 + 1; y1=x1+n1;
} else y1=x1-m1else
c1 = d1 – a1;//Comment1
Type 3: Copied fragments with modifications consisting of
addition and deletion of lines [23]. For example consider
following code fragments.
if (x >= y) { if (x>= y) {
m = d + y; m = d + y;
n = d + 1; alpha = 1;
}else d = d + 1;
 m = d - x; } else m = d - x;
Type 4: two are more code fragments that are semantically
same (functionality) with different syntax. For example
consider following code fragments.[23]
int factorial (int n) int factorial(int N)
{ {
int j , f=1; if (N == 0)
for (j=1; j<=n; j++) return 1 ;
f= f * j; else return N *factorial (N-1)
 return (f); } }
As mentioned in the related work, there exist many
approaches to find clones of same language. We build the
cross language clone detector by applying topic modeling
approach using tokenization, edit distance calculation and
latent semantic analysis technique to find both same language
clones as well as clones
of different languages.

Development of Cross Language Clone
Detector for C, C++ & Java Repositories

using Natural Language Processing

Sanjay B. Ankali, Latha Parthiban

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3612.129219&domain=www.ijeat.org

Development of Cross Language Clone Detector for C, C++ & Java Repositories using Natural Language Processing

2290

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3612129219/2019©BEIESP
DOI: 10.35940/ijeat.B3612.129219
Journal Website: www.ijeat.org

Input to the clone detector is any source code(C,C++ or Java)
and output is classification of types of clone.
Natural Language processing is domain of human
computer interaction concerned with processing large
amount of structured and unstructured data through
techniques such as named entity recognition, sentimental
analysis, text summarization, aspect mining and topic
modeling [21].
In this paper we first tokenize the source and destination
codes to find edit distance among two different codes to find
commonalities in the neighboring language, and then
filtering is applied to get maximum commonalities. Then
topic modeling is applied to the maximum matched snippets
using latent semantic analysis to match the cross language
similarities which is matrix model. In the last phase based on
the thresholds of commonalities we display type1, type2,
type3, type4 clones.

II. RELATED WORK

Fig.1 Architecture Cross language clone detection

Software cloning occur when programmer uses existing code
to build new feature, where the existing code may remain
same or changes can happen with minor addition and deletion
of lines to meet the needs of application [3]. Cloning process
is common for the developers who involve in software
porting, and where these clones act as benchmarks for the
quality of software created [4].
 Many earlier researches say that clone management has
to be carried out properly to avoid maintenance cost in some
cases clone managements may not cause serious concern in
[9] because consistency of reusing the code plays vital role
[10],[11]. Most of the researchers demand separate
standalone clone management process [30]. Using the basics
of programming languages may also lead to software clone
which is unknowingly done based on the syntax and
semantics of the programming languages [9] or sometimes
using the existing code intentionally to preserve the
functionality to add new functionality [10]. IT industry in
past has always used software cloning as easy weapon to
create variants of software’s. One of the studies reported that

around 7–23% and 20–30% respectively are clones of a
software module [10]. Another study shows that around
12.7% of the commercial software’s are cloned codes [11].
Many approaches exist to find the clones they are
text-based[13],[14], token- based[15], [16], [17], [18]),
tree-based [15]; [19], graph- based [16], or deep learning
techniques [17] that match the similar codes among same
project or different projects. Because of the large code
repositories online, programmers never start coding from

scratch which they obviously find it way to save time and
avoid tedious work[1],[18], we can also find evident in the
[18] to say that 70% of the code in GITHUB are clones.

Only five existing papers propose the work of cross
language clone detection where the first cross language
clone detection was on .NET families where they share
common intermediate language file after compilation [23]
but the work also shows that preprocessing is applied
intensively to eliminate the noise of intermediate file before
applying the clone detection and also the work cannot detect
clones of the code other that .NET family. Few other works
used simple token matching techniques to find the clones but
failed in accuracy of clone detection [11],[12]. The recent
work Lawton Nichols et al [10] works on detecting
functional clones or syntactic clones of same family clones
that limits in scaling to large codebases. The survey shows
that there exists no systematic approach to find cross
language clone detection that can contribute significantly in
software porting process.
 All the above mentioned methods confined themselves
to find cross language clones that have common
intermediate language because of the parser that generate
different parse tree even if two codes are similar at source
level[9].

