OPENaﬁCCESS

International Journal of Engineering and Advanced Technology (IJEAT)
I SSN: 2249-8958 (Online), Volume-9 | ssue-2, December, 2019

A Novel Clone-Based Reuse Method to
Maintain Proficiency in Software Engineering

Practice

Chack far
updates

Kavitha Esther Rajakumari

Abstract — The source code of an application paves way for a
quality software product. Quality software in-turn helps in
imposing software reuse. In this paper, pieces of similar codes
also known as code clones or code duplications are considered as
reusable software components. In general code clones are
considered harmful in software engineering practice. They are
considered to degrade the quality of software. Code clones are
detected and removed without further processing. In this paper, a
token- based CodeClone reuse method is proposed to detect type-
1 and type-4 clones. Positive effects of clones are analyzed and
beneficial clones are extracted from the cluster of clones detected.
The proposed method aids in the art of developing software
thereby enforcing the concept of software reuse. The working
principle of the proposed method is implemented using open
source software as inputs. Beneficial clones are further stored in
a database for future use. Clonereport isgenerated asit assistsin
knowing about the clone details within a software system.

Index Terms - Code clones, softwar e engineering, beneficial
clones, softwarereuse.

. INTRODUCTION

Similar or exact pieces of code segments are known as
clones. There are four categories of clones namely, type-1.
copy clones, type-2: renamed clones, type-3: modified
clones and type-4: functional clones. Asthe name implies,
the detected clones are classified under each category.
Clones are introduced in a software application either
intentionally or accidentally. When different programmers
work on different parts of components of an application,
unintentionally clones are introduced [10]. Code clones are
considered as bad smells as they lead to unpredictable
behaviour of the system [9]. Though clones are considered
as negative factors, careful analysis of clones has exhibited
the positive aspects of their presence in the system [7, 8].
They support software evolution research and aids in
finding usage patterns.

Revised Manuscript Recelved on December 30, 2019.

* Correspondence Author

Dr.Kavitha Esther Rajakumari, Dept. Of Computer Science And
Engineering, Kcg College Of Technology, Chennai-97
Kavitha.Cse@K cgcollege.Com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). Thisis an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Retrieval Number: B3905129219/2019©BEIESP
DOI: 10.35940/ijeat.B3905.129219
Journal Website: www.ijeat.org

2558

Clones also assist in software engineering paradigm. Useful
code clones can be made into library candidates. In order to
evaluate the clones, initially they must be detected. For
detecting clones a handful of techniques are available. Based
on the type of clones the detection technique can be chosen.
Code clones if used positively, assists in software
maintenance [3]. Maintenance is an important phase in
software engineering. Most of the timeis spent in this phase.
Careful diagnosis of codes will reduce the overal time
consumption. Software reuse is another important aspect of
software engineering. New software developers and
programmers will be greatly benefitted thereby introducing
reuse strategy. In this paper, the main focusis on code clone
usage which establishes the reuse policy in software
development.

. LITERATURE SURVEY

Clones are detected using customized automated tools.
Hamid and Stan, have detected structural clones by using
CloneMiner tool. They have enforced the reuse of structural
code clones while devel oping software system [1]. Structural
information of the codes is used to find similar code
segments at the function-level [11]. Moha et.a, have
proposed a new method to detect code clones. By combining
different approaches they have presented this DECOR tool
[6]. Clones can be detected more precisely by using abstract
syntax tree, provided a special parser is needed to perform
the operation [5]. Cloned codes are considered stable when
compared to non-cloned codes [2]. Code clones if used
positively will help in building software variants within a
short period of time. So code clone concept should be
integrated in systematic reuse policy [4].

Inference from the survey showsthat main focusis on clone
detection. The more efficient tool used, the more clones are
obtained. Clones are considered harmful but careful analysis
has showed that they are positively stable too. Therefore
clones can be reused after careful examination.

1. PROPOSED METHODOLOGY

In this proposed methodology Token-Based CodeClone
Reuse Method, token-based approach is used for effective
detection of type-1i.e. exact code fragments and type-4 i.e.
functional clones. Moreover the concept of software
component reuse is integrated along with the detection
approach. The two main emphasis of the proposed
methodology are on code clone detection and their reuse.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B3905.129219&domain=www.ijeat.org

A Novel Clone-Based Reuse Method to Maintain Proficiency in Softwar e Engineering Practice

The input for the proposed system is Java software
applications.

Thefollowing diagram fig.1depicts the concept of proposed
methodology.

" .

