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    Abstract:- In data mining, major research topic is frequent 
itemset mining (FIM). Frequent Itemsets (FIs) usually generating 
a large amount of Itemsets from database it causing from high 
memory and long execution time usage. Frequent Closed 
Itemsets(FCI) and Frequent Maximal Itemsets(FMI) are a 
reduced lossless representation of frequent itemsets. The FCI 
allows to decreasing the memory usage and execution time while 
comparing to FMIs. The whole data of frequent Itemsets(FIs) may 
be derived from FCIs and FMIs with correct methods. While 
various study has presented several efficient approach for FCIs 
and FMIs mining. In sight of this, that we proposed an algorithm 
called DCFI-Mine for capably derive FIs from Closed FIs and 
RFMI algorithm derive FMIs to FIs. The advantages of 
DCFI-Mine algorithm has two features: First, efficiency, different 
existing algorithm that tends to develop an enormous quantity of 
Itemsets all through process, DCFI-Mine process the Itemsets 
straight without candidate generation. But in proposed RFMI 
multiple scan occurs due to search of item support so efficiency is 
less than proposed algorithm DCFI-Mine.  Second, in terms of 
losslessness DCFI-Mine and RFMI can discover complete 
frequent itemset without lapse. Experimental result shows That 
DCFI-Mine is best deriving FIs in term of memory usage and 
executions time. 
 
     Keywords: Deriving algorithm, Frequent itemset mining, 
maximal itemset, closed, itemset mining, Lossless condensed 
representation. 

I. INTRODUCTION 

The purpose of FIs(Frequent Itemsets) mining [1]-[3] is to 

determine the sets of item in database looking frequently. 
Those skills have been generally applicable to many real-life 
application are association analysis [4], text mining [6], 
bioinformatics [7] and web mining [5]. Numerous effective 
procedures has been established for mining FIs are Apriori 
[1], Eclat [8] and FP-Growth [7]. When FIs mining from 
databases type is sparse, these procedures typically have 
performance good because the correlation of items between 
in sparse database are comparatively weak, then the FIs 
length in the database are too comparatively short. The 
traditional FIs mining techniques be able to make use of the 
downward closure property [1], [11] to prune effectively the 
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space of search. A typical data type Sparse transaction dataset 
examples are used in  real-life situations, several types of 
dense dataset are as features of plant(e.g., Mushrooms 
datasets [10]), census statistical data (e.g., the Pumsb datasets 
[10]), and records in games steps (e.g., the Connect and 
Chess datasets [10]). To resolve the overhead difficulties, 
various study has enthusiastic to develop condensed 
representation of Frequent Itemsets. The experiment result of 
prior study [11]-[14] has present the condensed 
representation which can be greatly decrease the memory 
usage and execution times from dense dataset. Several type 
of condensed representation of FIs has been propose, like 
maximal itemsets [12], free itemsets [11], maximal itemsets 
[12], closed itemsets [14], and generator itemsets [13]. 
Between those representations, (maximal itemsets) FMIs and 
FCIs is one of the popular one. The frequent maximal 
itemsets (FMI) and FCI is a lossless reduced representation 
[13] of Frequent Itemsets. Through the exact algorithms, 
entire FIs with their support be able to derive completely 
from all the FMIs and FCIs. So, the whole set of FMIs, FCIs 
are preserves the whole data without loss of Frequent 
Itemsets. The various studies [13], [15]-[17] had efficiently 
proposed for mining FMIs, some of them think through to 
develop an algorithm for deriving efficiently FIs from FMIs 
and FCIs (derive an algorithm used for easiness). But evolve 
deriving efficient algorithm is a significant works for both 
FCIs and FMIs. When every FIs cannot stay positively mined 
from dense data type, an another solution, to mine whole 
FCIs and FMIs from dataset, next apply deriving effective 
algorithm to derive the set of complete Frequent Itemsets 
with their supports also from FMIs and FCIs.  
A maximal frequent itemsets has no super subsets is called 
frequents. Though FIs be able to condense for mines a 
“border" in an itemsets lattice, as found as in [9]. The whole 

itemset below the borders are all frequent and above the 
border are infrequent. Bayardo [19] intros MaxMiner, that 
extend Apriori for mining only “lengthy" pattern (FMI). To 