III. METHODOLOGY

This journal uses double-blind review process, which
means that both the reviewer (s) and author (s) identities
concealed from the reviewers, and vice versa, throughout the
review process. All submitted manuscripts are reviewed by
three reviewer one from India and rest two from overseas.
We use LSA with neural association of all three languages
keywords the Fig. 1 shows the architecture of cross
language clone detector that includes following phases.
a) TOKENIZATION:

To find the commonalities among any two code
documents we first run java tokenize to convert all the
lines into tokens.
StringTokenizer st = new StringTokenier(data,"\r\n");
while(st.hasMoreTokens()){
code.add(st.nextToken().trim());

b) FIND EDIT DISTANCE BETWEEN 2 CODES:
We run edit distance algorithm to find the maximum

similarities of tokens between source and destination
code.

FOR i from 0 to s1.
LENGTH

 set lv as i;
FOR j from 0 to s2. LENGTH

IF (i EQUALS 0)
 set C[j] as j;
ELSE IF (j > 0) {

set nv as C[j - 1];
IF (s1.charAt(i - 1) != s2.charAt(j - 1))

 nv = MINIMUM(nv, lv),
C[j] + 1;
set C[j - 1] as

lv;
set lv as nv;

 }

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2291

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3612129219/2019©BEIESP
DOI: 10.35940/ijeat.B3612.129219
Journal Website: www.ijeat.org

}
IF (i > 0)
 set C[s2.length()] = lv;

 }
return C[s2.length()]; }

c) LATENT SEMANTIC ANALYSIS
The maximum matched tokens among the source and

destinations are given as input to latent semantic
analysis tool with neural token association.

 Fig. 2: Flow of Latent Semantic Analysis

IV. MATHEMATICAL DETAILS LATENT

SEMANTIC ANALYSIS

The algorithm LSA flow is shown in Fig. 2 that is built with
the idea of [31] that takes matrix M X N tokens by source
files matrix were all the entries A(ij) is local frequency of a
token i in some source file j then we convert local frequency
to local weight matrix that gives token-source file
co-occurrences in finding the functionality of the source
code. In the second step singular value decomposition is
applied to reduce the dimensionality of the weighted matrix.
Finally the cosine similarities of reconstructed matrix shows
the similarities among the two files in terms of percentage of
line similarities
a) After finding local frequency of each token i , in file j.
local weight matrix is found for each entry A(ij).
weight locij= log(freqlocij+ 1)
b) Entropy of token is calculated
Weightglobi= 1+ /log(n)
where P(ij) is the entropy of token i across all source
file j.
P(ij) = /

c) Find the local weight from local frequency which is
weight termij = weightloc ij/ Weightglob i

d) Perform dimension factorization and reduction using
single value decomposition which is linear algebra of MX
N matrix were all the entries are real numbers that can be
decomposed into three matrices T, , DT

M= T DT

where T is M X M Matrix, DT is N X N matrix
with orthonormal columns and is M X N diagonal matrix

= D 0 0 0

 0 0 0 0
e) Construct diagonal matrix in the decreasing order of the

diagonal values and find inverse of this matrix for
dimensionality reduction.,
 Ms=T DT

f) Representations of tokens and source files can likewise
be obtained by multiplying their corresponding
decompositions by the reduced space singular value matrix

. Token similarity in s-space is given by . and of
source file is given by DT DT

g) Finally similarity between 2 vectors v 1 & v 2 can be
calculated by
 cos(θ)= v 1 . v 2 / | v 1 | . | v 2 |

h) Token to token can be calculated by MsMs
T and document

similarity can be calculated by Ms
TMs.

Singular Value Decomposition: It is the linear Algebra
technique to reduce the dimensionality of the data being
processed which includes following steps.

1. Find AT and Multiply A and AT

2. Find Eigen values for A.AT

a) AT .A-C to get constants C1, C2
b) Find s1= √C1 and s2= √C2

3. Construct diagonal matrix S by considering C1 & C2
values in descending order and find inverse of S

4. Replace C1 & C2 values in AT .A-C. Compute Eigen
value X1, X2 and place In Eigen vector V.

a) V=[x1, x2]
b) Find VT

5. Compute U=AV S-1 later A can be decomposed by
A=USVT .

i) Display finally the percentage of the clones among input
source file with the several files in a repositories are
graphically displayed in terms of 4 different types of clones
such astype1,2,3 & 4.

