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Abstract: This paper presents an l1-norm penalized bias 

compensated linear constrained affine projection (l1-BC-CAP) 
algorithm for sparse system identification having linear phase 
aspectin the presence of noisy colored input. The motivation 
behind the development of the proposed algorithm is formulated 
on the concept of reusing the previous projections of input signal 
in affine projection algorithm (APA) that makes it suitable for 
colored input. At First, l1-CAP algorithm is derived by adding zero 
attraction based on l1-norm into constrained affine projection 
(CAP) algorithm. Then, the proposed l1-BC-CAP algorithm is 
derived by addinga bias compensator into the filter coefficient 
update equation of l1-norm constrained affine projection (l1-CAP) 
algorithm to alleviate the adverse consequence of input noise on 
the estimation performance. Hence, the resulting l1-BC-CAP 
algorithm excels the estimation performance when applied to 
linear phase sparse system in the existence of noisy colored input. 
Further, this work also examines the stability concept of the 
proposed algorithm 

 
Keywords: Affine projection, bias compensator, linear 

constraint, sparsity. 

I. INTRODUCTION 

Use of linear constrained adaptive filtering in many digital 

signal processing applications has been on a steady rise 
owing to their utility in considering the prior knowledge 
about the framework to be estimated. The estimation of the 
frameworkrelays on some linear constraints which are 
available in advance. Some examples of linear constrained 
adaptive filtering are adaptive beam forming, linear phase 
system identification, code division multiple access and 
many more. [1-3].These applications have powered deep 
interest in developing linear constrained adaptive filters. The 
constrained least mean squares (CLMS) algorithm has gained 
a lot of attention in linear constrained adaptive filtering due to 
ease and simplicity in implementation [4]. But CLMS 
algorithm has poor performance in the presence of colored 
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inputs. Moreover, the constrained affine projection algorithm 
(CAPA) is developed to consider the colored input [5]. As 
CAPA reusesthe previous projections of input signal, hence it 
has better performance for colored input. However, CAP 
algorithm does not take into account the sparsity of the 
system. Later several sparsity aware affine projection 
algorithms have been developed to consider the sparsity of 
the system [12-13]. These algorithms append a zero attraction 
in conventional affine projection algorithms. These 
algorithms do not consider linear constraint of applications in 
development. This paper first develops l1-norm constrained 
affine projection (l1-CAP) algorithm that appends the zero 
attraction based on l1-norm to consider the sparsity of the 
system. The above mentioned algorithm performs well for 
constrained applications in the presence of noiseless colored 
input. However, the performance of l1-CAP algorithm is 
deteriorated in the presence of input noise. Moreover, the 
input noise adds a bias in numerator as well as in 
denominator of l1-CAP algorithm. Also it is to be noted that 
in case of l1-CAP algorithm, both the estimation performance 
and the stability of the algorithm are influenced by input 
noise. However, the deterioration of the performance of the 
proposed algorithm is caused largely by the bias in the 
numerator [10]. To solve the problem of input noise, bias 
compensation criterion has been developed [6-10]. Some of 
the bias compensation criterion based adaptive algorithms 
proposed in past are: bias compensated normalized least 
mean square (BC-NLMS), bias-compensated robust 
set-membership NLMS (BC-SM-NLMS), bias-compensated 
normalized sub-band adaptive filter (BC-NSAF), bias 
compensated affine projection like (APL), bias compensated 
affine projection (APA) [6-10].These algorithms add a bias 
compensator to make the estimation unbiased for noisy input.  
However, these algorithms do not deal with sparsity and 
linear constraint of the system simultaneously. Based on the 
above concept of bias compensation, this paper presents 
l1-norm penalized bias compensated constrained affine 
projection (l1-BC-CAP) algorithm that takes into account the 
input noise. The proposed work adds a bias compensator into 
update equation of l1-CAP algorithm to mitigate the 
unfavorable impact of input noise on the estimation 
performance in constrained applications against colored 
input. The rest of the paper is divided as follows. In 

section II, the l1-norm penalized constrained affine 

projection (l1-CAP) 

algorithm is derived. 
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 Section IIIdemonstrates the derivation of l1-BC-CAP 

algorithm. Section IVillustrates the convergence 

behavior of the proposed algorithm. Simulations and 

results are discussed in Section V, and hence it is 

concluded in Section VI. 

II. L1-NORM PENALIZED LINEAR CONSTRAINED 

AFFINE PROJECTION (L1-CAP) ALGORITHM 

This section derives l1-norm penalized linear constrained 
affine projection (l1-CAP) algorithm for linear constrained 
filtering problem.  
      Consider the desired output d(k) of an unknown 

systemas d(k)  = 𝐰𝟎
𝑻𝐱(k) + 𝐳(k) ,where 𝒘0 is unknown 

system coefficients vector of dimension NX1, 𝐱(k) ∈ ℝ𝑁𝑋1is 
the noise free input vector and z(k) is the observation noise of 
channel. 
Consideringw(k) as the adaptive filter coefficient vector of 
length N, the cost function of l1-norm penalizedlinear 
constrained affine projection (l1-CAP) algorithm can be 
drafted as: 
 
