
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

209

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B4438129219/2020©BEIESP
DOI: 10.35940/ijeat.B4438.029320
Journal Website: www.ijeat.org

 Abstract:- In data mining, major research topic is frequent
itemset mining (FIM). Frequent Itemsets (FIs) usually generating
a large amount of Itemsets from database it causing from high
memory and long execution time usage. Frequent Closed
Itemsets(FCI) and Frequent Maximal Itemsets(FMI) are a
reduced lossless representation of frequent itemsets. The FCI
allows to decreasing the memory usage and execution time while
comparing to FMIs. The whole data of frequent Itemsets(FIs) may
be derived from FCIs and FMIs with correct methods. While
various study has presented several efficient approach for FCIs
and FMIs mining. In sight of this, that we proposed an algorithm
called DCFI-Mine for capably derive FIs from Closed FIs and
RFMI algorithm derive FMIs to FIs. The advantages of
DCFI-Mine algorithm has two features: First, efficiency, different
existing algorithm that tends to develop an enormous quantity of
Itemsets all through process, DCFI-Mine process the Itemsets
straight without candidate generation. But in proposed RFMI
multiple scan occurs due to search of item support so efficiency is
less than proposed algorithm DCFI-Mine. Second, in terms of
losslessness DCFI-Mine and RFMI can discover complete
frequent itemset without lapse. Experimental result shows That
DCFI-Mine is best deriving FIs in term of memory usage and
executions time.

 Keywords: Deriving algorithm, Frequent itemset mining,
maximal itemset, closed, itemset mining, Lossless condensed
representation.

I. INTRODUCTION

The purpose of FIs(Frequent Itemsets) mining [1]-[3] is to

determine the sets of item in database looking frequently.
Those skills have been generally applicable to many real-life
application are association analysis [4], text mining [6],
bioinformatics [7] and web mining [5]. Numerous effective
procedures has been established for mining FIs are Apriori
[1], Eclat [8] and FP-Growth [7]. When FIs mining from
databases type is sparse, these procedures typically have
performance good because the correlation of items between
in sparse database are comparatively weak, then the FIs
length in the database are too comparatively short. The
traditional FIs mining techniques be able to make use of the
downward closure property [1], [11] to prune effectively the

Revised Manuscript Received on February 05, 2020.

* Correspondence Author
A.Subashini, Assistant Professor in the Department of Computer

Application, Government Arts College, C.Mutlur, Chidambaram, Tamil
Nadu, India.

M.Karthikeyan, Assistant Professor in the Division of Computer and
Information Science, Annamalai University, Annamalai Nagar,
Chidambaram, Tamil Nadu, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

space of search. A typical data type Sparse transaction dataset
examples are used in real-life situations, several types of
dense dataset are as features of plant(e.g., Mushrooms
datasets [10]), census statistical data (e.g., the Pumsb datasets
[10]), and records in games steps (e.g., the Connect and
Chess datasets [10]). To resolve the overhead difficulties,
various study has enthusiastic to develop condensed
representation of Frequent Itemsets. The experiment result of
prior study [11]-[14] has present the condensed
representation which can be greatly decrease the memory
usage and execution times from dense dataset. Several type
of condensed representation of FIs has been propose, like
maximal itemsets [12], free itemsets [11], maximal itemsets
[12], closed itemsets [14], and generator itemsets [13].
Between those representations, (maximal itemsets) FMIs and
FCIs is one of the popular one. The frequent maximal
itemsets (FMI) and FCI is a lossless reduced representation
[13] of Frequent Itemsets. Through the exact algorithms,
entire FIs with their support be able to derive completely
from all the FMIs and FCIs. So, the whole set of FMIs, FCIs
are preserves the whole data without loss of Frequent
Itemsets. The various studies [13], [15]-[17] had efficiently
proposed for mining FMIs, some of them think through to
develop an algorithm for deriving efficiently FIs from FMIs
and FCIs (derive an algorithm used for easiness). But evolve
deriving efficient algorithm is a significant works for both
FCIs and FMIs. When every FIs cannot stay positively mined
from dense data type, an another solution, to mine whole
FCIs and FMIs from dataset, next apply deriving effective
algorithm to derive the set of complete Frequent Itemsets
with their supports also from FMIs and FCIs.
A maximal frequent itemsets has no super subsets is called
frequents. Though FIs be able to condense for mines a
“border" in an itemsets lattice, as found as in [9]. The whole

