
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-3, February 2021

41

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C21780210321
DOI:10.35940/ijeat.C2178.0210321
Journal Website: www.ijeat.org

Abstract: Providing support on the rolled-out
application/services is one of the major factors in increasing the
customer satisfaction which in turn increases the customer
retention. Since we are in the era of automation where most of the
day-to-day jobs are taken care of or are facilitated by the
technologies around us, hence there is a need to reduce manual
effort in triaging the support tickets and hence facilitating the
person on call to better close the tickets on time with proper
remediation. The machine learning model which will be the
product of this complete paper will not only help in classifying the
tickets but also, if applicable will give the best possible
remediation of the ticket there by reducing the manual effort and
the time taken on providing necessary solution on the ticket. The
objectives of the work are as follows -
a) Understand the data that is present in the ticket and figure out
the basic understanding like, categories of issues, trends etc.
b) Prepare the data which is ready for applying different
classification algorithms.
d) Identify the best machine learning model which can classify the
new incident with utmost accuracy.
e) Prepare a machine learning model which can suggest the best
possible remediation of the ticket.
f) Integrate the best classification model and solution
recommender model and wrap it as an API which can be used by
end user.

Keywords: Application Development, Classification, Model
Evaluation, Natural Language Processing, Semantic Similarity

I. INTRODUCTION

Support system is one of the important parameters in
deciding the fate of any application. We use many
applications in our day-to-day life, and how well the support
folks helped in resolving our concerns while using the
application leads us to be regular user of that application. The
manual effort in resolving the tickets within SLA (Service
Level Agreement) is time consuming and vulnerable to human
errors. So, there is a need to build an intelligent system can
facilitate in answering the grievances of the customer.
However, the challenge while working with text data is,

 We cannot use the text data directly for modelling any
Machine Learning algorithm.

 It is prone to contain insignificant terms which do not
hold any importance.

 It is prone to contain incorrect/misspelled words, which

Manuscript received on January 17, 2021.
Revised Manuscript received on January 22, 2021.
Manuscript published on February 28, 2021.
* Correspondence Author

Himanshu Bajpai*, Engineering Services, Infosys Limited, Pune (M.H),
India. Email: himanshubajpai869@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

can mislead the model.
This article proposes a baseline machine learning solution
which can help in reducing human intervention in deciding
what is the issue being faced by the customer and what can be
the best possible solution for the filed incident using data
science techniques.
The experiments are conducted on the actual production
incidents for a cloud-IAAS (Infrastructure As-A Service)
based web application which involves deployments of the
resources in the cloud and hence involves below possible
categorization –

 Cloud Deployment Failure
 Failure while saving entry in the database.
 Failure related to the unavailability of application.

The task here is to classify the incoming incident into the best
suitable category and then providing the best solution for the
filed incident. The dataset is taken from the incident
repository related to the application.

II. STRUCTURE OF THE DATASET

There are different datasets which are used as part of this
work:
1. Incident Category –

 This dataset acts as the primary source for
categorization of tickets.

 Columns- IncidentID, Title, and Category.
NOTE: Categorization of the tickets was done manually.

2. Incident with Solution –

 This dataset contains information about the solution
for the ticket provided by the team.

 Columns – IncidentID, Summary, and TSG (Trouble
Shooting Guide).

 This dataset will be used to recommend the possible
fix for the tickets based on semantic similarity
between the summary provided by the user and the
summary for already resolved tickets.

 Since there were certain tickets had no summary,
summary was refined manually to save time and maintain
consistency.

Total number of words across all the incident titles with and
without scrubbing of data –

Fig.1.Total words with and without scrubbing of data.

Building ML Based Intelligent System to
Analyze Production LSI (Live Site Incidents)

Himanshu Bajpai

mailto:himanshubajpai869@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.C2178.0210321&domain=www.ijeat.org

Building ML Based Intelligent System to Analyze Production LSI (Live Site Incidents)

42

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C21780210321
DOI:10.35940/ijeat.C2178.0210321
Journal Website: www.ijeat.org

Distinct words in the refined dataset –

Fig.2.Distinct words in the dataset.

A. Pre-processing data for Modelling

Since the data is created using the incidents filed by user it
is prone to have lot of discrepancies and since the entire data
is in text form, there is a need to pre-process the data before
applying machine learning technique.

Example – If a user files incident as “The ARM

deployment of resource group RG1 has failed in the west us2
due to invalid parameter passed for deployment”.