𝐰(k + 1) = arg min‖𝐰 − 𝐰(k)‖2 + 𝛽‖𝐰‖1 

Subject to 𝐝(k) − 𝐗𝑻(k)𝐰 = 𝟎, and 𝚯𝑻𝐰 =  𝐡(1)where 
𝐗(k) ∈ ℝ𝑁𝑋𝐿 is input matrix consist of previous L-1 
projection  and current input vector  
𝐝(k)is desired output vector of dimension Lx1consisting of  
previous L-1 and current output of the unknown system 
andL is the projection order of l1-norm penalizedconstrained 
affine projection (l1-CAP) algorithm; 𝛽  is sparsity 
regularizer. 
The parameter 𝚯represents NxP constraint matrix while f 
represents a vector which comprises of the P constrained 
output values. 
With the help of Langrage multiplier approach, the 
unconstrained cost function of l1-CAP algorithm can be 
drafted as: 
 

J(𝐰) = ‖𝐰 − 𝐰(k)‖2 + 𝛽‖𝐰‖1 + Ʌ𝟏
𝐓(𝚯𝑻𝐰 −  𝐡) +

Ʌ𝟐
𝐓(𝐝(k) − 𝐗𝑇(k) 𝐰)                                (2) 

where 
Ʌ𝟏 and Ʌ𝟐 are Lagrange multipliers, and 𝛽  is sparsity 
regularizer. 
Taking the gradient of cost function in (2), we have 

𝑔(𝑤) =
∂ J(𝐰)

∂(𝐰)
= 2(𝐰 − 𝐰(k)) + 𝛽𝑠𝑖𝑔𝑛(𝐰) + 𝚯 Ʌ𝟏 −

𝐗(k)Ʌ𝟐   (3)                 
Setting derivate equal to zero in (3), the coefficient recursive 
equationof l1-CAP algorithm can be written as:  

𝐰(k + 1) = 𝐰(k) −
𝛽

2
𝑠𝑖𝑔𝑛(𝐰(𝐤)) −

𝚯

𝟐
Ʌ𝟏 +

𝐗(k)

𝟐
Ʌ𝟐(4)  

   
The value of Langrage multiplier Ʌ𝟏can be computed as: 

𝚯𝑻(𝐰(k)) − 𝐡 −
𝛽𝚯𝑻

2
𝑠𝑖𝑔𝑛(𝐰(k)) −

𝚯𝑻𝚯

𝟐
Ʌ𝟏 +

𝚯𝑻𝐗(k)

𝟐
Ʌ𝟐 

= 𝟎                   (5)  

Ʌ𝟏 = [𝚯𝑻𝚯]−𝟏𝚯𝑻𝐗(k)Ʌ𝟐 − 𝛽[𝚯𝑻𝚯]−𝟏𝚯𝑻𝑠𝑖𝑔𝑛(𝐰(k))(6)  

      
Now the value of Ʌ𝟐is calculated as: 

𝐝(k) − 𝐗𝑻(k) [𝐰(k) −
𝛽

2
𝑠𝑖𝑔𝑛(𝐰(𝐤))

−
𝚯

𝟐
{[𝚯𝑻𝚯]−𝟏𝚯𝑻𝐗(k)Ʌ𝟐

− 𝛽[𝚯𝑻𝚯]−𝟏𝚯𝑻𝑠𝑖𝑔𝑛(𝐰(𝐤))}] 

+
𝐗(k)

𝟐
Ʌ𝟐)) = 0               (7)  

     
Taking into account the error signale(k)  =  𝐱𝑻(k)𝐰0 +

z(k)  – 𝐱𝑻(k)𝐰(k) and error vector 𝐞(k)  =  𝐗𝑻(k)𝐰0 +

𝐳(k)  – 𝐗𝑻(k)𝐰(k), we can find Ʌ𝟐as 

Ʌ𝟐 = 𝟐(𝐗𝑻(k)𝑃𝐗(k))
−1

[𝐞(k) +
𝛽

2
𝐗𝑻(k)𝐐𝑠𝑖𝑔𝑛(𝐰(k))](8) 

    
Hence  

Ʌ𝟏 = 𝟐[𝚯𝑻𝚯]−𝟏𝚯𝑻𝐗(k)(𝐗𝑻(k)𝐐𝐗(k))
−1

𝐞(k) +

𝛽𝐗𝑻(k)(𝐗𝑻(k)𝐐 𝐗(k))
−1

[𝚯𝑻𝚯]−𝟏𝚯𝑻𝐗𝑇(k)𝐐𝑠𝑖𝑔𝑛(𝐰(k)) −

𝛽[𝚯𝑻𝚯]−𝟏𝚯𝑻𝑠𝑖𝑔𝑛(𝐰(k))    (9)      

Therefore; the coefficient recursive equation of  l1-CAP 
algorithm becomes: 