itemset below the borders are all frequent and above the
border are infrequent. Bayardo [19] intros MaxMiner, that
extend Apriori for mining only “lengthy" pattern (FMI). To

decrease, the space of search. Then we able to decide that
some of its subsets was also a frequent so supersets of
frequency prune decreases the time of search radically,
MaxMiner need several pass to acquire whole lengthy
pattern. Though, the LevelWise traditional deriving
algorithm [14] adopts topdown strategy and breadth-first
search to derives the FIs. This one derives the FIs of (k-1)
length from closed FIs and FIs of k lengths. Though,
traditional derive algorithms [12] implements topdown and
breadth-first search approach to derive FIs is called levelwise
algorithm.

Deriving Frequent Itemsets from Lossless
Condensed Representation

 A. Subashini, M. Karthikeyan

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.B4438.029320&domain=www.ijeat.org

Deriving Frequent Itemsets from Lossless Condensed Representation

210

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B4438129219/2020©BEIESP
DOI: 10.35940/ijeat.B4438.029320
Journal Website: www.ijeat.org

A weakness of a LevelWise algorithm that need to preserve
the whole sets of the FIs of k length and (k-1) length in
memory for duration of the derive process. Hence, when
there was numerous FIs of k length and (k-1) length,
algorithm levelwise will takes a large memory and also
running out of memory due to deriving task. Likewise, the
deriving procedure of the LevelWise consist of a huge
number of search tasks, results in lengthy executions time
problematic. In sight of above, the proposed algorithm,
named DCFI-Mine (Discovering Compact Frequent Itemset
is Pattern Growth based), for effective derive FIs and with the
support from FCIs. An ideas design of DCFI-Mine construct
the FP-Tree first to preserve the data of FCIs, then from
FP-tree the FIs is generated using FP-Growth. However,
traditional algorithm FP-Tree and FP-Growth is not
considered for derive task then applying straight will results
improper result. So, we proposed two approaches then alter
the algorithm process of FP-growth and FP-tree, constructing
those to derive the correct data of FIs from the FCIs. The
proposed approaches are respectively call the selecting
maximum supports and replace maximum supports. Then
previous method is applying through building of FP-Tree and
pattern generate latter. The experiments that we performs on
Dense and sparse real-life dataset to estimate the presentation
on the propose algorithm called DCFI-Mine. Extensive
experiment shows that DCFI-Mine is fairly efficient and
derive all FIs with supports. RMFI (Recover all Frequent
Itemsets from maximal Items) to recover entire FIs from set
of maximal FIs. Additionally, DCFI-Mine comparing the
performance is considerably better than RFMI algorithms in
term of execution time and memory usages.
 Table I. An example of a transaction database

TID TRANSACTION

1 A E O U
2 E I U
3 A E O U
4 A E I U
5 A E I O U
6 E I O

II. BASIC CONCEPT AND DEFINITIONS

Let assume P= {I1, I2… IN} be a finite set of distinct items. A
transaction databases Ɗ = {t1, t2,…, tK} is a transaction sets,
where every transactions tr ϵ Ɗ (1≤ r ≤ K) is a subsets of P and

it has sole identifier transactions ‘r’. An itemsets is a sets of

item. If entire item of an itemsets Z can contain in a
transactions T, Z is supposed to be contain in T, which was
denote as Z ⸦ T.
Definition: 1 (Tidset). Transaction identifiers set of an
itemsets Z is denote as r(Z) and the set of
transactions_ID(identifiers) defined as entire transaction
contains Z in Ɗ.
Definition: 2 (Itemset Length). Length of an itemset of Z =
{I1, I2… IL} is define as L, where L was the complete distinct
item in Z.
Definition: 3 (Itemset Support of items). Support count of
an itemset of X was denoted as SCI(Z) and defined as |r(Z)|.
Moreover, the support of Z is defined as SCI(Z)/| Ɗ |, where |
Ɗ | is the total number of transactions in Ɗ.
Definition: 4 (Frequent itemset). An itemsets Z is called as
frequent itemsets if and only if the supp(Z) isn’t less than a

user-specified minimum support threshold θ (0 < θ ≤ 1).