Laical Analyzer

"aa

Fig.1. System ar chitecture of Token-Based Code Clone
Reuse Method

In this token-based methodology, the entire software
source codeis parsed as a sequence of tokens. The resultant
sequences are scanned for exact functional clones. The
Token-Based Code Clone Reuse Method is comprised of
four phases. Each of the phasesis elaborated below:

A. Conditioning Phase

In this phase, al Java files are scanned for cleaning
the source codes. Here cleaning implies the removal of
braces and blank spaces. The resulting codes are
restructured to a standard form which is needed to find
exact and similar code clone fragments.

B. Splitting of Classes and Methods

Here, the cleaned Java source files are taken as
inputs. Line-by-line parsing is done to extract classes,
methods and main methods. Count and line of
occurrences of functions are obtained. Even the loops are
obtained along with classes and methods. This phase is
for knowing the number of occurrences of functiona
clones within a software system.

C. Clone Detection Phase

The detection process is carried out in an iterative
fashion. Each file is compared with every other file and
the clone results are stored. The advantage of this
technique is that, checked file of the previous iteration is
excluded from further comparison.

D. Segregation Phase

Here, the detected clones are classified into harmful
and beneficial clones. Based on the quality and severity
of harmful clones, either they are rejected or rectified and
stored along with beneficial clones. Beneficial clones are
stored in database for future use.

The Token-Based CodeClone Reuse Method
comprises of the following algorithms:

Algorithm I: Class Method Counter Algorithm
Input: Java Source code
Qutput: Classes, Methods, Main Methods
begin
for each jpiton do
begin // class counter
cent=1;
while (readline!=null) do
begin
if readline contains “class”
then
cf.add(cent);
cent++;
end
end
begin // method counter
ment=1;
while (readline!=null) do
begin
if readline ends with <)” then
mf.add(ment);
ment++;
end
end
begin // main method counter
mment=1;
while (readline!=null) do
begin
if readline contains “String args|]) or
String [] args)” then
mmf.add(mmcnt);
mment++;
end
end
end

Algorithm 2: Clone Detection Algorithm
Input: Java Files
Qutput: Code Clones
begin
for each jpito n-1 do
begin
for each jp j ton do
begin
while (readlinel!=null) do
begin
fnl.add(readlinel);
end
while (readline2!=null) do
begin
fn2.add(readline2);
end
cct=0;

clounfound[|=findduplicate(fnl,fn2);
stores the clone found lines of
file 1 and 2 in array.
for ecach clonefound[] i to n do
begin
if val notequal “{ or }”
then
cett++;

end
if cct!=0 then
cetr.add(cct);

end
end
end

Retrieval Number: B3905129219/20190BEIESP Published By:
DOI: 10.35940/ijeat.B3905.129219 Blue Eyes Intelligence Engineering

Journal Website: www.ijeat.org 2559 & Seiences Publication e

http://www.ijeat.org/

OPENaACCESS

Algorithm 3: Segregation Algorithm

Table-l: Class method counter status

International Journal of Engineering and Advanced Technology (IJEAT)
I SSN: 2249-8958 (Online), Volume-9 | ssue-2, December, 2019

Input: Detected Code Clones ﬁl Filename Fl”e Fl”e F”efh F”efh Fi(';hmzj” ::it'e
o (o] class |class m m O |m [o] Ol
QOutput: Separation of Harmful Clones count lline lod ldline liine al
begin numbe |count [numbe [number |[line
str|]=clonefound| J; ! ! s
i ¢ Tta tolai >): 1 |BufferedReaderEx |1 5 5 7152 |7 47
tokenizer st equal to tokenizer (str,”,”); amplejava 4304
fent=0; 0
cnt=0: 2 |CountFilesinDirect |1 3 6 4911, |4 32
=0- ory.java 17,18,
cent=0; on
hent=0; 3 |demojava 1 1 2 37 |3 17
while st has more tokens do 4 [inputjava 2 18 5 3101 |15 28
begin 2118’2
Strl:tOkenS; G ; . 5 |inputljava 2 18 4 3,101 [nomain |23
if strl contains “for(or while(or do” the 317 |method
hent++; 6 |onearrjava 1 2 1 (4121 |4 62
end 7,22,
. . 24,26,
tokenizer st1=tokenizer (str,”,”); 34,39,
while st] has more tokens do 45,47,
begin _ 52
if hent > 5 then 7 |onearray.java 1 2 11 4715% 4 62
cntt+; 4,
if strl ends with <)” then 26,34,
) 39,45,
fent++; 47,52
end 8 |sjava 1 1 1 3 3 9
cent++; 9 |SimilarityCalculati |1 24 6 33,39, |39 72
end onDemo. java 46,49,
61,63
. 10 |twoarr.java 1 1 10 5791 (44 52
Benefits of Token-based CodeClone Reuse Method: 6,19,2
1
e Acquisition of beneficial or useful code clones 28,
e Removal of harmful or unwanted code clones 32,35,
o Simple positioning and rectification of : 44
problematic codes 11 |twoarray.java 1 1 10 21;921 44 52
1
IV. RESULTSAND DISCUSSIONS 28,
32,35,
The implementation was carried out with Core Java and 44
J2EE for front end design and back end support was provided
using MySql. The types of software used are JDK, Apache
Tomcat server and XAMPP. Java Development Kit JDK (64
bit) consists of tools and software required for compiling,
debugging, and run the Java applications. XAMPP is free
and open source cross-platform web server package
developed by Apache. It consists of Apache HTTP
Server, MariaDB database, and interpreters for PHP and Perl
scripts.
The working of the Token-based CodeClone Reuse Method
with an open source software as input is shown here.
Mysql-database-1.8.0 and Mysql-database-
1.8.9 are taken as inputs. The clone detection procedure
starts with the upload of folder containing Java source files.
The number of classes, number of methods, their line
numbers and total nhumber of lines in the files along with
their file names of the student online software are displayed
asin Table 1.
Retrieval Number: B3905129219/20190BEIESP Published By:
DOI: 10.35940/ijeat.B3905.129219 Blue Eyes Intelligence Engineering
Journal Website: www.ijeat.org 2560 & SriencesPublication Exploring Innavation