𝐰(k + 1) = 𝐰(k) −
𝛽

2
[𝐈 −

{𝐗(k)(𝐗𝑻(k)𝐐𝐗(k))
−1

𝐐𝐗𝑻(k)}] 𝐐𝑠𝑖𝑔𝑛(𝐰(k)) +

𝐗(k)(𝐗𝑇(k)𝐐 𝐗(k))
−1

𝐐𝐞(k) +
𝛽

𝟐
{𝐗(k)(𝐗𝑻(k)𝐐𝐗(k))

−1
𝐐𝐗𝑻(k)𝐐𝑠𝑖𝑔𝑛(𝐰(k))}(10)     

where 
 
 Q = I- 𝚯(𝚯T 𝚯)-1 𝚯 T   (11)                                                                                                                                     
H = 𝚯 (𝚯T 𝚯)-1h                    (12) 
 
By considering, 

𝐈 − {𝐗(k)(𝐗𝑻(k)𝐐𝐗(k))
−1

𝐐𝐗𝑻(k)} = 𝐈(13) 

Consider 0<µ<1 be the step size for the stability of algorithm 
[11,14]. 
Therefore, the coefficient recursive equation of l1-norm 
penalized linear constrained affine projection (l1-CAP) 
algorithm becomes: 

𝐰(k + 1) = 𝐐 [𝐰(k) −
µ𝛽

2
𝑠𝑖𝑔𝑛(𝐰(k)) +

µ𝐗(k)(𝐗𝑻(k)𝐐𝐗(k))
−1

𝐞(k)] + 𝐇   (14)  

III. L1-NORM PENALIZED BIAS COMPENSATED 

LINEAR CONSTRAINED AFFINE PROJECTION 

ALGORITHM 

This section will consider noisy input,𝐱̃(𝑘) = 𝐱(k) +

𝐯(k), where 𝐯(k)is input noise with variance σv
2 and zero 

mean.Fig. 1 shows the system identification problem in the 
presence of input noise.  
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Hence, the noisy input matrix, 𝐗(𝑘) = 𝐗(k) + 𝐕(k) 
consists of previous (L-1) projection of input signal and input 
noise. The input noise matrix, 𝐕(k) = [ 𝐯(k), 𝐯(k −

1), … , 𝐯(k − L + 1)] ,  a priori error ẽ(k) = 𝐱𝑻(k)𝐰0 +

𝐳(k)– 𝐱̃𝑇(k)𝐰(k) = e(k) − 𝐯𝑇(k)𝐰(k) , a priori error 
vector 𝐞̃(k) = [ẽ(k)ẽ(k − 1)  …  ẽ(k − L + 1)]𝑇  are 
considered for derivation. The equation (14) can be rewritten 
for noisy input as: 
 

𝐰(k + 1) = 𝐐 [𝐰(k) −
µ𝛽

2
𝑠𝑖𝑔𝑛(𝐰(k)) +

µ𝐗(k) (𝐗̃𝑇(k)𝐐𝐗(k))
−1

𝐞̃(k)] + 𝐇        (15) 

   

𝐰(k + 1) = 𝐐 [𝐰(k) −
µ𝛽

2
𝑠𝑖𝑔𝑛(𝐰(k)) +

µ𝐗(k) (𝐗̃𝑇(k)𝐐𝐗(k))
−1

𝐞(k)] +

µ𝐕(k)Q (𝐗𝑇(k)𝐐𝐗(k))
−1

𝐞(k) + 𝐇       (16)     

     
The extra term in (16) shows the bias in the numerator as well 
as in the denominator. This will hamper both the estimation 
performance and stability aspect of the algorithm. However, 
the deterioration of the performance is caused largely by the 
adverse impact on the numerator term. Hence, the proposed 
work compensates the bias in numerator to excel the 
estimation performance in the presence of input noise. 

 
Fig. 1. Adaptive System Identification in the presence 

of input noise 
Hence, to overcome the effect of bias generated by noisy 
input, a bias compensator 𝐃(k) is added in the above weight 
update equation which is given as:     

𝐰(k + 1)   =  𝐐 [𝐰(k) −
µ𝛽

2
𝑠𝑖𝑔𝑛(𝐰(k)) +

µ[𝐗̃(k)(𝐞̃(k))]

X̃𝑇(k) 𝐐 𝐗̃(k)
] +

𝐇 + 𝐃(k)                   (17) 
In order to find the value of bias compensator D(k), the 
sparsity of the system is not taken into account.  
Hence, the weight update equation (17) becomes: 

w(k+1)  = Q[𝐰(k) +
µ[𝐗̃(k)(𝐞̃(k))]

X̃𝑇(k) 𝐐 𝐗̃(k)
] + 𝐇 + 𝐃(k) (18)      

Defining weight misalignment vector as: 
∆𝐰(k + 1) = 𝐰(k + 1) − 𝐰opt (19) 

where𝐰opt is optimum weight vector. 