Otherwise, Z is low support.
Definition: 5 (Closed itemset). An itemsets Z is called as
closed itemsets if it has no proper superset Y in Ɗ such that
SCI(Z) = SCI(Y). Else, Z is not a closed itemset. The
complete set of closed itemsets is denoted as C.
Definition: 6 (Frequent closed itemset). A closed itemset Z
is called frequent closed itemsets If and if only the support(X)
was not less than the user-specified minimum support
threshold θ (0 < θ ≤ 1). The complete set of Frequent closed
itemset is denote as FCI.
Definition: 7(Maximal itemset). An itemsets Z is called
Maximal itemsets if none of its immediate superset is
frequent. Else, Z is not a maximal itemset.
Definition: 8. (Frequent Maximal itemset). An itemset Z is
called maximal itemsets iff the support of Z was not less than
the user-specified minimum support threshold θ (0 < θ ≤ 1).
The complete set of Frequent Maximal Itemset is denoted as
FMI.
Problem Statement for Maximal Itemset Mining: Given a
dataset Ɗ with itemset support, and a user-specified min_sup
threshold, the problematic is to determine the whole set of
FMIs in Ɗ. Then compared frequent closed itemset with
frequent maximal Itemset from altered viewpoints. In terms
of compression, the sets FMI is lesser than FCI because FCI
is a subsets of FMI. A FMIs only says the user, certain of its
subset can be FIs. But FCIs are additional significant as this
are lossless and first eliminate redundancy [20, 21]. In terms
of recovering, representation of both can be used to recover
entire FIs, then it’s extra costly with FMIs. This is a reason

that FMIs aren’t lossless. So, asking the support of a FIs
using FMIs needs to make a surplus databases scan, though
it’s not essential for closed FIs. Both FMI and FCI are
represent because both of them can stay used to find entire
FIs.

III. THE PROPOSED METHOD

3.1 Derive Frequent Itemsets from Closed Itemsets:
In this division the proposed algorithm DCFI-Mine (Deriving
Frequent Itemsets from closed itemset). In first approach of
function InputFCI was developed based on the modification
of FP-Growth and FP-Tree refer to [2]. And second approach
RFMI function deriving FIs from Maximal frequent itemset.
In first approach: The FP-Tree is a tree based structure
adopted in DCFI-Mine. The DCFI-Mine, instead of
transactions of the FP-Tree are used to retain the data of FCIs.
The FP-Tree of every node is denotes as ‘T’ and an items

denotes as I ℇ I*, it consists of fields five: T.Names,
T.Counts, T.Parents, T.Childs and T.Links. In T.Names and
T.Counts field stores respectively the names of item ‘I’ and

value of count ‘I’. The T.Parents and T.Childs field stores
respective nodes of parent ‘T’ and a nodes of children ‘T’.

The T.Links fields store a nodes link, that which point to next
nodes have the items name as same ‘T’. Every FP-Tree was
associates with the header tables. The information of items
records in a header table and those items are every
sub-itemset of FCIs (Frequent closed itemsets). The HT
header table, every items I ℇ I* in HT consist of three field:
HT[I].Names, HT[I].Counts and HT[I].Links, that which
correspondingly registers the names of items

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

211

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B4438129219/2020©BEIESP
DOI: 10.35940/ijeat.B4438.029320
Journal Website: www.ijeat.org

 ‘I’, a values of counts ‘I’, and a link nodes point a FP-Tree
nodes have the name of item same as I. refer[2].

A. Construction of a FP-Tree for Deriving Task

This subdivision intros the building a FP-Tree to derive
process with following four stages.
Stage 1. Let a C is the entire itemset of FCIs (Frequent
Closed Itemset) exposed from a database Ɗ. In DFCI-Mine
‘C ’ scans one time and derive their support count of every
items looking in C rendering towards the Selecting
Maximum Support of Item (SMS-I) approach.