http://www.ijeat.org/

Table 2 provides the clone detection report generated by the
Token-based CodeClone Reuse method after the detection

A Novel Clone-Based Reuse Method to Maintain Proficiency in Softwar e Engineering Practice

process.

Table-l1: Clone detection report

files twoarr.java and twoarray.java.

Table-1V: Reusable clones

Table 4 provides the reusable clones present in two

. |Benefic [Harmf
Clo Functi |.
; ; Iterat ial ul Reusa
RC |Filena |Filenam |ne |. onal
ion clones |clones |ble
ID [mel |[e2 cou clones .
nt count count percent |percent |view
age age
1 [woarjitwoanay.\og g 4 7931 [2069 |View
ava java

One of the major benefits of thistechniqueisthat it separates
the harmful clones from beneficial clones which degrade the
quality of software. Table 5 depicts the storage of clone
details in database highlighting the function name, line
number, number of functions, method name, line number
and the number of methods similar to table 1. The clones can
be copied, edited and reused for future use.

S.N|Filename 1 Filename 2 Clo |Clon|View
o] ne |e clone
cou |code
nt
1 |BufferedReaderExam |CountFilesinDirecto |1 |try [ViewCl
plejava ry.java one
2 |BufferedReaderExam |demo.java 1 |try |ViewCl
plejava one
3 |BufferedReaderExam |input.java 1 |try |ViewCl
plejava one
4 |BufferedReaderExam |inputl.java 1 |try |ViewCl
plejava one
5 |BufferedReaderExam |onearr.java 1 |[for(i |ViewCl
plejava nt |one
i=0;
i<n;
i++)t
ry
6 |BufferedReaderExam |onearray.java 1 [for(i |ViewCl
plejava nt |one
i=0;
i<n;
i++)t
ry

Table 3 illustrates the clone detection process in
which two files are investigated for clone. It provides
the number of classes, iterations, functional clones,
percentage of beneficial clones and percentage of
harmful clones. Fig.2 depicts the percentage of clones.

Tablelll: Clonedetails

Total clonecount |29

Iteration count 6

Functional clone |4
count

Harmful clone |for(i=0;i<3;i++), for(j=0;j<3;j++),
for(int k=0;k<3;k++), for(int

1=0;1<3;1++) while(x<3), while(y<3)
clone|79.31%

Beneficial
percentage

Harmful clone|20.69%

per centage

1 Tofal clones

1 Beneficial clones

Percentage

0 Harmiful clones

CloneType

Fig.2. Percentage of Clones

Retrieval Number: B3905129219/20190BEIESP

Table-V: Storage of clone detailsin database

S. |Filename File |File [File [File File
No clas |class |meth |[method |line
S line |od line S
cou [numb |count|{number
nt |er
1 BufferedReaderE |1 5 5 7,15,24,3 |47
xamplejava 0,40
CountFilesinDire|1 3 6 49,11,17,|32
ctory.java 18,24

3 |demo.java 1 |1 2 37 17

4 |inputjava 2 |18 5 3,22,15,1 28

5 |inputLjava 2 1,8 4 3,10,13,1 23

1 2 11 4,12,17,2 |62

6 |onearr.java 2,24,

1 26,34,39,
45,4752
1 2 11 4,12,17,2 |62
7 |onearray.java 2,24,26,
v 34,39,45,
47,52
8 |sjava 1 N 1 3 9
SimilarityCalcula 33,39,46,

9 tionDemo.java 24 6 49,61,63 2

5,7,9,16,1
. 9,21,

10 |twoarr.java 1 1 10 283235, 52
44
5,7,9,16,1

11 |twoarray.java 1 1 10 9.2, 52

v 28,32,35,
a4

V. CONCLUSIONAND FUTURE WORKS

The proposed template based on code clones aids in
successful software engineering. The proposed
customized Token-based Code Clone Reuse Method was
used to detect exact functiona clones from a given Java
software application. The loops present within the
software are considered to be harmful as it degrades the
performance of software. Acquired beneficial clones are
stored in a database for reuse. Clone counts, iteration
counts and functional clones counts are displayed which
helpsin analyzing the application in detail.