Hence, 

∆𝐰(k + 1) = 𝐐∆𝐰(k) +
µ[𝐗̃(k)Q(𝐞̃(k))]

X̃T(k) 𝐐 𝐗̃(k)
+ 𝐇 + 𝐃(k) +

𝐐𝐰opt − 𝐰opt   (20)    

Using 𝐐𝐰𝑜𝑝𝑡 − 𝐰𝑜𝑝𝑡 + H = (𝐈 −  𝚯(𝚯𝑻 𝚯)−1𝚯𝑻)𝐰𝑜𝑝𝑡 −

 𝐰𝑜𝑝𝑡 + 𝚯(𝚯𝑻 𝚯)−1𝚯𝑻𝐰𝑜𝑝𝑡 = 𝟎, we can write (20) as: 

∆𝐰(k + 1) = 𝐐∆𝐰(k) +
µ[𝐗̃(k)𝐐(𝐞̃(k))]

X̃T(k) 𝐐 𝐗̃(k)
+ 𝐃(k) (21)    

Taking expectation of (21) on both sides while considering 

the availability of the matrix 𝐗̃(k), the recursion equation of 
the weight-misalignment vector becomes: 

E[∆𝐰(k + 1)|𝐗 ̃(k)] = 𝐐 E[∆𝐰(k)|𝐗 ̃(k)]  +

E [
µ[𝐗̃(k)𝐐(𝐞̃(k))]

X̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] + E[𝐃(k)|𝐗 ̃(k)] (22)   

To achieve unbiased estimation, the criterion [10] is applied 
as: 

E[∆𝐰(k + 1)|𝐗 ̃(k)]= E[∆𝐰(k)|𝐗 ̃(k)] =0                      (23)         
Hence 

E [
µ[𝐗̃(k)𝐐(𝐞̃(k))]

X̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] = −E[𝐃(k)|𝐗 ̃(k)]  (24)             

 
and 
 

E [
µ[𝐗̃(k)𝐐(𝐞̃(k))]

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] = E [

µ[𝐗̃(k)𝐐(𝐞(k))]

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] −

E [
µ[𝐗̃(k)Q(𝐕𝐓(k)𝐰(k))]

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] (25)              

 
The bias compensator is derived on basis of given below 
assumptions: 
Assumption 1: Input noise 𝐯(k) , input signal 𝐱(k) and 
measurement noise z(k) are considered to be white Gaussian 
process having zero mean and variance σv

2 , σx
2 and 

σ𝑧
2.respectively. 

Assumption 2: The signals𝐯(k), z(k) and 𝐱(k) and  𝒘(𝑘) 
are statistically independent. 
Considering the above assumptions, the first term on right 
side of (25) reduces to, 
 

E [
µ[𝐗̃(k)𝐐(𝐞(k))]

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] =

E [
µ[(𝐗(k)+𝐕(k))Q(−𝐗𝐓(k)∆𝐰(k+1)+𝐳(k))]

𝐗̃T(k) 𝐐𝐗̃(k)
|𝐗 ̃(k)] = 0 (26) 

And the second term on right side of (25) leads to:     
  

E [
µ[𝐗̃(k)𝐐(𝐕𝐓(k)𝐰(k))]

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)]  =

E [
µ[𝐗(k)𝐐(𝐕𝐓(k)𝐰(k))+𝐕(k)𝐐(𝐕𝐓(k)𝐰(k))]

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)]  (27)  

Using the above assumptions,  

E [
µ[𝐗̃(k)𝐐(𝐕𝐓(k)𝐰(k))]

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] = E [

µLσv
2𝐐 𝐰(k)

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] (28)     

    
Therefore, 

E[𝐃(k)|𝐗 ̃(k)] = E [
µLσv

2𝐐 𝐰(k)

𝐗̃T(k) 𝐐 𝐗̃(k)
|𝐗 ̃(k)] (29)                 
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𝐃(k) =
µL σv

2  𝐐𝐰(k)

𝐗̃𝑇(k) 𝐐 𝐗̃(k)
    (30)          

Hence, the coefficient recursion equation of the proposed 
l1-norm penalized bias compensator constrained affine 
projection algorithm becomes: 

w(k+1)  = Q[𝐰(k) −
µ𝛽

2
𝑠𝑖𝑔𝑛(𝐰(k)) +

µ[𝐗̃(k)(𝐞̃(k))]

X̃𝑇(k) 𝐐 𝐗̃(k)
] + 𝐇 +

µL σv
2  𝐐𝐰(k)

𝐗̃𝑇(k) 𝐐 𝐗̃(k)
         (31) 

Since (31) requires variance σv
2  of the input noise, an 

estimation of the same should be calculated as it is not 
available in practice. In this paper, the method of estimation 
of σv

2proposed by Haiquan Zhao and ZongshengZheng [9] is 
used. 
Consider measurement noise free error ẽ𝒏𝒇(k) as: 

e ̃𝐧𝐟(k) = ẽ(k) − z(k)   (32)                           

e ̃𝐧𝐟(k) = −∆𝐰T(k)𝐱(k) + 𝐰𝐓(k)v(k) (33)  
where 
∆𝐰 = 𝐰(k) − 𝐰0         (34)                                                                                    
Taking the expectation of square of (33) and considering the 
above assumptions, we have 
σ𝐞 ̃𝐧𝐟

2 = σv
2(k) E[𝐰𝐓(k)𝐰(k)]  (35)                      σv

2(k) =

 
σ𝐞 ̃𝐧𝐟

2 (k)