Fig.1(a).FCM with Support count
Frequent Closed

Itemset
Support Count

{EUA} 4
{EU} 5
{EI} 4
{E} 6

{EO} 4
{EUI} 3

{EUAO} 3

Fig. 1(b). An example of Selecting Maximum Support
Item (SMS-I)

Itemset Selecting Maximum Support Item Support
Count

{E} Max{SCI({EUA}),SCI({EU}),
SCI({E}), SCI({EO}),SCI({EUI}),

SCI({EUAO})}

6

{U} Max{SCI({EUA}),SCI({EU}),
SCI({EUI}), SCI({EUAO})}

5

{A} Max{SCI({EUA}),SCI({EUAO})} 4
{I} Max{SCI({EI}),SCI({EUI})} 4
{O} Max{SCI({EO}),SCI({EUAO})} 4

Method 1 (SMS-I). Let an item be I and S(I) = {c1, c2, …, cz}
be the set of entire FCIs contain I. The support count of I was
equivalent to max{SCI(c1), SCI(c2), …, SCI(cz)}. Fig.1
shows that left table is closed itemset with minimum support
count is 3 and in right table explains the selection of
maximum support item approach.
Stage 2. Create an H header table and items placed into
header table H by a stable sort in order f. next, create a root
node R of T FP-Tree. Then, scans C one time and sorts item
in every FCIs by the sorted order f.
Stage 3. Every arranged FCI Inserting into T FP-Tree by
calling the function InputFCI. The pseudo code of function
InputFCI was presented in Fig. 2. Every time when a FCI, X
= {I1, I2… IK} is recovered, the two variables T and w are sets
to R root node and 1 respectively. Moreover, set a variable Iw
to I1, where I1 is first items of closed itemset X. next, calling
the InputFCI (T, Iw) function insert X in to the T FP-Tree.
The Function InsertFCI(T, It) process work as following. If
the T nodes has a T′(child nodes) so that T′.Names = Iw, then
an algorithms put on the replacement maximum support
(RMS) approach for setting T′.Counts.

Fig.2. The Pseudo code of the Function
Function : InputFCI(T,IW)
01 If(T has a child T’ such that T’.names == Iw)
02 then T’.counts max{T’.counts, SCI(X)};
03 else
04 Create a new child node T’ and
05 Set T’.names Iw, T’.counts SCI(X), T’.parent T;
06 Set T’.links to the lastly created node having the same
item name as Iw;
07 w ← w +1, If(w k), call InputFCI(T, Iw);

 Method 2 (RMS). If SCI(X) >T′.Counts, then
swapping T.Counts by SCI(X). Else, if SCI(X) isn’t greater

than T′.Counts, then it creates a replacement node T′ and it
sets T child node. Besides, the T′.Counts and T′.Links set
toward support counts of X and finally nodes was created
which have items in same name as Iw, respectively in lines 3
and 6 .Following, increments the variable w by 1. then, if w
isn’t greater than K, then call the repetitive function InputFCI
(T′, Iw) for process the w-th items of X in Lines 7.In Fig.3
show an example ,insert closed itemset Figure
3(a),3(b)-interchange maximum support count for item E:5
and U:5,same as in 3(c) and 3(d) also.

(a). Input{EUA}:4

(b). Input {EU}

(C). Input{EI}

(d).

Input{E}
Fig.3 .An example replacing Maximum Support (RMS)

Stage 4. All through FP-Tree structure process, entire nodes
having the item name same will be link together via the link
nodes of HT header tables and
associated node in T FP-Tree.
Over those link nodes,
DCFI-Mine allows towards

http://www.ijeat.org/

Deriving Frequent Itemsets from Lossless Condensed Representation

212

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B4438129219/2020©BEIESP
DOI: 10.35940/ijeat.B4438.029320
Journal Website: www.ijeat.org

nodes travel have items name as same powerfully.

