

Regular Graphs and Corona Graphs Based on Special Type of Labeling

Shalini Rajendra Babu, N. Ramya

Abstract: Here we consider the special type of labeling as lucky edge labeling for Regular graphs and corona graphs.

Keywords: Corona graph, Lucky edge labeling, Regular graph.

I. INTRODUCTION

A Let G be a graph as follows,

(i) G is non-empty (ii) G is finite

(iii) edges and $\eta(G)$ is maximum labels has been given in the graph.

If G is said to be regular graphs, each vertex have same neighbors.

Corona graph is obtained from two graphs, G of order P and H, taking one copy of G and P copies of H and joining by an edge the *i*th vertex of G to every vertex in the *i*th copy of H.

II. MAIN RESULTS.

A. Theorem 3.1

For every $n \ge 4$ where n is an even number, there exists a 3-regular $\left(n, \frac{3n}{2}\right)$ graph which holds Lucky edge labeling. [4]

Proof:

To prove that for 3-regular graph which admits Lucky edge labeling with lucky number is 4i + 3 where i = 1, 2, 3...respectively.

Define the vertex labeling, for all $n \ge 4$ (where *n* is an even number)

$$f(v_i) = i \text{ for all } i$$
 (1)
Let $f: E \rightarrow \left\{1, 2, 3, \dots, \frac{3n}{2}\right\}$

$$f(v_i, v_{i+1}) = 2j - 1, when \begin{cases} i = 1, 2, 3, \dots \\ j = 2, 3, 4, \dots \end{cases}$$
(2)

$$f(v_n, v_1) = n + 1$$
 when $n = 4,6,8,...$ (3)

$$f(v_1, v_{n-k}) = n - k + 1, when k = 1, 2, 3, \dots$$
(4)

$$f(v_{2+i}, v_{4+j}) = 0 + 1 + jwnenn = 4, rori = 0, j$$
 (5)

$$f(v_{2+i}, v_{4+j} = 6 + i + j \text{ when } n = 6, \text{ for } (i = 0, j$$
(6)
= 1)and (i = 0, j = 1)and (i = 1, j
= 2) then the edges of the form

$$\begin{aligned} f(v_{2+i}, v_{4+j}) &= 6 + i + j \text{ when } n = 8, \text{ for } (i = 0, j \quad (7) \\ &= 2), (i = 1, j = 3) \text{ and } (i = 2, j \\ &= 4) \text{ then edges of the form} \end{aligned}$$

The number of crossing edges, barring those crossing edges incident with v_1 are 1,2,3,4 respectively, that edges must be labeled as of the form Similarly, n = 10, 12, 14, ...

n	i	j
4	0	0
6	(0,1)	(1,2)
8	(0,1,2)	(2,3,4)
10	(0,1,2,3)	(3,4,5,6)
12	(0,1,2,3,4)	(4,5,6,7)

Illustration: n = 4

Revised Manuscript Received on December 30, 2019. * Correspondence Author

Shalini Rajendra Babu*, BIHER, Chennai (Tamil Nadu) India. E-mail: rshalini19@hotmail.com

Dr. N. Ramya, professor, BIHER, Chennai (Tamil Nadu) India. E-mail: drramyamaths@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Hence, a 3- regular (4,6) graph which admits Lucky edge labeling and its lucky number is 7.

Illustration: n = 10

Published By:

& Sciences Publication

Hence, a 3- regular (4,6) graph which admits Lucky edge labeling and its lucky number is 7.

Retrieval Number: B3982129219/2019©BEIESP DOI: 10.35940/ijeat.B3982.129219 Journal Website: www.ijeat.org

Hence, a 3- regular (10, 15) graph which admits Lucky edge labeling and its lucky number is 19.

B. Theorem 3.2

For every $n \ge 5$ there exists a 4- regular (n, 2n) graph which admits Lucky edge labeling. [4].

Proof:

To prove that for 4-regular (n,2n) graph [4] its lucky number is 2n − 1.

Define the vertex labeling for all $n \ge 5$.