E[𝐰𝐓(k)𝐰(k)] 
     

σv
2(k)  =  

σ𝐞 ̃𝐧𝐟
2 (k)

σ𝐰
2 (k)

    (36)                                              Hence, 

an estimate σ̂𝐯
2(k) can be written as: 

σ̂𝐯
2(k) =

σ𝐞 ̃𝐧𝐟
2 (k)

σ𝐰
2 (k)

     (37) 

where 

σ𝐞 ̃𝐧𝐟

2 (k) = a σ𝐞 ̃𝐧𝐟

2 (k − 1) + (1 − a) 𝐞̃𝐧𝐟
𝟐 (k)  

 (38)σ𝐰
2 (k) =  b σ𝐰

2 (k − 1) + ( 1 − b)[𝐰𝐓(k)𝐰(k)] (39)                                                                           
and parameters  𝑎 and 𝑏 are close to unity.  

IV. CONVERGENCE ANALYSIS 

For the convergence analysis, we are considering the jointly 
Gaussian distribution of any two elements of weight 
misalignment vector, ∆𝒘(k). 
Let ∆𝑤𝑖(k)  and ∆𝑤𝑗(k)  be the two elements of ∆𝒘(k) . 

Hence we can define the jointly Gaussian distribution as: 

(∆𝑤𝑖(k), ∆𝑤𝑗(k))~ 𝑁(𝜇𝑖, 𝜇𝑗 , 𝜎𝑖
2, 𝜎𝑗,

2𝜌𝑖,𝑗) 

where 
𝜇𝑖 = 𝐸[∆𝑤𝑖(k)]           (40) 
𝜇𝑗 = 𝐸[∆𝑤𝑗(k)]     (41)                                                                            

𝜎𝑖
2 = 𝐸[[∆𝑤𝑖

2(k)] − 𝐸[∆𝑤𝑖(k)]2   (42)                                                                             

𝜎𝑗
2 = 𝐸[[∆𝑤𝑗

2(k)] − 𝐸[∆𝑤𝑗(k)]2   (43)                                                                           

𝜌𝑖,𝑗 = 𝐸[∆𝑤𝑖(k)∆𝑤𝑗(k)] − 𝐸[∆𝑤𝑖(k)] 𝐸[∆𝑤𝑗(k)] (44)                                                                          

The optimum weight vector woptfor the constrained APA can 
be defined as: 
𝒘𝒐𝒑𝒕 = 𝒘𝟎  + 𝑹−𝟏𝚯 (𝚯𝑇 𝑹−𝟏 𝚯)−1(𝒉 − 𝚯𝑇 𝑹−𝟏 𝑷)  (45) 

where  

𝒘𝟎 = 𝑹−𝟏𝑷     (46) 
𝑷 = 𝑬[𝐱(k)𝒅(k)]and    (47) 

 𝑹 = 𝑬[𝐱(k)𝐱𝑻(k)](48) 
Subtractingwopt both sides from (31), we have 

∆𝒘(𝑘 + 1)= Q[∆𝒘(k) −
µ𝛽

2
𝑠𝑖𝑔𝑛(𝐰(𝐤)) +

µ[𝐗̃(k)(𝐞̃(k))]

X̃𝑇(k) 𝐐 𝐗̃(k)
] +

µL σv
2  𝐐𝐰(k)

𝐗̃𝑇(k) 𝐐 𝐗̃(k)
  (49)                     

𝐞̃(k) = 𝐗𝑻(k)𝐰𝑜𝑝𝑡 + 𝐙(k)– 𝐗𝑇(k)𝐰(k) = (𝐗𝑇(k) −

𝐕𝑻(k))𝐰𝑜𝑝𝑡 + 𝐙(k)– 𝐗𝑇(k)𝐰(k) = −𝐗𝑇(k)𝒘̃(k) −

𝐕𝑻(k)𝐰𝑜𝑝𝑡 + 𝐙(k)              (50)  

                   
Therefore, 

∆𝒘 (k+1)  = Q[[∆𝒘(k)] −
µ𝛽

2
[𝑠𝑖𝑔𝑛(𝐰(k))] −

[
µ[𝐗̃(k)𝐗̃𝑇(k)∆𝒘(k)]

X̃𝑇(k) 𝐐 𝐗̃(k)
] − [

µ[𝐗̃(k)𝐕𝑻(k)𝐰𝑜𝑝𝑡]

X̃𝑇(k) 𝐐 𝐗̃(k)
] + [

µ[𝐗̃(k)𝐙(k)]

X̃𝑇(k) 𝐐 𝐗̃(k)
]] +

[
µL σv

2  𝐐∆𝒘(𝒌)

𝐗̃𝑇(k) 𝐐 𝐗̃(k)
] + [

µL σv
2  𝐐𝐰𝑜𝑝𝑡

𝐗̃𝑇(k) 𝐐 𝐗̃(k)
](51)             Taking Expectation of 

(51) yields 

𝐸[∆𝒘 (k+1)]  = Q[𝐸[∆𝒘(k)] −
µ𝛽

2
𝐸[𝑠𝑖𝑔𝑛(𝐰(k))] −

E [
µ[𝐗̃(k)𝐗̃𝑇(k)∆𝒘(k)]