B. Deriving Frequent Itemsets:

Afterward constructing T FP-Tree, HT header tables then
called function DFCI-Mine (HT, F, β) towards deriving FIs

from FP-Tree T, the variables α is initialized to φ. This

process of the function DFCI-Mine (HT, F, α) working as

following.
Stage 1. This algorithm visit every items of I in HT header
tables. For every visited items, the algorithms output{β ⋃ I}
then HT[I].Counts as FIs and with their support count. Over
the link nodes in HT[I].Links, DFCI-Mine pass through
entire node having the name of same item as I in T FP-Tree.
Stage 2. Let α ={α1, α2,…, αn} a set of node I have its name of
item is same. For every node αi ϵ α (1 ≤ i ≤ n), this algorithm

visit from parent nodes of αi to R root node of T. Then, this
algorithms collect the item of each visited nodes. Those item
form a sequences Ci (1≤ i ≤ n) and that sequences is called

conditional itemsets. Each conditional itemset Ci was
associated with a counts called count of conditional itemsets
and was denote as CCI(Ci). This count of conditional itemsets
Ci is primarily set to αi.Counts. Then handling entire nodes in
α in same manner, conditional databases of the

itemsets{α⋃I} was acquired. Let as Ɗ{α ⋃ I} = {C1:CCI(C1),
C2:CCI(C2),…, Cm:CCI(Cn)} denoted the conditional
databases of {α ⋃ I}.
Stage 3. Scan the conditional databases once Ɗ{α ⋃ I} to
discover entire distinct item in the conditional itemset. For
every items X, this algorithms evaluates the support counts of
frequent itemsets{β ⋃ I ⋃ X} through the proposed Selecting
Maximum Support for itemsets(SMS-IS) approach.
Method 3. (SMS-IS).Let X be an items appeared in Ɗ{β⋃I}
then a set of entire conditional itemsets be C* =
{C’1:CCI(C’1),C’2:CCI(C’2),………,C’h:CCI(C’h)} contain
X in Ɗ{α ⋃ I }. Then sup_count of a frequent itemsets{α ⋃
I⋃X}wasequivalent to max{CCI(C’1),CCI(C’2)…CCI(C’h)}
, wherever CCI(C’1) was the conditional itemset count of
C’1(1≤ i ≤ n). Fig.4, shows a conditional databases of

itemsets{O} are {EUA}:3 and {E}:4. These are the two
conditional itemsets {EUA}:3 and {C}:4. In the steps of
algorithm, the worth of the variables α is currently φ. The

conditional itemsets covering the items{E} is {{EUA}:3,
{E}:4}. The support count of {φ⋃O⋃E}={OE} is
Max{CCI({EUA}), CIC({E})} = max{3, 4} = 4. Therefore,
this algorithms output{OE} as a FIs and its support count is 4.

Fig.4(a) Conditional Database of {O}

Conditional Database of {O}

Conditional
Itemset

Conditional
Itemset Count

{EUA} 3

{E} 4

Fig.4. An example of the Selecting Maximum Support for
ItemSet (SMS-IS)

FIs Selecting Maximum Support

Sup_count

{OE} Max{CCI({EUA}),CCI({C})} 4

{OU} Max{CCI({EUA})} 3

{OA} Max{CCI({EUA})} 3

Stage 4. This algorithm locates item in Ɗ {α ⋃ I} into a novel
HT’ header tables in the sort order f. Then, algorithms scan

conditional databases Ɗ{α ⋃ I} for a next time and sort item in
every conditional itemsets in Ɗ {α ⋃ I} given to f.
Stage 5. Create a novel R′ nodes as the root of a novel T′

FP-Tree for the itemsets{α ⋃ I}. Insert each sort conditional
itemsets in Ɗ{α ⋃ I} into T′ to build the conditional FP-Tree of
itemsets{α ⋃ I}. All time after a sort conditional itemsets J is
insert then sets the variable N and Iw into R and I1, next
calling a function InputFCI(T, Iw). When construct T′, entire
node in T′ have the name of items same that was link
organised by the link nodes.
Stage 6. When constructing T′ FP-Tree has node other than
the R′ root nodes, next to derive FIs call the function
DFCI-Mine (H′, T′, α ⋃ I).

