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Abstract: Scheduling problems are NP-hard in nature. 
Flowshop scheduling problems, are consist of sets of machines 
with number of resources. It matins the continuous flow of task 
with minimum time.  There are various traditional algorithms to 
maintain the order of resources. Here, in this paper a new 
stochastic Ant Colony optimization technique based on Pareto 
optimal (PA-ACO) is implemented for solving the permutation 
flowshop scheduling problem (PFSP) sets. The proposed 
technique is employed with a novel local path search technique for 
initializing and pheromone trails. Pareto optimal mechanism is 
used to select the best optimal path solution form generated 
solution sets. A comparative study of the results obtained from 
simulations shows that the proposed PA-ACO provides minimum 
makespan and computational time for the Taillard dataset. This 
work will applied on large scale manufacturing production 
problem for efficient energy utilization. 

 
Keywords: Permutation Flowshop Scheduling Problem 

(PFSP), probability of Correct Selection (PS), High-performance 
computing (HPC) 

I. INTRODUCTION 

A PFSP consists of a constant sequence set {𝑆 ∈ 𝑅 0
+ } of the 

non-permutable real-world problem. It also states that jobs ‘i’ 
(i =1, 2,… n) have processed on machines ‘m’ (m = 1, 2… m) 

having the processing time ( 𝑡𝑖𝑗). The processing time of the 
machine is assumed to be ‘0’ if the job doesn’t take part in the 
execution. Then this type of problem is assumed that one 
machine can process one job at a time, and the jobs available 
for processing are assumed to be sequence-independent. 
Here, we consider the PFSP to minimizing makespan [14, 10] 
of the solution set. The work presented in this paper is to 
reduce the computational time (CTPJ max) and makespan of the 
Taillard dataset. Flow shop scheduling [8] with 
multiprocessor increase the computational capacity and also 
reduce the cost of the machine. There are various researchers 
have proposed several heuristic algorithmssuch as Genetic 
Algorithm (GA), Tabu Search, Particle Swarm Optimization 
(PSO) algorithms, etc.to provide the near-optimal solution at 
the relatively minor computational expense [9]. Ant Colony 
Optimization (ACO) is widely used for solving combinatorial 
problems.  
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In the year 1992, Dorigo introduced the population-based 
search technique based on the behaviors of ant’s hive 

[13].Ants are the natural food seeker and they use pheromone 
trail to create the shortest routes for their fellow ants. Ants do 
not have any visual power instead of they use pheromones to 
find the shortest route between foods to the nest. It has been 
experimentally proved that the ants will find the shortest path 
by using the pheromone trail. The first example of ant 
pheromone trail search is proposed by Dorigo for traveling 
salesman problem. In computer science, the colony of 
artificial ants helps users to finding the optimal solution from 
the given problem set. There are various versions of ACO 
algorithms are developed by different researchers to find the 
optimal results for various datasets. 

A. Conventional Ant colony optimization 

ACOsolves the complex combinatorial optimization problem 
using graph theory. The basic structure of the graph is as 
follows: the ants are set at the nodes and the edge between the 
nodes is considered for the trails. The higher pheromone 
concentrationon edgeshaving a maximum probability for 
next node selection and also identify the shortest 
path.Travelling Salesman Problem(TSP) is a classic problem 
that is solved by the ACO algorithm [34]. It consists of cost 
and distance between the cities. Here, thegraph 𝐺 =
(𝑖, 𝑗)containscost at the node ‘i’ and distance between the 

nodes at edge ‘j’. The work of ant has to complete their tour 
in the graph to find the shortest path. The next visiting node is 
selected by using a pheromone update. The Ant ‘k’ selects the 
node ‘vi’ to node ‘vj’ based on the given Eq. 1. 
 