decrease, the space of search. Then we able to decide that 
some of its subsets was also a frequent so supersets of 
frequency prune decreases the time of search radically, 
MaxMiner need several pass to acquire whole lengthy 
pattern. Though, the LevelWise traditional deriving 
algorithm [14] adopts topdown strategy and breadth-first 
search to derives the FIs. This one derives the FIs of (k-1) 
length from closed FIs and FIs of k lengths. Though, 
traditional derive algorithms [12] implements topdown and 
breadth-first search approach to derive FIs is called levelwise 
algorithm.  
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A weakness of a LevelWise algorithm that need to preserve 
the whole sets of the FIs of k length and (k-1) length in 
memory for duration of the derive process. Hence, when 
there was numerous FIs of k length and (k-1) length, 
algorithm levelwise will takes a large memory and also 
running out of memory due to deriving task. Likewise, the 
deriving procedure of the LevelWise consist of a huge 
number of search tasks, results in lengthy executions time 
problematic. In sight of above, the proposed algorithm, 
named DCFI-Mine (Discovering Compact Frequent Itemset 
is Pattern Growth based), for effective derive FIs and with the 
support from FCIs. An ideas design of DCFI-Mine construct 
the FP-Tree first to preserve the data of FCIs, then from 
FP-tree the FIs is generated using FP-Growth. However, 
traditional algorithm FP-Tree and FP-Growth is not 
considered for derive task then applying straight will results 
improper result. So, we proposed two approaches then alter 
the algorithm process of FP-growth and FP-tree, constructing 
those to derive the correct data of FIs from the FCIs. The 
proposed approaches are respectively call the selecting 
maximum supports and replace maximum supports. Then 
previous method is applying through building of FP-Tree and 
pattern generate latter. The experiments that we performs on 
Dense and sparse real-life dataset to estimate the presentation 
on the propose algorithm called DCFI-Mine. Extensive 
experiment shows that DCFI-Mine is fairly efficient and 
derive all FIs with supports. RMFI (Recover all Frequent 
Itemsets from maximal Items) to recover entire FIs from set 
of maximal FIs. Additionally, DCFI-Mine comparing the 
performance is considerably better than RFMI algorithms in 
term of execution time and memory usages.  
           Table I. An example of a transaction database 

TID TRANSACTION 

1 A E O U 
2 E I U 
3 A E O U 
4 A E I U 
5 A E I O U 
6 E I O 

   

II.  BASIC CONCEPT AND DEFINITIONS 

Let assume P= {I1, I2… IN} be a finite set of distinct items. A 
transaction databases Ɗ = {t1, t2,…, tK} is a transaction sets, 
where every transactions tr ϵ Ɗ (1≤ r ≤ K) is a subsets of P and 

it has sole identifier transactions ‘r’. An itemsets is a sets of 

item. If entire item of an itemsets Z can contain in a 
transactions T, Z is supposed to be contain in T, which was 
denote as Z ⸦ T. 
Definition: 1 (Tidset). Transaction identifiers set of an 
itemsets Z is denote as r(Z) and the set of 
transactions_ID(identifiers) defined as entire transaction 
contains Z in Ɗ. 
Definition: 2 (Itemset Length). Length of an itemset of Z = 
{I1, I2… IL} is define as L, where L was the complete distinct 
item in Z.  
Definition: 3 (Itemset Support of items). Support count of 
an itemset of X was denoted as SCI(Z) and defined as |r(Z)|. 
Moreover, the support of Z is defined as SCI(Z)/| Ɗ |, where | 
Ɗ | is the total number of transactions in Ɗ. 
Definition: 4 (Frequent itemset). An itemsets Z is called as 
frequent itemsets if and only if the supp(Z) isn’t less than a 

user-specified minimum support threshold θ (0 < θ ≤ 1). 