3.2 Recover all Frequent Itemset from Maximal Items:

In this section, the proposed algorithm named as RMFI
(Recovers all Frequent Itemset from maximal Items) is
efficient to derive entire FIs from set of maximal FIs. The
min_sup threshold and the set of FMIs are taken as input.
RMFI recover entire FIs is outputs respecting to min_sup.
RMFI process as follows. The set of maximal frequent
itemset (FMI) allow recovering all FIs. FMIs defines, that a
maximal frequent itemset not have proper superb subsets
that’s a frequent itemset. Thus, if an Itemsets is frequent, it is

also a proper subsets of maximal itemsets. Figure.5
represents simple algorithms for recovering entire FIs from
the set of FMIs. It produce entire subset of all the FMIs.
Furthermore, it makes a check to identify if a FIs has
previously been outputs in line 3 because a FIs can be a
subset of other than one maximal Itemset. Afterward FIs had
recovered and an additional scan in database can be executed
to calculate their support, if required.

Fig. 5 Algorithm to derive all FIs from FMIs.
Function: RMFI (I/P: a set of Maximal Itemset FMI)
01 For each FIs j ϵ FMI
02 For each frequent k(j)
03 If k has not been output
04 Then output k.

IV. RESULT AND DISCUSSION

In this division, we estimate the presentation of the proposed
algorithm DFCI-Mine, RFMI algorithm and compared the
both algorithms. This determination of two algorithms are
same, which derives FIs with their supports from FMIs and
FCIs. This experiment is directed on a computer equipped
with Intel i5 with 8 GB of RAM, compile on Windows 10
OS. This algorithm was executed in Java programming
language. Two real-life dataset that is Mushrooms (Dense)
and BMS_WebView_1 (sparse) are used for the performance
estimate. All the dataset are download from SPMF [10].

Table II: Characteristics of
Datasets

Max{5,4}

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

213

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B4438129219/2020©BEIESP
DOI: 10.35940/ijeat.B4438.029320
Journal Website: www.ijeat.org

Dataset Number of
distinct
Items

Number
of

transacti
on

Type

Mushrooms 119 8124 Dense

BMS_WebView
_1

59,602 497 Sparse

In Table II show the dataset characteristics. The executions
time and its memory usage of algorithms was estimated. We
extent the algorithm maximum memory usage by Java API.
Figures.6 shows the executions time and the memory usage
of compare algorithm. The executions time of DFCI-Mine
and RFMI on the dense dataset that is Mushrooms are shown
in Table III and in Fig. 6(a), 6(b) and on Sparse datasets
BMS_WebView_1 are presented in Table IV and in Fig. 7(a)
and 7(b), respectively. As exposed in those figure, the
performance of DFCI-Mine is best compared to RFMI. For
example, using Mushroom datasets, when the min_sup
threshold is lesser than 1%, RFMI even can’t complete the

entire derive tasks due to running out of memory. However,
our proposed DFCI-Mine takes minimum time to derive all
FIs and with support from FCIs because of RFMI take on
many scans for searching and used top-down methods to
deriving all FIs from FMIs. RFMI occupy much times for
search the similar item. Furthermore, it keep two level of
itemset in the memory, that which occupies great memory
space during the derive task. However, DFCI-Mine
implements pattern growth with divide-and-conquer system
to deriving all FIs, which divides the entire derive task into
minor separate from one and so, normally it take less times
than RFMI. In figures, we can witness that presentation
between the RFMI and DFCI-Mine is lesser when the
threshold was higher. It happens because that when the
threshold was higher, the number of FCIs is lesser and the
length of FCIs are relatively short. As shown in the
experiment, no matter about the executions time or memory
usages, the propose DFCI-Mine and RFMI generally has
better performance of deriving all FIs.
Table III: Mushrooms (dense) Datasets on both proposed

algorithms
Min_Supp

(%)
Execution Time(s) Memory Usage(MB)