[τ(𝑖, 𝑗)]𝛼[𝑛(𝑖, 𝑗)]𝛽 = max

𝑣1∈𝐽𝑘(𝑖)
{  [τ(𝑖, 𝑗)]𝛼 [𝑛(𝑖, 𝑗)]𝛽}            (1) 

Here, 
τ(𝑖, 𝑗) = The pheromone level (i, j) 
𝜂(𝑖, 𝑗) =Cost at the node,  
𝐽𝑘(𝑖) = Visited node by ants  
𝛼 = Edge Cost  
β = Pheromone level 
The next node ‘vj’ is randomly selected based on the 
probability distribution which is represented in the Eq. 2. 

𝑝𝑘 (i,j)= 
[τ(𝑖,𝑗)]𝛼[𝑛(𝑖,𝑗)]𝛽

∑ 𝑣1∈𝐽𝑘(𝑖)[τ(𝑖,𝑙)]𝛼[𝑛(𝑖,𝑙)]𝛽
0

                                            (2) 

If 𝑗 ∈  𝑗𝑘(𝑖)otherwise 
Once the ant tour is completed the local updating rule is 
applied for pheromone update. Eq. 3, is used to avoid the 
search of the near best tour. 
𝜏(𝑖, 𝑗) = (1 − 𝜌)𝜏(𝑖, 𝑗) + 𝜌∆𝜏(𝑖, 𝑗)                                    (3) 
Here, ρ = Pheromone evaporation rate(0, 1)∗ 
∆𝜏(𝑖, 𝑗) = 𝜏0 = Initial pheromone rate 
After the ant covers all the nodes and edges the global update 
rule is applied. Eq. 4, is used 
to find the global best route.  
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𝜏(𝑖, 𝑗) = (1 − 𝛿)𝜏(𝑖, 𝑗) + 𝛿𝜏𝑔𝑏(𝑖, 𝑗)                                   (4) 
Here, 
 δ = Global evaporation rate (0, 1) 

𝜏𝑔𝑏(𝑖, 𝑗) = {
𝐿𝑔𝑏

−1

0
   If edge the (i, j) between source to 

destination  global best tour, otherwise. 
𝐿𝑔𝑏

−1= Global best tour by the ant. 
The best solution is represented by the pheromone matrix. It 
consistsof ‘jth’ job at rows and ‘ith’ processor at the column.  

II. LITERATURE REVIEW 

Scheduling isone of the demanding areas for operational 
research. The researcher recognized that every year hundreds 
of papers arepublished in this field. In the year 1954 Johnson 
[31], present a brief study on two-machine flowshop 
scheduling problems. For flow shop scheduling 
problemTaillard’s datasetconsists of 120 instances and each 
set of job runs on a different set of machines [6, 7]. There are 
different datasets present such as job shop scheduling 
problems, flowshop scheduling problems, etc. [32]. There are 
various traditional techniques available to solve this type of 
scheduling problem. However to obtain better results 
researcher move toward Metaheuristic algorithms like Tabu 
search [33], evolutionary algorithm [11], and particle swarm 
optimization. Cheng and Kovalyov [15], deals with batching 
and flowshop scheduling problems for the machine to reduce 
total completion time. The single operator flow shop problem 