Here, we can see that words like “The”, “of”, “RG1”,

“has”, “in”, “west”, “us2” etc., do not add any value in the

reason why the incident must be filed. So, we need to
pre-process the data so that we get the texts which add value
to the machine learning algorithms.
Major Discrepancies or issues in the dataset –

• Upper and lower case in the text.
• URLs in the text.
• Alpha-numeric string in the text.
• Punctuations
• Stop words related to the application like resource name,

server name, region name etc.
• Abbreviations related to the application.
• English stop words.
• Reducing the words to their root forms (Lemmatization)

A python-based script was written to get the clean text from
the input text provided:

Fig.3.Sample output showing the clean text from the input

text provided.
As seen in the above figure, all the stop words, alpha-numeric
strings are removed, and words are reduced to root word.
Example- “failed” is reduced to “fail.”

B. Converting the Category to numeric

The dataset is divided in four categories, namely, ‘Deployme

nt', 'Org’, ‘Others', 'Unhealthy Instance’.

Fig.4.List of Categories in the dataset

Since machine learning model works with numeric data, let’s

convert the categorization in the numeric form, where 1 corre
sponds to Deployment, 2 to Org, 3 to Unhealthy Instance a
nd 4 to others.
Categories after converting string to numeric as mentioned
above –

Fig.5.Categories after converting them into integers.

Fig.6.Category Distribution in the corpus.

Fig.7.Value Count of each category.

As seen from the above figure, the data set is biased towards
‘Deployment’ category, which can harm model performance

and lead to over fitting model as well. Hence, to proceed, only
three categories were considered under the current work –
Deployment, Org and Others, and from each category 101
rows were taken.

Fig.8.Dataset containing equal number of rows for all the

three categories.

III. EVALUATION OF THE CLASSIFICATION

MODEL

Let’s have some idea on the basic evaluation metrics for

classification –

A. Confusion Matrix

Let us assume, we have a classification model predicting if the
issue reported is deployment issue or not with YES for the
cases where the issue reported was deployment issue and NO
for the cases where the issue reported was not deployment
issue.

Table- I: Sample Confusion Matrix.

N = 170
Predicted

Is Deployment Issue?
No

Predicted
Is Deployment Issue?

Yes
Actual

Is Deployment
Issue? No

55

10

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-3, February 2021

43

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C21780210321
DOI:10.35940/ijeat.C2178.0210321
Journal Website: www.ijeat.org

Actual
Is Deployment

Issue? Yes

5

100

Important terms related to confusion matrix –
True Positive
These are the cases where model predicted the issue as ‘Yes’

and actually it turned out to be ‘Yes’ as well. In the above

table, that value is 100.
True Negative
These are the cases where model predicted the issue as ‘No’

and it turned out to be ‘No’ as well. In the above table, that

value is 55.
False Positive
These are the cases where model predicted the issue as ‘Yes’

and it was ‘No’. In the above table, the value is 10.
False Negative
These are the cases where model predicted the issue as ‘No’

and it was ‘Yes’. In the above table, the value is 5.
Precision
Ratio of the true positive labels to total number of positive
labels predicted by the model, i.e.
Precision = True Positive / (False Positive + True Positive)
Recall
It basically tells how well the model predicted the positive
cases, i.e.

Recall = True Positive / (False Negative + True
Positive)

F1-Score
It is single metric addressing the concerns in Precision and
Recall both i.e.

F1-Score = 2* (Precision * Recall) / (Precision +
Recall)

From the sample confusion matrix,
Precision = 100 / (100 + 10) = 0.9090
Recall = 100 / (100 + 5) = 0.952
F1-Score = 2 * 0.9090 * 0.952 / (0.9090 + 0.952) = 0.8095

B. Cross Validation

Since we want to make sure that model performs well with
respect to unseen data, we apply one more method to
identifying the best model for this project using Cross
Validation technique. This is one of the ways of testing the
skill of the trained model by letting it make predictions on the
unseen data and later we can use the performance shown by
the model against all such scenarios to finally determine the
best accuracy of the model.
Example – If a dataset comprises of 100 rows, then we can
train the model using first 70 rows and then test it using next
30 rows. This will give us an accuracy with which model
classifies the 30 rows. Likewise, we can again train a model
by taking alternate 70 rows and then use the remaining rows to
test the model. This will also give us some accuracy as well.
Likewise, we can train model against a different set of training
data and test it also against the different set of test data and
later can get average of all the accuracies obtained to signify
the overall accuracy of the model.
This is known as K-Fold Cross Validation, where K is
number of samples which are generated from the dataset.

IV. APPLICATION OF THE DIFFERENT MACHINE

LEARNING ALGORITHMS ON THE DATASET

Since, we have pre-processed our data set in the previous
sections, now we will apply machine learning algorithms to
classify the incidents.
For this Python’s scikit-learn library is used which is having
various machine learning utilities available as open source.
Results from the model predictions are as below –

Decision Tree

Fig.9.Result from Decision Tree Classifier.

Logistic Regression

Fig.10.Result from Logistic Regression
Classifier.

Support Vector Machine

Fig.11.Result from Support Vector Machine Classifier.

Naïve Bayes

Fig.12.Result from Naïve Bayes Classifier.

K-Nearest Neighbor

Fig.13.Result from Decision Tree Classifier

Building ML Based Intelligent System to Analyze Production LSI (Live Site Incidents)

44

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C21780210321
DOI:10.35940/ijeat.C2178.0210321
Journal Website: www.ijeat.org

To test the model against different combination of training
and test data, 10- Fold Cross Validation was also performed
and the accuracies were as followed –

Fig.14.Result on applying Cross Validation on all the

models.

Algorithm

Accuracy
without Cross

Validation

Accuracy with Cross
Validation

Decision Tree 70.32 75.92
Logistic Regression 71.42 83.43
Support Vector Machine 25.27 36.82
Naïve Bayes 69.23 77.45
K Nearest Neighbor 65.93 70.39

Table-II: Accuracies of Different Classification model
with and without cross validation.

As seen from the above table and reports of the different
classification model applied on the dataset, Logistic
Regression is the clear winner in classifying the incidents into
the pre-defined categories.

A. Tune the Logistic Regression Model to get the
optimum parameters for modelling.

The focus in this section will be on tuning the Logistic
Regression Model to get the optimum values of the
parameters required by the model. So far, we have already
tried to get the best working model by pre-processing the data
and then we have applied different machine learning
techniques on the processed dataset and in all the cases we
used default parameters. Now, here we are going to explore
how to get the values of the parameters required by the model
to produce the best working Logistic Regression Model.
The default parameters were used in the earlier section to get
the optimum model for this study :

Fig.15.Default Parameters for Logistic Regression

For this study, we will focus on below parameters and see how
close we can reach to the accuracy obtained from the cross
validation -
Penalty - Used to specify the norm used in the penalization.
Accepted values - 'l1', 'l2', 'elasticnet' or 'none'.
C - Inverse of regularization strength; must be a positive float.
Process which we will follow is as below –
 Prepare the set of different values which can be taken by

penalty and C.
 Apply Grid Search Cross Validation on the Logistic

Regression model and pass the hyper parameters in the
above figure to the model.

Fig.16.Best Parameters of Logistic Regression from Grid

Search

So, the best value of C is 166.81 and penalty is ‘L2’.
Let’s now see the score obtained by the model with optimum

parameters –

Fig.17.Best Score of Logistic Regression from Grid

Search.

Voila! we found the best parameter which we can use for
modelling our Logistic Regression Model and from 71%
accuracy we can reach 76% accuracy.

V. IDENTIFYING THE BEST SOLUTIONS FOR THE

TICKET

In the previous chapter we learnt about how to get the best
suited category for the filed incident. In this chapter, we will
focus on identifying the best possible solutions for the
incident using natural language processing using NLTK’s

corpus reader library, ‘WordNet’.

A. Introduction to WordNet

WordNet is the outcome (a large lexical database of
English) of the research done in Princeton University. In
WordNet, nouns, verbs, adverbs and adjectives are organized
by a variety of semantic relations into synonym sets called
synsets, which represent one concept. WordNet can also be
taken as a semantic dictionary of words, interlinked by
semantic relations. Here, we are going to use Summary
column from the data set and will try to identity the incident
with the summary like the summary of the filed incident.

B. How WordNet Works?

A basic idea on how WordNet works is as follows:
 It organizes information in a hierarchy.
 Verbs, Nouns, adjectives, all have their own hierarchies.
 Different Similarity metrics are applied on these

hierarchies to get the score signifying the similarity
between the two concepts.

Example –
Let’s try to find out the semantic similarity between deer and

elk. So, the possible tree that can related the above two
concepts can be as below:

Fig.18.Sample Semantic Hierarchy in WordNet

We can get multiple information from the above tree, like,

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-10 Issue-3, February 2021

45

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C21780210321
DOI:10.35940/ijeat.C2178.0210321
Journal Website: www.ijeat.org

 Elk, Wapiti and Caribou are types of deer.
 Pony is a type of Horse.
 Deer and Giraffe are siblings.
 Deer and Horse are ungulates.

C. Different Semantic Similarity Metrics

Path Similarity

• The idea here is to find the shortest path between the two
concepts in the hierarchy.

• Similarity measure is inversely related to path distance.
i.e.

Score = 1 / (1 + Path Distance)
Example, Similarity between Deer and Elk – 1 / (1 + Distance
(Elk, Deer)

= 1 / (1+1)
= 0.5

Lin Similarity Lowest Common Subsumer

• The idea here is to find the closest ancestor to both the
concepts.
Example,

LCS (Deer, Elk) = Deer (Closest Ancestor here is Deer)
We can use LCS concept in calculating Lin Similarity which
is based on the information contained in the LCS of two
concepts i.e.
LinSim(u, v) = 2 x log P(LCS(u, v)) / (log P(u) + log P(v))
In this study, we will keep our focus on Path Similarity and
other metrics can be taken as try-outs for future.
A python notebook was created to get the path similarity
between the two texts. Sample output from the notebook –

Fig.19.Sample output from notebook to calculate Path

Similarity between two documents/strings.

The path similarity between the two strings, “I am a deer” and

“I am an elk” is 0.64.

VI. INTEGRATING LOGISTIC REGRESSION

CLASSIFIER WITH MODEL SUGGESTING BEST

POSSIBLE SOLUTION OF THE INCIDENT

For better availability and accessibility of the model, Flask
based API is created which takes incident title and small
description as input and performs data pre-processing on the
input title before passing it to the model for classification and
further for recommending the possible solution for the
incident.
Process of the request execution to classify the incident and
suggest the solution for the ticket:
 Dump the logistic regression model via pickle library.
 Use the dumped model to classify the incident.
 Once the incident is classified, send the predicted category

and the input summary to the language model.
 The language model gets all the incident of the predicted

category and calculates the path similarity of the input
summary with the already existing incidents.

 Consider the solution given to the incidents where the path
similarity matches the threshold as the solution for the

input incident.
API with both classification model and ticket solution
recommender model –

Fig.20.Output from the API.

API architecture explanation –

 Input Properties –
Description – Incident title with details about what

failed or what is not working.
Summary – A brief description of the problem.

 Output –
Ticket_type – The category of the ticket to which

incident belongs to.
TSGs – List of TSGs (Trouble Shooting Guide) based

on the already resolved incidents.

Fig.21.Logs from the API

VII. RESULT AND DISCUSSION

For our problem where we must deal with lot of text data and
which has lot of inconsistency in the data, machine learning
modelling becomes more challenging. Hence below is the
solution that we are proposing: -
Classification Process –

Fig.22.Flow diagram showing the classification process
used in the current work.

Finding Solution for the ticket
using Path Similarity Metrics-

Building ML Based Intelligent System to Analyze Production LSI (Live Site Incidents)

46

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.C21780210321
DOI:10.35940/ijeat.C2178.0210321
Journal Website: www.ijeat.org

Fig.23.Flow diagram showing the process used in finding

the best solution for the ticket.

On following the above process to solve our problem, it is
found that out of all the algorithms, Logistic Regression is the
best performing model, and we can fine tune it to achieve the
better performance somewhere near to what we obtained after
applying 10-Fold Cross Validation.
Accuracy without tuned model : - 71%
Accuracy after tuning the model : - 76%
The path similarity model to find the similarity between the
texts is useful in getting the possible solution for the tickets.
Both the models are combined into one single framework and
exposed via API where classifier classifies the incident and
language model suggests the possible solution of the input
incident.

VIII. DIRECTIONS FOR FURTHER

IMPROVEMENTS

 Deep Learning techniques can be tried on the data set to see
if they give better classification results.

 Different other text similarity metrics can be tried for the
language model.

 Improving the NLP techniques in finding solution of the
tickets using word embedding, POS tagging etc.

IX. CONCLUSION

The proposed work demonstrates how machine learning can
be leveraged in solving a business problem to classify and
recommend possible solution for the ticket. The work
explains the methodology on how to prepare the dataset so
that it is ready for applying machine learning algorithms. The
work also focusses on the results obtained by applying
different classification algorithms on the dataset and how the
performance can be improved by using Hyper Parameter
Tuning. Finally, after performing all the steps, it is found that
the logistic regression combined with path similarity language
model is the go-to solution for our problem. The directions of
further improvements are also stated which can improve this
baseline model.

REFERENCES

1. C.D. Manning, P. Raghavan and H.Schutze, Cambridge University,
Introduction to Information Retrieval, 2008

2. Giridhar N S, Prema K.V, N .V Subba Reddy, A Prospective Study of
Stemming Algorithms for Web Text Mining

3. Tan P. N., Steinbach M & Kumar V., Introduction to Data Mining
Pearson Education, 2006,

4. Tom M. Mitchell, Machine Learning, The McGraw-Hill Companies,
Inc. International Edition 1997.

5. David M Blei, Andrew Y Ng, Michael I Jordon,Latent Dirichlet
Allocation, Journal of Machine Learning Research, 2003.

6. Thabet Slimani, Description and Evaluation of Semantic similarity
Measures Approaches, Taif University & LARODEC Lab

AUTHORS PROFILE

Himanshu Bajpai, is working as Technology

Analyst at Infosys Pune. His major research
domains are Natural Language Processing and is
avid solver of real-world problems using Data
Science concepts.