DOI: 10.35940/ijeat.B3905.129219
Journal Website: www.ijeat.org

Published By:

Blue Eyes Intelligence Engineering

2561 & Sciences Publication

Exploring Innovation

http://www.ijeat.org/

OPENaACCESS

Harmful clones are not removed; they are either
eliminated or rectified based on the usage of the software
application.

Quality software can be built by reusing the
beneficia code clones. Cost and time spent in software
development and maintenance are considerably reduced.
Version enhancement need not be done from scratch.
Enforces reuse-based software development at low cost
and enables source code anaysis. Detected beneficial
clones can be built into useful library candidates. The
proposed methodology reduces the testing time
considerably. Positioning and rectification feature helps
to reduce the complexity involved in software
maintenance.

Token-Based Code Clone Reuse Method can be
extended to support different programming languages.
Beneficial clones’ database can be further enhanced by
domain-wise segregation.

REFERENCES

Basit, H. A., & Jarzabek, S. (2009). A data mining approach for
detecting higher-level clones in software. IEEE Transactions on
Software engineering, (4), 497-514.
Gode, N., & Harder, J. (2011, March). Clone stahility. In Software
Maintenance and Reengineering (CSMR), 2011 15th European
Conference on (pp. 65-74). |EEE.
Lin, Y., Xing, Z., Xue, Y., Liu, Y., Peng, X., Sun, J,, & Zhao, W. (2014).
Detecting differences across multiple instances of code clones. In
Proceedings of the 36th International Conference on
Software Engineering (pp. 164-174). ACM.
Linsbauer, L., Lopez-Herrejon, R. E., & Egyed, A. (2017). Variability
extraction and modeling for product variants. Software & Systems
Modeling, 16(4), 1179-1199.
Matsushita, T., & Sasano, |. (2017). Detecting code clones with gaps by
function applications. In Proceedings of the 2017 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (pp. 12-22).
ACM.
Moha, N., Gueheneuc, Y. G., & Duchien, A. F. (2010). Decor: A
method for the specification and detection of code and design smells.
|EEE Transactions on Software Engineering (TSE), 36(1), 20-36.
Rezaei, A., Mudler, F., Hargrove, P., & Roman, E. (2017). DINO:
Divergent node cloning for sustained redundancy in HPC. Journa of
Parallel and Distributed Computing, 109, 350-362.
Roy, C. K., Zibran, M. F., & Koschke, R. (2014, February). The vision
of software clone management: Past, present, and future (keynote
paper). In 2014 Software Evolution Week-IEEE Conference on
Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE) (pp. 18-33). IEEE.
Sjoberg, D. I., Yamashita, A., Anda, B. C., Mockus, A., & Dyba, T.
(2013). Quantifying theeffect of code smells on maintenance effort.
|EEE Transactions on Software Engineering, (8), 1144-1156.
10. Tgima, R., Nagura, M., & Takada, S. (2018, March). Detecting
functionally similar code within the same project. In Software Clones
(IWSC), 2018 |IEEE 12th International Workshop on(pp.51-57). IEEE.
11. Yang, Y., Ren, Z., Chen, X., & Jang, H. (2018, July). Structural
Function BasedCode Clone Detection Using a New Hybrid
Technique. In 2018 IEEE 42nd Annua Computer Software
and Applications Conference (COMPSAC) (pp. 286-291). IEEE

AUTHORSPROFILE

Dr. Kavitha Esther Rajakumari, The
author has completed PhD in the field of
software engineering in October 2017. She
has published 21 papers in international and
national conferences and Scopus indexed
journals. Currently her research work is
ongoing in the field of software engineering,
blockchain, cloud computing and networks.
She is a Life Member in ISTE. She has
conducted and organized seminar, guest

Retrieval Number: B3905129219/20190BEIESP
DOI: 10.35940/ijeat.B3905.129219

Journal Website: www.ijeat.org 2562 & StiencesPublication

International Journal of Engineering and Advanced Technology (IJEAT)
I SSN: 2249-8958 (Online), Volume-9 | ssue-2, December, 2019

lecture and certification coursesin computer networks, cloud computing and
PHP respectively.

Published By:
Blue Eyes Intelligence Engineering

Exploring Innovation

http://www.ijeat.org/