Otherwise, Z is low support. 
Definition: 5 (Closed itemset). An itemsets Z is called as 
closed itemsets if it has no proper superset Y in Ɗ such that 
SCI(Z) = SCI(Y). Else, Z is not a closed itemset. The 
complete set of closed itemsets is denoted as C. 
Definition: 6 (Frequent closed itemset). A closed itemset Z 
is called frequent closed itemsets If and if only the support(X) 
was not less than the user-specified minimum support 
threshold θ (0 < θ ≤ 1). The complete set of Frequent closed 
itemset is denote as FCI. 
Definition: 7(Maximal itemset). An itemsets Z is called 
Maximal itemsets if none of its immediate superset is 
frequent. Else, Z is not a maximal itemset.  
Definition: 8. (Frequent Maximal itemset). An itemset Z is 
called maximal itemsets iff the support of Z was not less than 
the user-specified minimum support threshold θ (0 < θ ≤ 1). 
The complete set of Frequent Maximal Itemset is denoted as 
FMI. 
Problem Statement for Maximal Itemset Mining: Given a 
dataset Ɗ with itemset support, and a user-specified min_sup 
threshold, the problematic is to determine the whole set of 
FMIs in Ɗ. Then compared frequent closed itemset with 
frequent maximal Itemset from altered viewpoints. In terms 
of compression, the sets FMI is lesser than FCI because FCI 
is a subsets of FMI. A FMIs only says the user, certain of its 
subset can be FIs. But FCIs are additional significant as this 
are lossless and first eliminate redundancy [20, 21]. In terms 
of recovering, representation of both can be used to recover 
entire FIs, then it’s extra costly with FMIs. This is a reason 

that FMIs aren’t lossless. So, asking the support of a FIs 
using FMIs needs to make a surplus databases scan, though 
it’s not essential for closed FIs. Both FMI and FCI are 
represent because both of them can stay used to find entire 
FIs. 

III. THE PROPOSED METHOD 

3.1 Derive Frequent Itemsets from Closed Itemsets: 
In this division the proposed algorithm DCFI-Mine (Deriving 
Frequent Itemsets from closed itemset). In first approach of 
function InputFCI was developed based on the modification 
of FP-Growth and FP-Tree refer to [2]. And second approach 
RFMI function deriving FIs from Maximal frequent itemset. 
In first approach: The FP-Tree is a tree based structure 
adopted in DCFI-Mine. The DCFI-Mine, instead of 
transactions of the FP-Tree are used to retain the data of FCIs. 
The FP-Tree of every node is denotes as ‘T’ and an items 

denotes as I ℇ I*, it consists of fields five: T.Names, 
T.Counts, T.Parents, T.Childs and T.Links. In T.Names and 
T.Counts field stores respectively the names of item ‘I’ and 

value of count ‘I’. The T.Parents and T.Childs field stores 
respective nodes of parent ‘T’ and a nodes of children ‘T’. 

The T.Links fields store a nodes link, that which point to next 
nodes have the items name as same ‘T’. Every FP-Tree was 
associates with the header tables.  The information of items 
records in a header table and those items are every 
sub-itemset of FCIs (Frequent closed itemsets). The HT 
header table, every items I ℇ I* in HT consist of three field: 
HT[I].Names, HT[I].Counts and HT[I].Links, that which 
correspondingly registers the names of items 
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 ‘I’, a values of counts ‘I’, and a link nodes point a FP-Tree 
nodes have the name of item same as I. refer[2]. 

A. Construction of a FP-Tree for Deriving Task 

This subdivision intros the building a FP-Tree to derive 
process with following four stages. 
Stage 1. Let a C is the entire itemset of FCIs (Frequent 
Closed Itemset) exposed from a database Ɗ. In DFCI-Mine 
‘C ’ scans one time and derive their support count of every 
items looking in C rendering towards the Selecting 
Maximum Support of Item (SMS-I) approach.         

Fig.1(a).FCM with Support count 
Frequent Closed 

Itemset 
Support Count 

{EUA} 4 
{EU} 5 
{EI} 4 
{E} 6 

{EO} 4 
{EUI} 3 

{EUAO} 3 

Fig. 1(b). An example of Selecting Maximum Support 
Item (SMS-I) 