X̃𝑇(k) 𝐐 𝐗̃(k)
] − E [

µ[𝐗̃(k)𝐕𝑻(k)𝐰𝑜𝑝𝑡]

X̃𝑇(k) 𝐐 𝐗̃(k)
] + E [

µ[𝐗̃(k)𝐙(k)]

X̃𝑇(k) 𝐐 𝐗̃(k)
]] +

𝐸 [
µL σv

2  𝐐∆𝒘(𝒌)

𝐗̃𝑇(k) 𝐐 𝐗̃(k)
] + 𝐸 [

µL σv
2  𝐐𝐰𝑜𝑝𝑡

𝐗̃𝑇(k) 𝐐 𝐗̃(k)
](52)              Considering the 

above assumptions, (52) reduces to 

𝐸[∆𝒘(k+1)]  = Q[𝐸[∆𝒘(k)] −
µ𝛽

2
𝐸[𝑠𝑖𝑔𝑛(𝐰(k))] −

µE [
[𝐗̃(k)𝐗̃𝑇(k)]

X̃𝑇(k) 𝐐 𝐗̃(k)
] 𝐸[∆𝒘(k)]] + µL σv

2 𝐐𝐸 [
∆𝒘(k)

𝐗̃𝑇(k) 𝐐 𝐗̃(k)
]     (53)              

We can find the value of  𝐸[𝑠𝑖𝑔𝑛(𝐰(k))]as [15]: 

𝐸[𝑠𝑖𝑔𝑛(w𝑖(k))] = 𝐸[𝑠𝑖𝑔𝑛(∆w𝑖(k) + w𝑜𝑝𝑡,𝑖)] = 1 −

𝜑(−
𝜇𝑡𝑜𝑡𝑎𝑙(𝑘)

𝜎𝑖(𝑘)
)    (54) 

where𝜇𝑡𝑜𝑡𝑎𝑙(𝑘) = 𝜇𝑖 + w𝑜𝑝𝑡,𝑖          (55)  

and  
𝜑(𝑥)is CDF of Normal distribution. 

As 𝐸[𝑠𝑖𝑔𝑛(𝐰(k))] is bounded, hence we are not considering 

this term in the stability analysis of the proposed algorithm. 
Hence 

E[∆𝐰(k + 1)] =  𝐐 [I − µE [
[𝐗̃(k)𝐗̃T(k)]

X̃T(k) 𝐐 𝐗̃(k)
] +

µL σv
2E [

I

𝐗̃T(k) 𝐐 𝐗̃(k)
]] E[∆𝐰(k)]            

           (56) 
The square of symmetric matrix Q is also Q i.e. 
𝑸𝟐 = 𝑸                   (57) 
and 
𝑸∆𝒘(k + 1) = ∆𝒘(k + 1)   (58)                 
 Considering (57) and (58), we can write (56) as: 

𝐸[∆𝒘(k + 1)]   =  [𝐼 − µE [
[𝑸𝐗̃(k)𝐗̃𝑇(k)𝑸𝑻]

X̃𝑇(k)𝑸𝑻 𝐐 𝐗̃(k)
] +

µL σv
2𝐸 [

𝐼

𝐗̃𝑇(k)𝑸𝑻 𝐐 𝐗̃(k)
]] 𝐸[∆𝒘(k)]   (59) 

Considering  
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𝑸𝐗(k) = 𝐗̌(k)     (60)   
Rewriting (60) using (59) yields 

𝐸[∆𝒘(k + 1)]   =  [𝐼 − µE [
[𝐗̌(k)𝐗̌𝑇(k)]

𝐗̌𝑇(k)𝐗̌(k)
] +

µL σv
2𝐸 [

𝐼

𝐗̌𝑇(k)𝐗̌(k)
]] 𝐸[∆𝒘(k)](61)                                        

𝐸[∆𝒘(k + 1)]   =  [𝐼 − µE [
[𝐗̌(k)𝐗̌𝑇(k)]

𝐗̌𝑇(k)𝐗̌(k)
] +

µL σv
2 𝐼

𝐸[𝐗̌𝑇(k)𝐗̌(k)]
] 𝐸[∆𝒘(k)](62) Considering 

F(k) = [𝐼 − µ [
[𝐗̌(k)𝐗̌𝑇(k)]

𝐗̌𝑇(k)𝐗̌(k)
] + µL σv

2 𝐼

[𝐗̌𝑇(k)𝐗̌(k)]
] (63) Hence  

𝐸[∆𝒘(k + 1)] = E[F(k)∆𝒘(k)]                             (64) 
    