DFCI-Mine RMFI DFCI-Mine RMFI

0.1 1415 12063 107.96 425.18

0.2 92 969 246.66 446.04

0.3 4 170 255.17 446.04

0.4 1 183 267.17 446.04

0.5 1 161 275.76 446.04

0.6 1 200 285.17 446.04

0.7 1 137 294.26 446.04

0.8 0 172 294.26 446.04

0.9 0 146 294.26 446.04

1 0 146 294.26 446.04

Fig.6 Execution Time and Memory Usage of DFCI-Mine
and RMFI on Dense dataset

Table IV: BMS_View_1 Datasets on both proposed
algorithms

Min_Supp
(%)

Execution Time(s) Memory Usage(MB)

DFCI-Mine RMFI DFCI-Mine RMFI

0.01 57 74 31.36 79.51

0.02 3 17 38.85 79.51

0.03 1 18 46.72 71.5

0.04 1 12 54.63 63.69

0.05 2 14 62.73 55.96

0.06 1 20 70.13 20.3

http://www.ijeat.org/

Deriving Frequent Itemsets from Lossless Condensed Representation

214

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: B4438129219/2020©BEIESP
DOI: 10.35940/ijeat.B4438.029320
Journal Website: www.ijeat.org

Fig.7 Excecution Time and Memory Usage of
DFCI-Mine and RMFI on sparse dataset

V. CONCLUSION

We propose an algorithm, named DFCI-Mine (Deriving
Frequent Itemsets from closed Itemsets) and RFMI (Recover
all FIs from maximal Itemsets) for the FIs deriving task.
Likewise, we proposed two Methods in DFCI-Mine, named
selecting maximum support of Itemsets (SMS-I) and replace
maximum support (RMS), and join them into DFCI-Mine for
efficient derive the whole FIs with its supports. The SMS-IS
approach is proposed for computing the exact support with
FIs by data from FCIs. In RMS approach is implemented
through building FP-Tree, then its proposed set of the
accurate info of FP-tree node. RMFI recover entire FIs from
the set of maximal FIs. This one takes input as min_sup
threshold with the set of FMIs. RMFI gives the entire FIs
with respect to min_sup. Experiment result shows that the
execution time and memory usage of DFCI-Mine are
significantly better than that of the RFMI.

REFERENCES

1. R.Agarwal and R.Srikant.” Fast algorithms for mining association
rules,”In: Proceedings of International Conference on Very Large Data
Bases, pp. 487–499 (1994).

2. J.Han, J.Pei and Y.Yin.” Mining frequent patterns without candidate
generation,” In: Proceedings of ACM SIGMOD International

Conference on Management of Data, pp.1–12 (2000).
3. J.S.Park, M.S.Chen and P.S.Yu. “An effective hash-based algorithm

for mining association rules”. In: Proceedings of ACM SIGMOD

International Conference on Management of Data, pp. 175–186 (1995).
4. S.Gupta and R.Mamtora. “A survey on association rule mining in

market basket analysis” International Journal of Info. Computer
Technology. 4(4), 409–414 (2014).

5. Q.Zhang and R.Segall. Web Mining: “A survey of current research,

techniques and software”. International Journal of Information
Technology Decision Making 7(4), 683–720 (2008).

6. J.Liu, J.Shang, C.Wang, X.Ren and J.Han. “Mining quality phrases
from massive text corpora”. In: Proceedings of ACM SIGMOD

International Conference on Management of Data, pp. 1729–1744
(2015).

7. S.L.Ting, C.C.Shum, S.K.Kwok, A.H.C.Tsang and W.B.Lee. “Data
mining in biomedicine: current applications and further directions for
research,” Journal of Software Engineering Applications.150–159
(2009).

8. M.J.Zaki. “Scalable algorithms for association mining”. IEEE Trans.
Knowl. Data Eng. 12(3),372–390 (2000).

9. H. Mannila and H. Toivonen. “Levelwise search and borders of
theories in knowledge discovery”. In Data Mining and Knowledge

Discovery, Vol. 1, 3(1997), pages 241-258.
10. P.Fournier-Viger, A.Gomariz, T.Gueniche, A.Soltani, C.Wu and

V.S.Tseng. SPMF: a Java open-source pattern mining library. J. Mach.
Learn. Res. 15, 3569–3573 (2014).