Itemset Selecting Maximum Support Item Support 
Count 

{E} Max{SCI({EUA}),SCI({EU}),     
SCI({E}), SCI({EO}),SCI({EUI}),                       

SCI({EUAO})} 

6 

{U} Max{SCI({EUA}),SCI({EU}), 
SCI({EUI}), SCI({EUAO})} 

5 

{A} Max{SCI({EUA}),SCI({EUAO})} 4 
{I} Max{SCI({EI}),SCI({EUI})} 4 
{O} Max{SCI({EO}),SCI({EUAO})} 4 

Method 1 (SMS-I). Let an item be I and S(I) = {c1, c2, …, cz} 
be the set of entire FCIs contain I. The support count of I was 
equivalent to max{SCI(c1), SCI(c2), …, SCI(cz)}. Fig.1 
shows that left table is closed itemset with minimum support 
count is 3 and in right table explains the selection of 
maximum support item approach. 
Stage 2. Create an H header table and items placed into 
header table H by a stable sort in order f. next, create a root 
node R of T FP-Tree. Then, scans C one time and sorts item 
in every FCIs by the sorted order f.  
Stage 3. Every arranged FCI Inserting into T FP-Tree by 
calling the function InputFCI. The pseudo code of function 
InputFCI was presented in Fig. 2. Every time when a FCI, X  
= {I1, I2… IK} is recovered, the two variables T and w are sets 
to R root node and 1 respectively. Moreover, set a variable Iw  
to I1, where I1 is first items of closed itemset X. next, calling 
the InputFCI (T, Iw) function insert X in to the T FP-Tree. 
The Function InsertFCI(T, It) process work as following. If 
the T nodes has a T′(child nodes) so that T′.Names = Iw, then 
an algorithms put on the replacement maximum support 
(RMS) approach for setting T′.Counts. 
 

Fig.2. The Pseudo code of the Function 
Function : InputFCI(T,IW) 
01 If(T has a child T’ such that T’.names == Iw) 
02    then T’.counts max{T’.counts, SCI(X)}; 
03 else 
04    Create a new child node T’ and 
05    Set T’.names Iw, T’.counts SCI(X), T’.parent T; 
06 Set T’.links to the lastly created node having the same 
item  name as Iw; 
07 w  ←  w +1, If(w k), call InputFCI(T, Iw); 

           Method 2 (RMS). If SCI(X) >T′.Counts, then 
swapping T.Counts by SCI(X). Else, if SCI(X) isn’t greater 

than T′.Counts, then it creates a replacement node T′ and it 
sets T child node. Besides, the T′.Counts and T′.Links set 
toward support counts of X and finally nodes was created 
which have items in same name as Iw, respectively in lines 3 
and 6 .Following, increments the variable w by 1. then, if w 
isn’t greater than K, then call the repetitive function InputFCI 
(T′, Iw) for process the w-th items of X in Lines 7.In Fig.3 
show an example ,insert closed itemset Figure 
3(a),3(b)-interchange maximum support count for item E:5 
and  U:5,same as in 3(c)  and 3(d) also. 

 
(a). Input{EUA}:4 

 
(b). Input {EU} 

 
(C). Input{EI} 

 
 
 

 
 
 
 
 

 
 
(d). 

Input{E} 
Fig.3 .An example replacing Maximum Support (RMS) 

Stage 4. All through FP-Tree structure process, entire nodes 
having the item name same will be link together via the link 
nodes of HT header tables and 
associated node in T FP-Tree. 
Over those link nodes, 
DCFI-Mine allows towards 
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nodes travel have items name as same powerfully. 

B. Deriving Frequent Itemsets:  

Afterward constructing T FP-Tree, HT header tables then 
called function DFCI-Mine (HT, F, β) towards deriving FIs 

from FP-Tree T, the variables α is initialized to φ. This 

process of the function DFCI-Mine (HT, F, α) working as 

following.  
Stage 1. This algorithm visit every items of I in HT header 
tables. For every visited items, the algorithms output{β ⋃ I} 
then HT[I].Counts as FIs and with their support count. Over 
the link nodes in HT[I].Links, DFCI-Mine pass through 
entire node having the name of same item as I in T FP-Tree. 
Stage 2. Let α ={α1, α2,…, αn} a set of node I have its name of 
item is same. For every node αi ϵ α (1 ≤ i ≤ n), this algorithm 

visit from parent nodes of αi to R root node of T. Then, this 
algorithms collect the item of each visited nodes. Those item 
form a sequences Ci (1≤ i ≤ n) and that sequences is called 

conditional itemsets. Each conditional itemset Ci was 
associated with a counts called count of conditional itemsets 
and was denote as CCI(Ci). This count of conditional itemsets 
Ci is primarily set to αi.Counts. Then handling entire nodes in 
α in same manner, conditional databases of the 