studied by Iravani and Teo [16]. They suggested an optimal 
chain structure schedule to minimizing setup costs, makespan 
for machine-dependent jobs andmachines. To solve the 
two-machine flowshop scheduling problem T’kindt et al [17] 
introduced a technique SACO, it is a hybrid strategy for no 
wait two machine flowshop to reduce makespan in state 
transition rule. Shyu et al [18], designed a greedy heuristic 
technique that includes pheromone initialization, hybrid state 
transition rule and also local search rule to solve the given 
problem. The max-min ant system introduced by Rajendran 
and Ziegler [19], to solve flowshop scheduling problem. 
They proposed a uniquetechnique to compute the relative 
distance between the given job position. Graham et al. [20], 
studied machine environment limitation to minimize the 
objective function. Zhao and Tang [21] proposed a 
polynomial-time technique that considers process 
contingency with a single machine and also investigates 
scheduling problem deterioration. The objective of this work 
was to reduce makespan, computational time. The result 
shows that the proposed technique was reliable and effective 
for scheduling problems. Yang and Yang [22] suggested a 
polynomial technique, which has a high capacity to reduce 
the makespan and find the optimal solution for the given 
problem. The technique proposed by Yang and Yang [23] for 
a single machine includesthe aging effect and also 
maintainsthe position of the variable. Yang [24] developed a 
Polynomial-time technique that searches for the 
time-dependent learning effect of the machine which 
minimizes makespan and also reduces the total absolute 
deviation of the finished time.  The results show that this 
approach has high efficiency and effectiveness. A 
mathematical model designed for the economic system to 
solve the deteriorated problem of the job sequence to find the 
optimal policy which is efficiently minimizesthe average 
total cost per unit time and computational time. Liu [26] 
proposed an algorithm PSO-EDA_PI which provides a 

0.65% error rate against the other algorithm.  Zhao et al. [27] 
introduced dynamic particle swarm optimization that found 
average relative error approximately 1.19-2.39% against the 
other algorithms. The authors Bauer et.al [28], Herroelen et 
al. [29] and Merkle et al. [30] studied Ant Colony 
Optimization for different scheduling problems that applied 
to RCPSP and also combined with other heuristic techniques 
to find the near-optimal solution. The concept of 
hybridization used for job shop, flowshop, one shop and grid 
computing problems. 

III. PFSP FORMULATION 

The PFSP formulation [1-5] maintains the identical sequence 
for processing ‘J’ jobs on ‘M’ machine. Each processor 
executes a single job at a time and it is also assumed that each 
job is processed at one machine at a given time interval 
(vice-versa). The execution time of processors is 
sequence-independentand each ready job is processed at time 
zero and pre-emption is not allowed at the time of processing. 
Here, it is assuming that every processor ‘P’ hasa set of job 
‘J’ sequence and after job allocation, the completion time 
(CTPJ) and processing time (PTPJ) are calculated for every 
iteration. Then,  
For (P=1 to P) 
do 
Completion time (CTPJ) = max{C(P-1) J, CP (J-1)} + PTPJ,                                       
P=1, 2, 3… P and  
J=1, 2, 3…J 
Where, 
CTP1 =∑ 𝑃𝑇𝑃1

𝑃
𝑃=1  , P=1, 2… P 

CT1J =∑ 𝑃𝑇1𝐽
𝐽
𝐽=1 , J=1, 2… J 

IV. DESCRIPTION OF PRPOSED ANT COLONY 

OPTIMIZATION (PA-ACO) 

Ant colony optimization mimics the pheromone trails of a 
real ant for searching food from source to destination. The 
proposed algorithm solves PSFP with a good solution. Where 
each job is to assign with artificial ant with an empty 
sequence. To construct the complete solution. The ant 
iteratively depends on the unscheduled job. At each step, the 
job solution is based on pheromone trails by applying 
transition rule.  The performance quality of the constructed 
solution is then improved by taking the mean of the job set 
and building the two subsets (Smax, Smin) of the set (S) 
respectively. By using the swap technique new set (Snew) is 
generated. The structure of the swap technique as follows: 

A. Proposed Algorithm 

Step 1. Input the job sequence 
Step 2. Calculate the mean of the job sequence 
Step 3. Create two subsets Smaxand Sminof the set (S) onthe 

basis of mean 
Step 4. Set the parameters and generate the two random seeds 

for the subsets (Smin, S max) 
Step 5. Swap the job sets of Sminand Smax 
Step 6. Initialize pheromone trails 
Step 7. The termination conditionis reached by applying the 

transition rule 
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Step 8. Apply the local update rule to search the optimal tour 
and update the solution. 

Step 9. Apply global update rule at every iteration and update 
the trail.  

Step 10. Apply the Pareto analysis for best trail selection. 
Step 11. End the simulation and return the best solution. 