11. J.F.Boulicaut, A.Bykowski and C.Rigotti. “Approximation of
frequency queries by means of free-sets”. In: Zighed, D.A.,

Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol.
1910, pp. 75–85. Springer, Heidelberg (2000).

12. K.Gouda,M.Zaki. GenMax: “an efficient algorithm for mining maximal

frequent itemsets”. Data Mining. Knowl. Discovery. 11(3), 223–242
(2005).

13. C.Lucchese,S.Orlando,R.Perego. “Fast and memory efficient mining of
frequent closed itemsets”. IEEE Trans. Knowl. Data Eng. 18(1), 21–36
(2006).

14. N.Pasquier,Y.Bastide,R.Taouil and L.Lakhal. “Discovering frequent
closed itemsets for association rules”. In: Proceedings of 7th

International Conference on Database Theory, pp. 398–416 (1999)
15. M. J. Md. Zubair Rahman, P. Balasubramanie, P. Venkata Krihsna. “A

hash based mining algorithm for maximal frequent item sets using
linear probing”2009.

16. D. Burdick, M. Calimlim, J. Gehrke, “MAFIA: A Maximal Frequent

Itemset Algorithm for Transactional Databases,” In Proc. ICDE 2001,
pp. 443-452, 2001.

17. E. Boros, V. Gurvich, L. Khachiyan, and K. Makino, “On the Complexity
of Generating Maximal Frequent and Minimal Infrequent Sets,”

STACS 2002, pp. 133-141, 2002.
18. D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, “MAFIA: A

Performance Study of Mining Maximal Frequent Itemsets,” In Proc.

IEEE ICDM’03 Workshop FIMI’03, 2003. Available as CEUR
Workshop Proc. series, Vol. 90, R.J. Bayardo, “Efficiently mining long

patterns from databases”, In SIGMOD, 1998.
19. V.S.Tseng, C.W.Wu, P.Fournier-Viger, P.S.Yu. “Efficient Algorithms

for Mining the Concise and Lossless Representation of High Utility
Itemsets,” IEEE Transactions on Knowledge and Data Engineering,
27(3): 726-739 (2015).

20. C.W.Wu, P.Fournier-Viger, P.S.Yu and V.S.Tseng. “Efficient Mining of
a Concise and Lossless Representation of High Utility Itemsets”.

Proceedings of IEEE International Conference on Data Mining,
pp.824-833 (2011).

AUTHORS PROFILE

A. Subashini completed her M.Phil degree in the year
2008 at Annamalai University, at present doing her
PhD degree in Anamalai University. She has fourteen
years of teaching experience. Presently she is working
as Assistant Professor in the Department of Computer
Application at Government Arts College, C.Mutlur,
Chidambaram. Her research interests are Neural

Networks and Data Mining.

Dr. M. Karthikeyan received the PhD degree from Annamalai
University. Presently he is working as Assistant Professor in the Division of

Computer & Information Science, Faculty of Science,
Annamalai University. He published ten research
papers in International journals and eight research
papers in national journals. He has nineteen years of
teaching experience and five years of research
experience. His area of specialization includes Neural
networks & Fuzzy systems, Data Mining and Digital
Image processing.

http://www.ijeat.org/
https://www.semanticscholar.org/author/A.-M.-J.-Md.-Zubair-Rahman/145994679
https://www.semanticscholar.org/author/P.-Balasubramanie/7431820
https://www.semanticscholar.org/author/P.-Venkata-Krihsna/2493573
https://www.semanticscholar.org/paper/A-hash-based-mining-algorithm-for-maximal-frequent-Rahman-Balasubramanie/8d6e30b84b7915baeae08f8e6a9ba4bc362fd0dc
https://www.semanticscholar.org/paper/A-hash-based-mining-algorithm-for-maximal-frequent-Rahman-Balasubramanie/8d6e30b84b7915baeae08f8e6a9ba4bc362fd0dc
https://www.semanticscholar.org/paper/A-hash-based-mining-algorithm-for-maximal-frequent-Rahman-Balasubramanie/8d6e30b84b7915baeae08f8e6a9ba4bc362fd0dc