itemsets{α⋃I} was acquired. Let as Ɗ{α ⋃ I} = {C1:CCI(C1), 
C2:CCI(C2),…,  Cm:CCI(Cn)} denoted the conditional 
databases of {α ⋃ I}. 
Stage 3. Scan the conditional databases once Ɗ{α ⋃ I} to 
discover entire distinct item in the conditional itemset. For 
every items X, this algorithms evaluates the support counts of 
frequent itemsets{β ⋃ I ⋃ X} through the proposed Selecting 
Maximum Support for itemsets(SMS-IS) approach. 
Method 3. (SMS-IS).Let X be an items appeared in Ɗ{β⋃I} 
then a set of entire conditional itemsets be C* = 
{C’1:CCI(C’1),C’2:CCI(C’2),………,C’h:CCI(C’h)} contain 
X in Ɗ{α ⋃ I }. Then sup_count of a frequent itemsets{α ⋃ 
I⋃X}wasequivalent to max{CCI(C’1),CCI(C’2)…CCI(C’h)} 
, wherever CCI(C’1) was the conditional itemset count of 
C’1(1≤ i ≤ n). Fig.4, shows a conditional databases of 

itemsets{O} are {EUA}:3 and {E}:4. These are the two 
conditional itemsets {EUA}:3 and {C}:4. In the steps of 
algorithm, the worth of the variables α is currently φ. The 

conditional itemsets covering the items{E} is {{EUA}:3, 
{E}:4}. The support count of {φ⋃O⋃E}={OE} is 
Max{CCI({EUA}), CIC({E})} = max{3, 4} = 4. Therefore, 
this algorithms output{OE} as a FIs and its support count is 4. 

Fig.4(a) Conditional Database of {O} 
 

Conditional Database of {O} 

Conditional                              
Itemset 

Conditional 
Itemset Count 

{EUA} 3 

{E} 4 

Fig.4. An example of the Selecting Maximum Support for 
ItemSet (SMS-IS) 

 
FIs Selecting Maximum Support 

 
Sup_count 

{OE} Max{CCI({EUA}),CCI({C})} 4 

{OU} Max{CCI({EUA})} 3 

{OA} Max{CCI({EUA})} 3 

Stage 4. This algorithm locates item in Ɗ {α ⋃ I} into a novel 
HT’ header tables in the sort order f. Then, algorithms scan 

conditional databases Ɗ{α ⋃ I} for a next time and sort item in 
every conditional itemsets in Ɗ {α ⋃ I} given to f. 
Stage 5. Create a novel R′ nodes as the root of a novel T′ 

FP-Tree for the itemsets{α ⋃ I}. Insert each sort conditional 
itemsets in Ɗ{α ⋃ I}  into T′ to build the conditional FP-Tree of 
itemsets{α ⋃ I}. All time after a sort conditional itemsets J is 
insert then sets the variable N and Iw into R and I1, next 
calling a function InputFCI(T, Iw). When construct T′, entire 
node in T′ have the name of items same that was link 
organised by the link nodes. 
Stage 6. When constructing T′ FP-Tree has node other than 
the R′ root nodes, next to derive FIs call the function 
DFCI-Mine (H′, T′, α ⋃ I). 

3.2 Recover all Frequent Itemset from Maximal Items: 

In this section, the proposed algorithm named as RMFI 
(Recovers all Frequent Itemset from maximal Items) is 
efficient to derive entire FIs from set of maximal FIs. The 
min_sup threshold and the set of FMIs are taken as input. 
RMFI recover entire FIs is outputs respecting to min_sup. 
RMFI process as follows. The set of maximal frequent 
itemset (FMI) allow recovering all FIs. FMIs defines, that a 
maximal frequent itemset not have proper superb subsets 
that’s a frequent itemset. Thus, if an Itemsets is frequent, it is 

also a proper subsets of maximal itemsets. Figure.5 
represents simple algorithms for recovering entire FIs from 
the set of FMIs. It produce entire subset of all the FMIs. 
Furthermore, it makes a check to identify if a FIs has 
previously been outputs in line 3 because a FIs can be a 
subset of other than one maximal Itemset. Afterward FIs had 
recovered and an additional scan in database can be executed 
to calculate their support, if required.  

Fig. 5 Algorithm to derive all FIs from FMIs. 
Function: RMFI (I/P: a set of Maximal Itemset FMI) 
01  For each FIs j ϵ FMI 
02      For each frequent k(j) 
03          If k has not been output 
04             Then output k. 
    

IV.           RESULT AND DISCUSSION 

In this division, we estimate the presentation of the proposed 
algorithm DFCI-Mine, RFMI algorithm and compared the 
both algorithms. This determination of two algorithms are 
same, which derives FIs with their supports from FMIs and 
FCIs. This experiment is directed on a computer equipped 
with Intel i5 with 8 GB of RAM, compile on Windows 10 
OS.  This algorithm was executed in Java programming 
language. Two real-life dataset that is Mushrooms (Dense) 
and BMS_WebView_1 (sparse) are used for the performance 
estimate. All the dataset are download from SPMF [10].  
 