 IV . RESULT AND DISCUSSION

Fig. 3. C++ code match with similar Java & C code

Fig. 4. Java code match with similar C & C++ code

http://www.ijeat.org/

Development of Cross Language Clone Detector for C, C++ & Java Repositories using Natural Language Processing

2292

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3612129219/2019©BEIESP
DOI: 10.35940/ijeat.B3612.129219
Journal Website: www.ijeat.org

Fig. 5. C code match with similar Java & C++ code

Fig. 6. Fetching all the clone matches in the repository
given Java code

Fig. 7.matching clone types fgor file dij.c

Table-I: Showing Matching clones for Java, C & CPP
files

Sl.No. Code under
test

Output files
matched

Types
of

clones

1 c1j1.java c1j1.java Type1

c1.c Type3

c2j2.java Type4

c3j3.java Type2

c4j4.java Type4

c5j5.java Type3

2 dij.c dij.c Type1

dij.cpp Type2

J10.java Type4

J11.java Type4

3 mergesort.cpp Mergesort.cpp Type1

Merge.c Type4

Table-II: Showing Recall for Java, C & CPP
files

Sl. No Input files No. of
files
matched

Recall

1 C (c1.c) 57 (52/57)
91.4%

2 CPP
(Mergesort.cpp)

57 (57/57)
100%

3 JAVA(c2j2.java) 57 (43/57)
75%

V CONCLUSION

This research paper proposes the solution to find cross
language clones of C, C++ and Java using primary NLP
techniques such as tokenization, latent semantic analysis
and classification. Method works with better precision on
the repositories with less KLOC files.
 The proposed work can be used to build the porting
analyzer that helps to find following answers during code
porting a) Bug fixes while porting the project from one
language to other. b) Amount of code common among two
different projects in terms of percentage of cloning and
types of cloning. c) Common files among both the projects.
d) Porting latency to convert project 1 to project2.

FUTURE ENHANCEMENT

The proposed work works well with projects containing
Small files. Further improvements can be made in the
accuracy in terms of precision and recall by using latent
semantic indexing on even larger repositories.

REFERENCES

1. Chaiyong Ragkhitwetsagul, Jens Krinke Siamese: scalable and
incremental code clone search via multiple code representations
Empirical Software Engineering Springer Science+Business Media,
LLC, part of Springer Nature 2019
https://doi.org/10.1007/s10664-019-09697-7

2. Nishi MA, Damevski K (2018) Scalable code clone detection and search
based on adaptive prefix filtering. J Syst Softw 137:130–14.

3. Roy CK, Cordy JR (2008) NICAD: accurate detection of near-miss
intentional clones using flexible pretty printing and code normalization.
In: ICPC ’08, pp 172–18.

4. Fowler M (1999) Refactoring: improving the design of existing code.
Addison-Wesley, Boston.

5. Kapser C, Godfrey MW (2006) Cloning considered harmful considered
harmful. In: Proceedings of the 13th Working Conference on Reverse
Engineering (WCRE ’06), Benevento, italy.

6. Aversano L, Cerulo L, Di Penta M (2007) How clones are maintained:
an empirical study. In: Proceedingsof the 11th European conference on
software maintenance and reengineering (CSMR ’07), IEEE, Los
Alamitos, California, USA, pp 81-90.

7. Juergens E, Deissenboeck F, Hummel B (2011) Code similarities
beyond copy & paste. In: Proceedings of the 15th European conference
on software maintenance and reengineering (CSMR ’11), IEEE, pp
78–87.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

2293

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B3612129219/2019©BEIESP
DOI: 10.35940/ijeat.B3612.129219
Journal Website: www.ijeat.org

8. Chatterji D, Carver JC, Kraft NA (2016) Code clones and developer
behavior: results of two surveys of the clone research community. Empir
Softw Eng 21(4):1476–1508.

9. Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilinguistic
token-based code clone detection system for large scale source code.
TSE 28(7):654–670.

10. Lawton Nichols et al Structural and Nominal Cross-Language. Clone
Detection In: FASE 2019, LNCS 11424, pp. 247–263, 2019.

11. Harris S (2015) Simian – similarity analyser, version
2.4.http://www.harukizaemon.com/simian/, accessed:2016-02-14.

12. Prechelt L, Malpohl G, Philippsen M (2002) Finding plagiarisms among
a set of programs with JPlag. J UnivComput Sci 8(11):1016– 1021.

13. Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV (2016)
SourcererCC: scaling code clone detection to big-code. In: ICSE’16, pp
1157–1168.

14. Schleimer S, Wilkerson DS, Aiken A (2003) Winnowing: local
algorithms for document fingerprinting. In:SIGMOD ’03, ACM, p 76.

15. Jiang L, Misherghi G, Su Z, Glondu S (2007) DECKARD: scalable And
accurate tree-based detection of code clones. In: ICSE’07. IEEE,
Minneapolis, pp 96-105.

16. Krinke J (2001) Identifying similar code with program dependence
graphs. In: WCRE.

17. Li L, Feng H, Zhuang W, Meng N, Ryder B (2017) CCLearner: a deep
learning-based clone detection approach. In: ICSME’17, pp 249–26.

18. Yang D, Martins P, Saini V, Lopes C (2017) Stack Overflow in
Github: any snippets there? In: MSR ’17.

19. Lopes CV, Maj P, Martins P, Saini V, Yang D, Zitny J, Sajnani H, Vitek
J (2017) DejaVu: a map of code duplicates on GitHub. Proceedings of
the ACM on Programming Languages (OOPSLA).

20. Foundations of statistical natural language processing By Christopher
D.. Manning, Christopher D. Manning, Hinrich Schütze

21. https://blog.aureusanalytics.com/blog/5-natural-language-
processing-techniques-for-extracting-informationH. Poor, “A
Hypertext History of Multiuser Dimensions,”

MUDHistory,http://www.ccs.neu.edu/home/pb/mud-history.html.
1986.

22. “https://en.wikipedia.org/wiki/Latent_semantic_analysisR. Nicole,
"The Last Word on Decision Theory," J. Computer Vision, submitted
for publication. (Pending publication)

23. AlOmari, F., Keivanloo, I., Roy, C.K., Rilling, J.: Detecting clones
across Microsoft .NET programming languages. In: 19th Working
Conference on Reverse Engineering, WCRE 2012, Kingston, ON,
Canada, 15–18 October 2012, pp. 405–414 (2012).
https://doi.org/10.1109/WCRE.2012.5

24. Kraft et al.: Cross-language clone detection. In: SEKE,pp. 54–59
(2008

25. Bellon et al : Comparison and eval-uation of clone detection tools.
IEEE Trans. Softw. Eng. 33(9), 577–591 (2007)

26. Jiang et al : Deckard: scalable and accurate tree-based detection of
code clones. In: Proceedings of the 29th International Conferenceon
Software Engineering, pp. 96–105. IEEE Computer Society (2007)

27. Kamiya et al: a multilinguistic token- basedcode clone detection system
for large scale source code. IEEE Trans. Softw. Eng.28(7), 654–670
(2002)

28. Rattan et al.: Software clone detection: a systematic review.Inf. Softw.
Technol. 55(7), 1165–1199 (2013)

29. Rieger, M.: Effective clone detection without language barriers.
Ph.D. thesis, Uni-versity of Bern (2005)

30. J. Cheng et al.: On the feasibility of detecting cross-platform code
clones via identifier similarity. In: Proceedings of the 5th International
Workshop on Software Mining, pp. 39–42. ACM (2016)

31. http://www.ling.ohio-tate.edu/~reidy/LSAtutorial.pdf
32. Sanjay Ankali, Latha Parthiban, I3Publication(2016)

AUTHORS PROFILE

1.Sanjay Ankali is Research scholar at VTU,
RRC-Belagavi-590018 and working as Assistant
Professor in department of CSE at KLECET,
Chikodi, India-591201. His research interest is in
the field of Software Engineering.

Dr. Latha Parthiban is working as Assistant

Professor in department of Computer Science at

Community College, Pondicherry University,

India-605008. She received Bachelors of

Engineering in Electronics from Madras

University in the year 1994. M. E from Anna

University in the year 2008 and Ph D from

Pondicherry University in the year 2010. Her

research interest is in Software Engineering, Big

Data Analytics, and Computer Networking.

http://www.ijeat.org/
http://www.harukizaemon.com/simian/
http://www.ccs.neu.edu/home/pb/mud-history.html.
http://www.ccs.neu.edu/home/pb/mud-history.html.
https://doi.org/10.1109/WCRE.2012.5
https://doi.org/10.1109/WCRE.2012.5
http://www.ling.ohio-tate.edu/~reidy/LSAtutorial.pdf