 $f(v_i) = i$ for all i

Let f: E \rightarrow {1, 2, 3,...2n} such that

$$f(v_1, v_n) = n + 1$$
 (1)
 $f(v_i, v_{i+1}) = 2i + 1$, where $i = 1, 2, 3, ...$ (2)

 $f(v_i, v_{i+1}) = 2i + 1$, where i = 1, 2, 3, ...These all are the external edges; rest of the edges are

crossing edges. It can be associated as,

$$f(v_1, v_{n-1}) = n$$
 (3)

$$f(v_2, v_n) = n + 2$$
 (4)

$$f(v_i, v_{i+2}) = 2i + 2$$
, where $i = 1, 2, 3, ...$ (5)

Illustration: When n = 5

Hence, a 4- regular (5, 10) graph which admits Lucky edge labeling and its lucky number is 9. Illustration: When n = 7

Hence, a 4- regular (7, 14) graph which admits Lucky edge labeling and its lucky number is 13.

C. Theorem 3.3

The corona graph $P_n \odot K_2$ always contains a lucky edge labeling.

Proof:

In $G = P_n \odot K_2$, construction of vertex set, and edge as follows.

Let $v(G) = v(P_n) \cup v(nk_2)$ Where $v(P_n) = \{u, u_2, \dots, u_{n-1}, u_n\}$ and
$$\begin{split} v(nK_2) &= \{v_1, v_2, \dots v_{2n-1}, v_{2n}\}.\\ E(G) &= \{u_i, u_{I+1}; \ 1 \le i \le n-1\} \cup \{v_{2i-1}v; \ 1 \le i \le n\} \cup \{u_i, v_i; \ 1 \le i \le n\} \cup \{u_i v_{2i}; \ 1 \le i \le n\} \end{split}$$
be the vertex set and edge set of G respectively. [6] Now |v(G)| = 3n and |E(G)| = 4n - 1.

We will classify the edges of corona of $P_n \odot K_2$ in three cases.

i)Path edges

ii) K_2 edges

iii)Edges joining from K_2 with the path.

Vertex set defined as,

$$f(u_i) = 1$$
 (1)

$$f(u_{i+1}) = 4$$
, when $i = 2,3,6,7,...$ (2)

$$f(v_i) = 2$$
, when $i = 1, 2, 3, 4, ...$ (3)

$$f(w_i) = 3$$
, when $i = 1, 2, 3, 4, ...$ (4)

Edge Set defined as, $f(u_i, u_{i+1}) = 2$, when i = 1, 5, 9, ... $f(u_{i,}u_{i+1}) = 5$, when i is an even $f(u_i, u_{i+1}) = 8$, when i = 3, 7, 11, ... $f(u_i, v_i) = 3$, when i = 1, 2, 5, 6, 9, 10, ... $u_{i} = 4 when i = 1256910$

$$f(u_i, u_i) = 4$$
, when $i = 1, 2, 3, 0, 9, 10, ..., (5)$
 $f(u_i, v_i) = 6$, when $i = 3, 4, 7, 8, ..., (6)$

$$f(v_i, v_i) = 5, when i = 3.4.7.8...$$
(7)

$$f(w_i, u_i) = 7$$
, when $i = 3, 4, 7, 8, ...$ (8)

Illustration: $P_2 \odot K_2$

Published By:

& Sciences Publication

(1)

(2)

(3)

(4)

International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249-8958 (Online), Volume-9 Issue-2, December, 2019

The Lucky number of $P_2 \odot K_2$ is 5.

D. Theorem 3.4

The corona graph $P_n \odot C_4$ always admits a lucky edge labeling.