1) Initialization of the Pheromone Trails 

Thetrails intensity (𝜏𝑖𝑗)of job ‘J’at the ith position of the 
sequence is calculated by using pheromone rule. Let Ms

max be 
themakespan of the job sequence and he seed sequence (Snew) 
produced by the heuristic method. Then initial pheromone 
trails intensity calculated for the sequence(S) using the Eq. 
5& Eq. 6, 
 

𝜏𝑚𝑎𝑥=1
𝜌𝑀𝑚𝑎𝑥

𝑆⁄                               (5) 

𝜏𝑚𝑖𝑛=∪× 1
𝜌𝑀𝑚𝑎𝑥

𝑆⁄                               (6) 

𝜏𝑚𝑖𝑛= lower bound of the pheromone trails. 
𝜏𝑚𝑎𝑥  = upper bound of the pheromone trails. 
 
Where, 
𝜌= pheromone trial evaporation rate 
∪= parameter between [0-1] 
𝜏𝑖𝑗= 𝜏𝑚𝑖𝑛 for the ithposition of job J= [1… N] 
 
The pheromone trail is modified by using the Eq. 7. 
 

𝜏𝑖𝑗=(1-𝜌) 𝜏𝑖𝑗+𝜌
𝑀𝑚𝑎𝑥

𝑠⁄                               (7) 

2) Transition Rule 

The proposed technique, it starts from an empty sequence of 
job set where each artificial ant constructs their complete 
solution by iteratively using the transition rule. So, to build a 
solution ant k, chosen one of the unscheduled jobs at the 
present position ‘í’ which is based on transition rule (i.e. 
pseudo-random proportional rule) as given below, 
The pheromone trail of the scheduled job has probability q0 

and (1-q0) is the probability of an unscheduled job. The next 
node is selected by the ant is based on the J= arg max (𝜏𝑖𝑗). 
Eq. 8, states the probability of next job selection (𝑃𝑖𝑗

𝑘).  

𝑃𝑖𝑗
𝑘(Next job selection probability) =  (

𝜏𝑖𝑗

∑ 𝜏𝑖𝑗 𝑘𝑙
⁄ )        (8) 

From the above equation, the selection of jobs within the 
unscheduled set is calculated by using the selection rule in 
Eq. 9. 
The rule for selection from unscheduled job set  

= 
∑ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏(𝑖𝑗)

𝑛
𝑖=1

∑ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑣𝑎𝑙𝑢𝑒 𝑙 𝑓𝑟𝑜𝑚 𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑗𝑜𝑏 𝑠𝑒𝑡 𝑎𝑡 𝑖𝑡ℎ𝑝𝑜𝑖𝑡𝑖𝑜𝑛𝑛
𝑙=(𝑛−𝑚)

(9) 

%deviation (𝐷𝑖𝑗)=∑
𝐽𝑝

100
⁄

𝑙∈𝑛𝑖
𝑘  (10) 

 
Allocation=∑ 𝑃𝑗𝑘

𝑁
𝑗=1 (11) 

if 
PjkDij 

Then, 
Pjk l 
 
Where, 
j = Total no of processor 
k = No of available processor 

Eq. 10, represents the percentage deviation of each job from 
unscheduled set and Eq. 11, shows the comparison of 
percentage deviation of schedule and unscheduled job set in 
the processing queue. The maximum 𝐷𝑖𝑗

𝑚𝑎𝑥  of the job is 
considered to allocate the next job to the machine. 