 
 
 
 
 
 
 
 

Table II: Characteristics of 
Datasets 

 

Max{5,4} 
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Dataset Number of 
distinct 
Items 

Number 
of 

transacti
on 

Type 

Mushrooms 119 8124 Dense 

BMS_WebView
_1 

59,602 497 Sparse 

In Table II show the dataset characteristics. The executions 
time and its memory usage of algorithms was estimated. We 
extent the algorithm maximum memory usage by Java API. 
Figures.6 shows the executions time and the memory usage 
of compare algorithm. The executions time of DFCI-Mine 
and RFMI on the dense dataset that is Mushrooms are shown 
in Table III and in Fig. 6(a), 6(b) and on Sparse datasets 
BMS_WebView_1 are presented in Table IV and in Fig. 7(a) 
and 7(b), respectively. As exposed in those figure, the 
performance of DFCI-Mine is best compared to RFMI. For 
example, using Mushroom datasets, when the min_sup 
threshold is lesser than 1%, RFMI even can’t complete the 

entire derive tasks due to running out of memory. However, 
our proposed DFCI-Mine takes minimum time to derive all 
FIs and with support from FCIs because of RFMI take on 
many scans for searching and used top-down methods to 
deriving all FIs from FMIs. RFMI occupy much times for 
search the similar item. Furthermore, it keep two level of 
itemset in the memory, that which occupies great memory 
space during the derive task. However, DFCI-Mine 
implements pattern growth with divide-and-conquer system 
to deriving all FIs, which divides the entire derive task into 
minor separate from one and so, normally it take less times 
than RFMI. In figures, we can witness that presentation 
between the RFMI and DFCI-Mine is lesser when the 
threshold was higher. It happens because that when the 
threshold was higher, the number of FCIs is lesser and the 
length of FCIs are relatively short. As shown in the 
experiment, no matter about the executions time or memory 
usages, the propose DFCI-Mine and RFMI generally has 
better performance of deriving all FIs. 
Table III: Mushrooms (dense) Datasets on both proposed 

algorithms 
Min_Supp 

(%) 
Execution Time(s) Memory Usage(MB) 

DFCI-Mine RMFI DFCI-Mine RMFI 

0.1 1415 12063 107.96 425.18 

0.2 92 969 246.66 446.04 

0.3 4 170 255.17 446.04 

0.4 1 183 267.17 446.04 

0.5 1 161 275.76 446.04 

0.6 1 200 285.17 446.04 

0.7 1 137 294.26 446.04 

0.8 0 172 294.26 446.04 

0.9 0 146 294.26 446.04 

1 0 146 294.26 446.04 

 

 
 

 
 

Fig.6 Execution Time and Memory Usage of DFCI-Mine 
and RMFI on Dense dataset 

Table IV: BMS_View_1 Datasets on both proposed 
algorithms 

Min_Supp 
(%) 

Execution Time(s) Memory Usage(MB) 

DFCI-Mine RMFI DFCI-Mine RMFI 

0.01 57 74 31.36 79.51 

0.02 3 17 38.85 79.51 

0.03 1 18 46.72 71.5 

0.04 1 12 54.63 63.69 

0.05 2 14 62.73 55.96 

0.06 1 20 70.13 20.3 
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Fig.7 Excecution Time and Memory Usage of 
DFCI-Mine and RMFI on sparse dataset 

V. CONCLUSION 

We propose an algorithm, named DFCI-Mine (Deriving 
Frequent Itemsets from closed Itemsets) and RFMI (Recover 
all FIs from maximal Itemsets) for the FIs deriving task. 
Likewise, we proposed two Methods in DFCI-Mine, named 
selecting maximum support of Itemsets (SMS-I) and replace 
maximum support (RMS), and join them into DFCI-Mine for 
efficient derive the whole FIs with its supports. The SMS-IS 
approach is proposed for computing the exact support with 
FIs by data from FCIs. In RMS approach is implemented 
through building FP-Tree, then its proposed set of the 
accurate info of FP-tree node. RMFI recover entire FIs from 
the set of maximal FIs. This one takes input as min_sup 
threshold with the set of FMIs. RMFI gives the entire FIs 
with respect to min_sup. Experiment result shows that the 
execution time and memory usage of DFCI-Mine are 
significantly better than that of the RFMI. 
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