𝐸[‖∆𝒘(k + 1)‖2] = 𝐸[‖F(k)∆𝒘(k)‖2] ≤

𝐸[‖F(k)‖2]𝐸[‖∆𝒘(k)‖2]   (65)   
The term 𝐸[F(k)] should be less than equal to one so that the 
proposed algorithm will converge. 
Considering SVD decomposition for transformed 

matrix𝑸𝐗̃(k) = 𝐗̌(k) as 

𝐗̌(k) = 𝐔(k)∅(k)𝐕𝑻(k)  (66)                   

where∅(k) ∈ ℝNXLis a rectangular diagonal matrix having 

singular values of 𝐗̌(k)on its main diagonal , 𝐔(k) ∈ ℝNXN 

and𝐕(k) ∈ ℝLXL are unitary matricessuch that the columns of 
𝐔(k)  and the columns of 𝐕(k)   show the left-singular 

vectors and right-singular vectors of 𝐗̌(k) , respectively. 
Hence, we can write (63) as: 

F(k) = [𝐼 − µ [
[𝐔(k)∅(k)𝐕𝑻(k)𝐕(k)∅𝑻(k)𝐔𝑻(k)]

𝐕(k)∅𝑻(k)𝐔𝑻(k)𝐔(k)∅(k)𝐕𝑻(k)
] +

µL σv
2 [

𝐼

𝐕(k)∅𝑻(k)𝐔𝑻(k)𝐔(k)∅(k)𝐕𝑻(k)
]] (67)      

As 𝐕𝑻(k)𝐕(k) = 𝐈𝐋𝐱𝐋and𝐔𝑻(k)𝐔(k) = 𝐈𝐍𝐱𝐍    
Therefore, 

F(k) = [𝐼 − µ [
[𝐔(k)∅(k)∅𝑻(k)𝐔𝑻(k)]

𝐕(k)∅𝑻(k)∅(k)𝐕𝑻(k)
] +

µL σv
2 [

𝐼

𝐕(k)∅𝑻(k)∅(k)𝐕𝑻(k)
]] (68)                                           

𝐔(k)∅(k)(𝐕(k)∅𝑻(k)∅(k)𝐕𝑻(k))
−𝟏

∅𝑻(k)𝐔𝑻(k) =

𝐔(k)∅(k)(∅𝑻(k)∅(k))−𝟏∅𝑻(k)𝐔𝑻(k) (69) 
 
Assuming (∅𝑻(k)∅(k))−𝟏 exists, then the 

term  µL σv
2(∅𝑻(k)∅(k))−𝟏 will be bounded 

and ∅(k)(∅𝑻(k)∅(k))−𝟏∅𝑻(k) ∈ ℝNXN will be a diagonal 
matrix such that 

∅(k)(∅𝑻(k)∅(k))−𝟏∅𝑻(k) = [
𝐼𝐿𝑋𝐿 0𝐿𝑋(𝑁−𝐿)

0(𝑁−𝐿)𝑋𝐿 0(𝑁−𝐿)𝑋(𝑁−𝐿)
] (70) 

𝐸[‖∆𝒘(k + 1)‖2] = 𝐸[∆𝒘𝑻(k)F𝑇(k)F(k)∆𝒘(k)] =

𝐸[∆𝒘𝑻(k)[𝐼 − µ]F(k)∆𝒘(k)]  (71) 

E{(∆𝒘𝑻(k)[𝐼 −

µ𝐔(k)∅(k)(∅𝑻(k)∅(k))−𝟏∅𝑻(k)𝐔𝑻(k)]𝑇[𝐼 −

µ𝐔(k)∅(k)(∅𝑻(k)∅(k))−𝟏∅𝑻(k)𝐔𝑻(k)]∆𝒘(k)} (72)    
    

E{(∆𝒘𝑻(k)(𝐼 − µ(2 −

µ)𝐔(k)∅(k)(∅𝑻(k)∅(k))−𝟏∅𝑻(k)𝐔𝑻(k))∆𝒘(k)} 

𝐸[‖∆𝒘(k + 1)‖2] = 𝐸 [‖∆𝒘(k)‖2 + ((2 −

µ)∅(k)(∅𝑻(k)∅(k))−𝟏∅𝑻(k))‖𝒘̈(k)‖2](73) where𝒘̈(k) =

𝐔𝑻(k)∆𝒘(k) 
For acuate stability of the proposed algorithm, µ should be 
zero or two, but for practical purpose 0 ≤ 𝜇 ≤ 1  should be 
adopted [14]. 

V. RESULT AND DISCUSSION 

In this section, simulations are taken in MATLAB software 
to justify the estimation behavior of the proposed algorithm 
in linear constrained sparse system identification against 
noisy input. The unknown finite impulse response (FIR) 
system  and adaptive filter have same dimension N . Here we 
have considered N=163. The system coefficients are 
considered symmetric. The unknown sparse system 
coefficients are Gaussian distributed with linear phase aspect. 
For symmetric and odd condition, the linear phase constraint 
is defined as[2]: 

Θ=

[
 
 
 
 
 
 
 
 

1 0   ⋯ 0
0  1  … 0
⋮   ⋮   ⋱ ⋮

 0     0      …     1 
0  0    ⋯ 0
0  0  … −1
⋮   ⋮   ⋱ ⋮
  0     − 1   …    0
−1      0    …     0]

 
 
 
 
 
 
 
 