3) Single Point Swap 

 

Fig.1.Single Point Swapping 

The single point swapping process is a unique technique that 
uses Smax (Maximum processing time) andSmin(minimum 
processing time) of the jobs set.The new setSnew is created 
after a single swapping process. 
Where, 
S= Set of N jobs 
Smin = Set of jobs {Jmin1, Jmin2 … JminN} with minimum 
processing time i.e. ∑ 𝐽𝑚𝑖𝑛

𝑁
𝑖=0 (i) 

Smax = Set of jobs {Jmax1, Jmax2 … JmaxM} with maximum 
processing time i.e. ∑ 𝐽𝑚𝑎𝑥

𝑀
𝑖=0 (i) 

Snew = set of jobs after swapping 
∑ 𝐽𝑚𝑖𝑛

𝑁
𝑖=0 ∑ 𝐽𝑚𝑎𝑥

𝑀
𝑖=0   (For all the condition) 

 
After applying the local search procedure the new ant 
solution is buildbased on the modified pheromone trails rule. 

4) Local Search Procedure 

Step 1. Input job sequence 
Step 2. Calculate the mean of the job sequence 
Step 3. Create two subsets Smaxand Sminof the set (S) 
Step 4. Swap the set jobs of Sminand Smax 
Step 5. A new set sequence is generated (Snew) 
Step 6. Generate uniformly distributed random sequence (R) 

for mapping. 
Step 7.  When  R  S newthen 
For everyithposition, if the job ′𝑗′ is not present at 𝑖𝑡ℎposition, 
then insert the job without changing sequence order. Start the 
new ant tour and calculate the makespan. Select only 
enhanced sequence and exchange the current job with the 
optimal one.  

5) Selection of pheromone trails solutions 

The multiple numbers of solutions are constructed by all the 
ants using local search procedure which shown in Table-I 
given below for Taillard data set instances.   
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The next step is to select the best solution from multiple 
numbers of solutions. Here, Eq. 12 & Eq. 13 is used for the 
probability of a correct solution (PS) andthe best solution 
(M-best) selection. 
 

PS=
∆ 𝑀−𝑀𝑚𝑖𝑛

𝑠

𝑀𝑚𝑎𝑥
𝑠 − 𝑀𝑚𝑖𝑛

𝑠                              (12) 

Where, 

∆𝑀 =
∑ 𝑀𝑖

𝑠𝑛
𝑖=1

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
                             (13) 

 
𝑀𝑚𝑖𝑛

𝑠 = minimum makespan of solution constructed by ants. 
𝑀𝑚𝑎𝑥

𝑠 = maximum makespan of solution constructed by ants. 
∆𝑀 = mean of the best solution (M-best). 
Table-I, represents the makespan values obtain for different 
datasets using the PA-ACO algorithm. 
 

 

Table-I: Makespan of the proposed algorithm 

S.No 205 2010 2020 505 5010 5020 1005 1001
0 

1002
0 

20010 20020 50020 

1 1278 1648 2345 2735 3116 3882 5472 5769 6529 10982 11562 26845 
2 1297 1606 2330 2752 3134 4011 5495 5792 6970 11101 12080 26880 
3 1316 1604 2315 2729 3109 4055 5493 5762 6944 11076 12048 26975 
4 1322 1600 2291 2740 2990 4021 5519 5899 6899 11002 11959 27009 
5 1324 1589 2257 2711 2956 4008 5540 5887 6785 10987 11948 27053 
6 1347 1587 2323 2692 2932 4010 5527 5869 6698 10986 11541 27116 
7 1367 1605 2321 2674 3156 3916 5529 5748 6893 10953 11516 27198 
8 1285 1536 2334 2647 3151 3958 5514 5840 6735 11079 11503 27252 
9 1281 1602 2274 2724 3123 4015 5495 5848 6642 10952 11672 27341 

10 1289 1474 2272 2706 3143 3896 5514 5813 6536 10950 11684 27413 
Let us consider to select the best makespan for simulated 
data. Here, the upper bound of the Taillard data set (205) is 
considered for makespan selection. According to table-I 
(205) dataset’s makespan is considered for PS calculation.  
For selection the two hypotheses (Z) are constructed for 
makespan selection. 
Z0 = Makespan lies within the selection set. 
Z1 = Makespan doesn’t belong to the selection set 
According to Eq. 12 and Eq. 13, the PS is calculated from 
table-I, which is mention in table-II. 