Proof:

In a graph $G = P_n \odot C_4$, construction of V(G) and E(G) as follows,

Let $v(G) = v(P_n) \cup (C_4^{-1}) \cup v(C_4^{-2}) \cup \dots \cup v(C_4^{-n})$ where $v(P_n) = \{u_1, u_2, \dots, u_n\}$ and $v(C_4^{-i}) = \{v_i, w_i, x_i, v_i: 1 \le i \le n\}$

 $\{v_i, w_i, x_i, y_i: 1 \le i \le n\}$ and C_4^{i} is the *i*th copy of C_4 , be the vertex set and edge set of G respectively. [6]

The corona of $P_4 \odot C_4$ is given below. |v(G)| = 5n and |E(G)| = 9n - 1. Vertex set can be defined as follows

$f(u_i) = 1$, when $i = 1, 2, 5, 6,$	(1)
$f(u_i) = 6$, when $i = 3, 4, 7, 8$	(2)
$f(v_i) = 2$, when $i = 1, 2, 3, 4,$	(3)
$f(w_i) = 3$, when $i = 1, 2, 3, 4,$	(4)
f(x) = 4, when $i = 1, 2, 3, 4,$	(5)
$f(y_i) = 5$, when $i = 1, 2, 3, 4,$	(6)
Edge Set can be defined as	
$f(u_{i}, u_{i+1}) = 2$, when $i = 1, 5, 9,$	(1)
$f(u_{i}, u_{i+1}) = 7$, when i is an even	(2)
$f(u_{i}, u_{i+1}) = 12$, when $i = 3, 7, 11,$	(3)
$f(v_i, w_i) = 5$, when $i = 1, 2, 3,$	(4)
$f(v_i, y_i) = 7$, when $i = 1, 2, 3,$	(5)
$f(u_i, y_i) = 6$, when $i = 1, 2, 5, 6,$	(6)
$f(u_i, y_i) = 11$, when $i = 3, 4, 7, 8,$	(7)
$f(u_i, x_i) = 5$, when $i = 1, 2, 5, 6,$	(8)
$f(u_i, x_i) = 10$, when $i = 3, 4, 7, 8,$	(9)
$f(x_i, y_i) = 9$, when $i = 1, 2, 3, 4,$	(10)
$f(w_i, x_i) = 7$, when $i = 1, 2, 3, 4,$	(11)
$f(u_i, w_i) = 4$, when $i = 1, 2, 5, 6$	(12)
$f(u_i, w_i) = 9$, when $i = 3, 4, 7, 8,$	(13)
$f(u_i, v_i) = 3$, when $i = 1, 2, 5, 6$	(14)
$f(u_i v_i) = 8$, when $i = 3,4,7,8$	(15)
2 5 6 62	

Illustration:
$$P_2 \odot C_4$$

Retrieval Number: B3982129219/2019©BEIESP DOI: 10.35940/ijeat.B3982.129219 Journal Website: <u>www.ijeat.org</u>

The Lucky number of $P_4 \odot C_4$ is 12.

III. CONCLUSION

Here we establish the fact the Lucky edge labeling based on special type of graphs that is $P_n \odot C_4$, $P_n \odot K_2$, 3-regular and 4-regular graphs. This can be extended for generalized Corona and Regular graphs.

REFERENCES

- 1. Dr. Nellai Murugan.A, Maria Irudhaya Aspin Chitra.R "Lucky Edge labeling of Pn, Cn and Corona of Pn, Cn" IJSIMR PP: 710-718, 2014.
- Dr. Nellai Murugan.A, Maria Irudhaya Aspin Chitra.R "Lucky Edge labeling of Triangular Graphs" IJMTT-Vol.36(2)-2016.
- 3. Gallian J.A. "A dynamic survey of graph labeling". The electronic Journal of Combinatorics, (2012) #DS6.
- Ramya. N, Rangarajan, Sattanathan.R "On vertex bimagic and Antimagic Labeling of regular graphs". Proceedings of ICMEB 2012,103-105.
- 5. Kaladevi.V and Kavitha.G "Edge-odd graceful labeling of some corona graphs". Proceedings of ICMEB2012, PP 77-79.

AUTHORS PROFILE

Mrs. Shalini Rajendra Babu, Pursuing Ph.D. in the area of Graph theory at BIHER, Chennai. She has presented papers in Conferences and published papers.

Dr. N. Ramya, obtained Ph.D. In the field of Graph theory. She published 15 papers in National as well international journals. She is working as a professor at BIHER Chennai.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication