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Abstract: Providing support on the rolled-out 
application/services is one of the major factors in increasing the 
customer satisfaction which in turn increases the customer 
retention. Since we are in the era of automation where most of the 
day-to-day jobs are taken care of or are facilitated by the 
technologies around us, hence there is a need to reduce manual 
effort in triaging the support tickets and hence facilitating the 
person on call to better close the tickets on time with proper 
remediation. The machine learning model which will be the 
product of this complete paper will not only help in classifying the 
tickets but also, if applicable will give the best possible 
remediation of the ticket there by reducing the manual effort and 
the time taken on providing necessary solution on the ticket. The 
objectives of the work are as follows - 
a) Understand the data that is present in the ticket and figure out 
the basic understanding like, categories of issues, trends etc. 
b) Prepare the data which is ready for applying different 
classification algorithms. 
d) Identify the best machine learning model which can classify the 
new incident with utmost accuracy. 
e) Prepare a machine learning model which can suggest the best 
possible remediation of the ticket. 
f) Integrate the best classification model and solution 
recommender model and wrap it as an API which can be used by 
end user. 

Keywords: Application Development, Classification, Model 
Evaluation, Natural Language Processing, Semantic Similarity 

I. INTRODUCTION 

Support system is one of the important parameters in 
deciding the fate of any application. We use many 
applications in our day-to-day life, and how well the support 
folks helped in resolving our concerns while using the 
application leads us to be regular user of that application. The 
manual effort in resolving the tickets within SLA (Service 
Level Agreement) is time consuming and vulnerable to human 
errors. So, there is a need to build an intelligent system can 
facilitate in answering the grievances of the customer. 
However, the challenge while working with text data is,  

 We cannot use the text data directly for modelling any 
Machine Learning algorithm.  

 It is prone to contain insignificant terms which do not 
hold any importance.  

 It is prone to contain incorrect/misspelled words, which 
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can mislead the model. 
This article proposes a baseline machine learning solution 
which can help in reducing human intervention in deciding 
what is the issue being faced by the customer and what can be 
the best possible solution for the filed incident using data 
science techniques. 
The experiments are conducted on the actual production 
incidents for a cloud-IAAS (Infrastructure As-A Service) 
based web application which involves deployments of the 
resources in the cloud and hence involves below possible 
categorization –  

 Cloud Deployment Failure  
 Failure while saving entry in the database. 
 Failure related to the unavailability of application. 

The task here is to classify the incoming incident into the best 
suitable category and then providing the best solution for the 
filed incident. The dataset is taken from the incident 
repository related to the application. 

II. STRUCTURE OF THE DATASET 

There are different datasets which are used as part of this 
work: 
1. Incident Category –  

 This dataset acts as the primary source for 
categorization of tickets.  

 Columns- IncidentID, Title, and Category.  
NOTE: Categorization of the tickets was done manually.  
 
2. Incident with Solution – 

 This dataset contains information about the solution 
for the ticket provided by the team. 

 Columns – IncidentID, Summary, and TSG (Trouble 
Shooting Guide). 

 This dataset will be used to recommend the possible 
fix for the tickets based on semantic similarity 
between the summary provided by the user and the 
summary for already resolved tickets. 

 Since there were certain tickets had no summary, 
summary was refined manually to save time and maintain 
consistency. 

Total number of words across all the incident titles with and 
without scrubbing of data – 

 

Fig.1.Total words with and without scrubbing of data. 
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Distinct words in the refined dataset – 

 

Fig.2.Distinct words in the dataset. 

A. Pre-processing data for Modelling 

Since the data is created using the incidents filed by user it 
is prone to have lot of discrepancies and since the entire data 
is in text form, there is a need to pre-process the data before 
applying machine learning technique. 

Example – If a user files incident as “The ARM 

deployment of resource group RG1 has failed in the west us2 
due to invalid parameter passed for deployment”. 

Here, we can see that words like “The”, “of”, “RG1”, 

“has”, “in”, “west”, “us2” etc., do not add any value in the 

reason why the incident must be filed. So, we need to 
pre-process the data so that we get the texts which add value 
to the machine learning algorithms. 
Major Discrepancies or issues in the dataset – 

• Upper and lower case in the text. 
• URLs in the text. 
• Alpha-numeric string in the text. 
• Punctuations 
• Stop words related to the application like resource name, 

server name, region name etc. 
• Abbreviations related to the application. 
• English stop words. 
• Reducing the words to their root forms (Lemmatization) 

A python-based script was written to get the clean text from 
the input text provided: 

 
Fig.3.Sample output showing the clean text from the input 

text provided. 
As seen in the above figure, all the stop words, alpha-numeric 
strings are removed, and words are reduced to root word. 
Example- “failed” is reduced to “fail.” 

B. Converting the Category to numeric 

The dataset is divided in four categories, namely, ‘Deployme

nt', 'Org’, ‘Others', 'Unhealthy Instance’. 

 
Fig.4.List of Categories in the dataset 

Since machine learning model works with numeric data, let’s 

convert the categorization in the numeric form, where 1 corre
sponds to Deployment, 2 to Org, 3 to Unhealthy Instance    a
nd 4 to others. 
Categories after converting string to numeric as mentioned   
above – 

 
Fig.5.Categories after converting them into integers. 

 
Fig.6.Category Distribution in the corpus. 

 

 
Fig.7.Value Count of each category. 

 
As seen from the above figure, the data set is biased towards 
‘Deployment’ category, which can harm model performance 

and lead to over fitting model as well. Hence, to proceed, only 
three categories were considered under the current work – 
Deployment, Org and Others, and from each category 101 
rows were taken.  

 
Fig.8.Dataset containing equal number of rows for all the 

three categories. 

III. EVALUATION OF THE CLASSIFICATION 

MODEL 

Let’s have some idea on the basic evaluation metrics for 

classification – 

A. Confusion Matrix 

Let us assume, we have a classification model predicting if the 
issue reported is deployment issue or not with YES for the 
cases where the issue reported was deployment issue and NO 
for the cases where the issue reported was not deployment 
issue. 

Table- I: Sample Confusion Matrix. 
 

N = 170 
Predicted 

Is Deployment Issue? 
No 

Predicted 
Is Deployment Issue? 

Yes 
Actual 

Is Deployment 
Issue? No 

 
55 

 

 
10 
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Actual 
Is Deployment 

Issue? Yes 

 
5 
 

 
100 

Important terms related to confusion matrix – 
True Positive 
These are the cases where model predicted the issue as ‘Yes’ 

and actually it turned out to be ‘Yes’ as well.  In the above 

table, that value is 100. 
True Negative 
These are the cases where model predicted the issue as ‘No’ 

and it turned out to be ‘No’ as well. In the above table, that 

value is 55. 
False Positive 
These are the cases where model predicted the issue as ‘Yes’ 

and it was ‘No’. In the above table, the value is 10. 
False Negative 
These are the cases where model predicted the issue as ‘No’ 

and it was ‘Yes’. In the above table, the value is 5. 
Precision 
Ratio of the true positive labels to total number of positive 
labels predicted by the model, i.e.  
Precision = True Positive / (False Positive + True Positive) 
Recall 
It basically tells how well the model predicted the positive 
cases, i.e.  

Recall = True Positive / (False Negative + True 
Positive) 

F1-Score 
It is single metric addressing the concerns in Precision and 
Recall both i.e. 

F1-Score = 2* (Precision * Recall) / (Precision + 
Recall) 

From the sample confusion matrix, 
Precision = 100 / (100 + 10) = 0.9090 
Recall = 100 / (100 + 5) = 0.952 
F1-Score = 2 * 0.9090 * 0.952 / (0.9090 + 0.952) = 0.8095 

B. Cross Validation 

Since we want to make sure that model performs well with 
respect to unseen data, we apply one more method to 
identifying the best model for this project using Cross 
Validation technique. This is one of the ways of testing the 
skill of the trained model by letting it make predictions on the 
unseen data and later we can use the performance shown by 
the model against all such scenarios to finally determine the 
best accuracy of the model. 
Example – If a dataset comprises of 100 rows, then we can 
train the model using first 70 rows and then test it using next 
30 rows. This will give us an accuracy with which model 
classifies the 30 rows. Likewise, we can again train a model 
by taking alternate 70 rows and then use the remaining rows to 
test the model. This will also give us some accuracy as well. 
Likewise, we can train model against a different set of training 
data and test it also against the different set of test data and 
later can get average of all the accuracies obtained to signify 
the overall accuracy of the model. 
This is known as K-Fold Cross Validation, where K is 
number of samples which are generated from the dataset. 

IV. APPLICATION OF THE DIFFERENT MACHINE 

LEARNING ALGORITHMS ON THE DATASET 

Since, we have pre-processed our data set in the previous 
sections, now we will apply machine learning algorithms to 
classify the incidents. 
For this Python’s scikit-learn library is used which is having 
various machine learning utilities available as open source. 
Results from the model predictions are as below – 

Decision Tree 

 
Fig.9.Result from Decision Tree Classifier. 

Logistic Regression            

 
Fig.10.Result from Logistic Regression 
Classifier. 

Support Vector Machine                   

 
Fig.11.Result from Support Vector Machine Classifier. 

Naïve Bayes 

 
Fig.12.Result from Naïve Bayes Classifier. 

K-Nearest Neighbor 

 
Fig.13.Result from Decision Tree Classifier 
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To test the model against different combination of training 
and test data, 10- Fold Cross Validation was also performed 
and the accuracies were as followed – 

 
Fig.14.Result on applying Cross Validation on all the 

models. 

 
Algorithm 

Accuracy 
without Cross 

Validation 

Accuracy with Cross 
Validation 

Decision Tree 70.32 75.92 
Logistic Regression 71.42 83.43 
Support Vector Machine 25.27 36.82 
Naïve Bayes 69.23 77.45 
K Nearest Neighbor 65.93 70.39 

Table-II: Accuracies of Different Classification model 
with and without cross validation. 

As seen from the above table and reports of the different 
classification model applied on the dataset, Logistic 
Regression is the clear winner in classifying the incidents into 
the pre-defined categories.  

A. Tune the Logistic Regression Model to get the 
optimum parameters for modelling. 

The focus in this section will be on tuning the Logistic 
Regression Model to get the optimum values of the 
parameters required by the model. So far, we have already 
tried to get the best working model by pre-processing the data 
and then we have applied different machine learning 
techniques on the processed dataset and in all the cases we 
used default parameters. Now, here we are going to explore 
how to get the values of the parameters required by the model 
to produce the best working Logistic Regression Model. 
The default parameters were used in the earlier section to get 
the optimum model for this study :  

 
Fig.15.Default Parameters for Logistic Regression 

For this study, we will focus on below parameters and see how 
close we can reach to the accuracy obtained from the cross 
validation -   
Penalty - Used to specify the norm used in the penalization. 
Accepted values - 'l1', 'l2', 'elasticnet' or 'none'. 
C - Inverse of regularization strength; must be a positive float.  
Process which we will follow is as below – 
 Prepare the set of different values which can be taken by 

penalty and C. 
 Apply Grid Search Cross Validation on the Logistic 

Regression model and pass the hyper parameters in the 
above figure to the model. 

 
Fig.16.Best Parameters of Logistic Regression from Grid 

Search 

So, the best value of C is 166.81 and penalty is ‘L2’. 
Let’s now see the score obtained by the model with optimum 

parameters – 

 
Fig.17.Best Score of Logistic Regression from Grid 

Search. 

Voila! we found the best parameter which we can use for 
modelling our Logistic Regression Model and from 71% 
accuracy we can reach 76% accuracy. 

V. IDENTIFYING THE BEST SOLUTIONS FOR THE 

TICKET 

In the previous chapter we learnt about how to get the best 
suited category for the filed incident. In this chapter, we will 
focus on identifying the best possible solutions for the 
incident using natural language processing using NLTK’s 

corpus reader library, ‘WordNet’. 

A. Introduction to WordNet 

WordNet is the outcome (a large lexical database of 
English) of the research done in Princeton University. In 
WordNet, nouns, verbs, adverbs and adjectives are organized 
by a variety of semantic relations into synonym sets called 
synsets, which represent one concept. WordNet can also be 
taken as a semantic dictionary of words, interlinked by 
semantic relations. Here, we are going to use Summary 
column from the data set and will try to identity the incident 
with the summary like the summary of the filed incident. 

B. How WordNet Works? 

A basic idea on how WordNet works is as follows: 
 It organizes information in a hierarchy. 
 Verbs, Nouns, adjectives, all have their own hierarchies. 
 Different Similarity metrics are applied on these 

hierarchies to get the score signifying the similarity 
between the two concepts. 

Example – 
Let’s try to find out the semantic similarity between deer and 

elk. So, the possible tree that can related the above two 
concepts can be as below: 

 
Fig.18.Sample Semantic Hierarchy in WordNet 

We can get multiple information from the above tree, like, 
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 Elk, Wapiti and Caribou are types of deer. 
 Pony is a type of Horse. 
 Deer and Giraffe are siblings. 
 Deer and Horse are ungulates. 