Table-II: PS values for different makespan 

S.No 𝑀𝑚𝑖𝑛
𝑠  𝑀𝑚𝑎𝑥

𝑠  ∆𝑀 PS 
1 1278  

 
 

1367 
 

 
 
 

1310 
 

0.35 
2 1297 0.185 
3 1316 -0.117 
4 1322 -0.266 
5 1324 -0.325 
6 1347 -1.85 
7 1285 0.304 
8 1281 0.337 
9 1289 0.26 

 

 

Fig.2. Graphical representation of PS values 

Fig. 2 represents the makespan selection probability for 
(205) dataset. The selection is based on maximum 
probability achieve by individual makespan value. From 
table-II, it is found that there are four negative values that do 
not take part in the selection procedure due to their higher 
value of makespan. The rest of five positive values (0.35, 
0.185, 0.304, 0.337, and 0.26) are selected for selection of 
makespan. The value which is nearer to ‘1’ provides the best 

probability for selection of makespan. Therefore, 0.35 is 
selected for the best makespan solution. Initially, two 
hypotheses are considered as mentioned above Z0 and Z1.  So, 
from fig. 1. It is clearly shownthat Z1 is rejected and the null 
hypothesis is accepted. Similarly, this procedure is applied 
for different datasets for the selection of makespan. 

6) Update pheromone trails 

The solution obtained from the probability of correct solution 
is modified by using Global update rule. Firstly each 
pheromone trail is obtained as the best solution after that 
global update rule is applied for updating the set using Eq. 14. 
 

𝜏𝑖𝑗 = (1-ρ) 𝜏𝑖𝑗 + 𝜌 𝑃𝑍
𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡⁄                              (14) 

Where, 
𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡  = Best makespan of entire ant tour 
𝑃𝑍  = Positive values of tour 
Eq. 15, is used to calculate the compatible pheromone trail. 

𝜏𝑖𝑗 = (1-ρ) 𝜏𝑖𝑗 + 𝜌 
𝑀𝑚𝑎𝑥

𝑘⁄                              (15) 

Where, 
𝑀𝑚𝑎𝑥

𝑘  = makespan of the complete sequence of ant k. 
Lemma 1. The two parameters  ∆𝑀  and 𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡  are set 
such that ∆𝑀 ≥ 𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡 
Proof: let ∆𝑀(𝑏𝑒𝑠𝑡)  is the average of pheromone trails 
calculated from Eq. 13, and at the end PS is calculated which 
is nearer to 1.  
 
 
 

0.35

0.185
-0.117

-0.266

-0.325

-1.85

0.304
0.337

0.26

-2

-1.5

-1

-0.5

0

0.5

1 2 3 4 5 6 7 8 9 10

P
S

Probability of Correct Solution (PS)
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So, before selection of the current M (best), none of the trails is 
minimum then∆𝑀(𝑏𝑒𝑠𝑡).Let us assume that𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡 denotes 
the best makespan at the end of the iteration. According to 
Eq. 15, 𝜏𝑚𝑎𝑥  = 1 

𝜌𝑀𝑚𝑎𝑥
𝑚−𝑏𝑒𝑠𝑡⁄ is used before updating the 

sequence. The𝜏𝑖𝑗provides the M-best solution and theholds 

the inequality  𝑃𝑍
𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡⁄ > 𝜏𝑖𝑗 . It is clearly adequate 

that𝑃𝑍
𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡⁄ > 𝜏𝑚𝑎𝑥 .  

Let us consider the case if solution M-best is not updated 
during the current iteration i.e. ∆𝑀 ≠ 𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡 . Then the 
selection of M-best ≈ 𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡 in given as Eq. 16. 
 