C. Different Semantic Similarity Metrics 

Path Similarity  

• The idea here is to find the shortest path between the two 
concepts in the hierarchy. 

• Similarity measure is inversely related to path distance. 
i.e. 

Score = 1 / (1 + Path Distance) 
Example, Similarity between Deer and Elk – 1 / (1 + Distance 
(Elk, Deer) 

= 1 / (1+1) 
= 0.5 

Lin Similarity Lowest Common Subsumer 

• The idea here is to find the closest ancestor to both the 
concepts. 
Example, 

LCS (Deer, Elk) = Deer (Closest Ancestor here is Deer) 
We can use LCS concept in calculating Lin Similarity which 
is based on the information contained in the LCS of two 
concepts i.e.  
LinSim(u, v) = 2 x log P(LCS(u, v)) / (log P(u) + log P(v)) 
In this study, we will keep our focus on Path Similarity and 
other metrics can be taken as try-outs for future. 
A python notebook was created to get the path similarity 
between the two texts. Sample output from the notebook – 

 
Fig.19.Sample output from notebook to calculate Path 

Similarity between two documents/strings. 

The path similarity between the two strings, “I am a deer” and 

“I am an elk” is 0.64. 

VI. INTEGRATING LOGISTIC REGRESSION 

CLASSIFIER WITH MODEL SUGGESTING BEST 

POSSIBLE SOLUTION OF THE INCIDENT 

For better availability and accessibility of the model, Flask 
based API is created which takes incident title and small 
description as input and performs data pre-processing on the 
input title before passing it to the model for classification and 
further for recommending the possible solution for the 
incident. 
Process of the request execution to classify the incident and 
suggest the solution for the ticket: 
 Dump the logistic regression model via pickle library. 
 Use the dumped model to classify the incident. 
 Once the incident is classified, send the predicted category 

and the input summary to the language model. 
 The language model gets all the incident of the predicted 

category and calculates the path similarity of the input 
summary with the already existing incidents. 

 Consider the solution given to the incidents where the path 
similarity matches the threshold as the solution for the 

input incident. 
API with both classification model and ticket solution 
recommender model – 

 
Fig.20.Output from the API. 

API architecture explanation – 

 Input Properties – 
Description – Incident title with details about what 

failed or what is not working. 
Summary – A brief description of the problem. 

 Output – 
Ticket_type – The category of the ticket to which 

incident belongs to.  
TSGs – List of TSGs (Trouble Shooting Guide) based 

on the already resolved incidents. 
 

 
Fig.21.Logs from the API  

VII. RESULT AND DISCUSSION 

For our problem where we must deal with lot of text data and 
which has lot of inconsistency in the data, machine learning 
modelling becomes more challenging. Hence below is the 
solution that we are proposing: - 
Classification Process – 

 

Fig.22.Flow diagram showing the classification process 
used in the current work. 

Finding Solution for the ticket 
using Path Similarity Metrics- 
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Fig.23.Flow diagram showing the process used in finding 

the best solution for the ticket. 

On following the above process to solve our problem, it is 
found that out of all the algorithms, Logistic Regression is the 
best performing model, and we can fine tune it to achieve the 
better performance somewhere near to what we obtained after 
applying 10-Fold Cross Validation. 
Accuracy without tuned model : - 71% 
Accuracy after tuning the model : - 76% 
The path similarity model to find the similarity between the 
texts is useful in getting the possible solution for the tickets. 
Both the models are combined into one single framework and 
exposed via API where classifier classifies the incident and 
language model suggests the possible solution of the input 
incident. 

VIII. DIRECTIONS FOR FURTHER 

IMPROVEMENTS 

 Deep Learning techniques can be tried on the data set to see 
if they give better classification results. 

 Different other text similarity metrics can be tried for the 
language model. 

 Improving the NLP techniques in finding solution of the 
tickets using word embedding, POS tagging etc. 

IX. CONCLUSION 

The proposed work demonstrates how machine learning can 
be leveraged in solving a business problem to classify and 
recommend possible solution for the ticket. The work 
explains the methodology on how to prepare the dataset so 
that it is ready for applying machine learning algorithms. The 
work also focusses on the results obtained by applying 
different classification algorithms on the dataset and how the 
performance can be improved by using Hyper Parameter 
Tuning. Finally, after performing all the steps, it is found that 
the logistic regression combined with path similarity language 
model is the go-to solution for our problem. The directions of 
further improvements are also stated which can improve this 
baseline model.  
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