𝑃𝑍
𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡⁄ >1
𝜌⁄ 𝑀𝑚𝑎𝑥

𝑀−𝑏𝑒𝑠𝑡(𝑜𝑙𝑑) =  𝜏𝑚𝑎𝑥(16) 

V. RESULT AND DISCUSSIONS 

The proposed Algorithm PA-ACOis simulated using 
pythonlanguage at high-performance computing (HPC) 
[12].HPC environment is consists of 2- Master Node with 
Intel Xeon processors havinga clock speed of 2.4GHz.It 
having the 8 cores and 64 GB memory for processing the 

task. The performance evaluation ofPA-ACO is based on 
Taillard’s benchmark problem dataset. The test problems 
consist of various range of job sizes from (20 to 100) and it is 
processed on the machines at (5 to 20) defines (n × m).  The 
performance evaluation is based on the makespan. The 
parameters for PA-ACO are set as ρ= 0.4, the number of ant = 

5, u=0.005, z=20, and also the total number of iterations is 
taken as 150. The performance measurement is taken for the 
5 Trail. Eq. 17, is used for calculating the makespan quality 
(M) between PA-ACO andTaillard’s upper bound (UB). 
 

𝑀𝑞𝑢𝑎𝑙𝑖𝑡𝑦  = (𝑀𝑚𝑎𝑥
𝑠 − 𝑈𝐵)

𝑈𝐵⁄ 100                                (17) 
 
Table-III. Shows the performance comparison between 
proposed technique (PA-ACO) and existing techniques like 
MMAS [1], M-MAS [2], PACO [2], ACA [4], ACS [3], and 
NACA [5] for benchmark problems. From table-III, it is 
observed that the proposed technique (PA-ACO) obtains the 
better solution in a shorter CPU time period or nearer as 
compare to ACS and ACA. Which shows the superiority of 
the PA-ACO technique.  
 

Table –III: Represents Result Evolution 

Dataset (n × p) PA-ACO NACA ACA ACS M-MMAS MMAS PACO 

Best time Best Time Best Time Best Time 

20 × 5 -1.16 0.72 0.000 0.84 0.368 0.44 1.19 3.67 0.762 0.408 0.704 
20 × 10 -0.66 1.12 0.079 1.57 0.831 0.50 1.70 4.00 0.890 0.591 0.843 
20 × 20 -0.12 2.91 0.102 3.61 0.944 0.63 1.60 5.33 0.721 0.410 0.720 
50 × 5 -0.58 4.62 0.011 5.03 0.085 2.77 0.43 14.67 0.144 0.145 0.090 

50 × 10 -0.25 9.36 0.257 11.14 1.241 3.73 1.89 18.00 1.118 2.193 0.746 
50 × 20 -0.10 20.44 1.252 22.71 1.990 5.91 2.71 24.33 2.013 2.475 1.855 
100 × 5 -0.38 18.34 -0.006 19.46 0.070 14.15 0.22 54.33 0.084 0.196 0.072 

100 × 10 1.31 40.17 0.283 43.68 1.059 21.93 1.22 65.67 0.451 0.928 0.404 
100 × 20 0.23 90.12 0.761 93.94 1.833 37.79 2.22 88.00 1.030 2.238 0.985 
200 × 10 0.23 170.84 0.150 177.39 0.434 141.52 0.64 275.33    
200 × 20 0.12 352.41 0.306 389.67 1.236 254.06 1.30 631.67    
500 × 20 2.90 3040.47 0.230 2447.4 1.444 3744.3 1.68 5133.0    

 

VI. CONCLUSION 

The paper introduced the PA-ACO algorithm for PFSP. The 
objective of the paper is to reduce the makespan given 
problem sets. The simulation results evidence that PA-ACO 
provides the fast local search procedure and achieves high 
optimal path solutions constructed by artificial ants at a 
limited CPU time period. Once all the solution is constructed 
by artificial ants the probability of correct solution is applied 
to select the trails solution is generated by ants. The 
makespan is updated by using a global update rule. The 
results ofPA-ACO for PFSP are very promising and it is 
suggested that the proposed technique successfully applied 
for scheduling problems. 
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