= [

𝑰𝑵−𝟏

𝟐

𝟎𝑻

−𝑱(𝑵−𝟏)/𝟐

](74) 

 
 h = [0 0 … 0] T(75)  
 

Here𝐈𝐍−𝟏

𝟐

is an identity matrix of order
𝐍−𝟏

𝟐
 and 𝐉 is the identity 

matrix having all rows turned around. The colored input is 
produced by passing thewhite input through a system, 

𝐻(𝑧) =  
1

1−0.9𝑧−1. The measurement noise, z(k) is considered 

white. The assessment criterions for estimation performance 
are taken as: normalized mean square deviation (NMSD) and 
convergence speed. Here K is the sparsity constant that tells 
the number of non-zero coefficients among others. 
First the proposed algorithm is compared with constrained 
affine projection (CAP) [5], affine projection algorithm (APA) 
[11] , bias compensator APA (BC-APA) [10] and l1-norm 
penalized  constrained affine projection (l1-CAP) algorithms 
against Gaussian input noise  and Laplace input noise for  
different values of sparsity constant, K={3,13,53} in figs. (2) 
and (3). The other parameters taken in this experiment are: 
step size µ =0.05, Input noise variance 𝜎v

2=0.08, Channel 
SNR=20dB; sparsityregularizer𝛽 = 5X10−5  and projection 
order L=6. 

https://www.openaccess.nl/en/open-publications
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Fig. 2.NMSD of the proposed l1-BC-CAP, CAP, 

BC-APA, CAP, APA and l1-CAP algorithms with 
different K={3,13,53} in the presence of Gaussian 

inputnoise (µ =0.05, 𝛔𝐯
𝟐=0.08, SNR=20dB, 𝛃 =

𝟓𝐗𝟏𝟎−𝟓, 𝐋 = 𝟔) 
 

Table- I: Comparison of transient NMSD of proposed 
algorithm with other algorithms for K=3 from fig. 2 

Algorithm Transient NMSD 
(dB) 

Iteration 
Number 

l1-BC-CAP -21.78 746 

BC-AP -13.19 746 
CAP -11.53 746 

l1-CAP -12.08 746 
APA -10.47 746 

 
Table- II:  Comparison of steady state NMSD of proposed 

algorithm with other algorithms for K=3 from fig. 2 
Algorithm Steady State NMSD 

(dB) 
Iteration 
number 

l1-BC-CAP -27.3 1120 
BC-AP -15.86 1602 
CAP -12.29 1404 

l1-CAP -12.43 1361 

APA -18.9 2338 

 
Table I and II compare the transient NMSD and steady state 
NMSD of the proposed l1-BC-CAP algorithm with other 
APA variants for sparsity constant K=3 and Gaussian input 
noise. Table I confirms the lowest transient NMSD of the 
proposed algorithm. Table II, it is evident that the proposed 
achieves the lowest steady state NMSD with largest 
convergence rate among others. Similar types of results can 
be obtained for Laplace input and other values of K. 
However, for higher sparsity level the estimation 
performance of the proposed algorithm degrades but still it is 
better than other algorithms. 

 
Fig. 3.NMSD of the proposed l1-BC-CAP, CAP, 

BC-APA, CAP, APA and l1-CAP algorithms with 
different K={3,13,53} in the presence of Laplace input 

noise (µ =0.05, 𝛔𝐯
𝟐=0.08, SNR=20dB, 𝛃 = 𝟓𝐗𝟏𝟎−𝟓, 𝐋 = 𝟔) 

 
Table- III:  Comparison of simulation time of proposed 

algorithm with existing variants 
Algorithms Simulation Time Per 

Run (Second) 

l1-BC-CAP 0.141553 
BC-APA 0.117227 
CAP 0.056583 

l1-CAP 0.086993 
APA 0.035812 

 
Table III compares the simulations time of proposed 
algorithm with its variants. Although the proposed algorithm 
needs the highest simulation time, yet the estimation 
performance is superior to other algorithms.  

 
Fig. 4.Performance of l1-BC-CAP algorithm under 
various step sizes(Gaussian input noise, 𝛔𝐯

𝟐=0.08, 

SNR=20dB, K=13, 𝛃 = 𝟓𝐗𝟏𝟎−𝟓, 𝐋 = 𝟔) 
 
Next experiment shows the step size’s impact on the 
performance of the proposed algorithm. The convergence 
speed and NMSD error are related inversely to step size as 
shown in fig. 4.Therefore, the step size should be selected 
very carefully to make a balance between convergence speed 
and NMSD error. Here, the step size µ=0.05 is selected to 
take care of both.  
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The minimum MSD error is obtained for µ=0.01 and the 
highest convergence speed is for µ=0.2. 

Figure 5 shows the performance of the proposed l1-BC-CAP 
algorithm under different input noise variance. Here 
Gaussian input noise is considered for simulation. Four 
values of input noise variance,𝜎v

2=[0.05 0.08 0.2 0.4] are 
considered in this experiment.  As the variance of the input 
noise increases, the performance of the proposed algorithm 
l1-BC-CAP is degraded slightly since the proposed algorithm 
has unbiased the bias produced due to the input noise, 
therefore its performance is not significantly degraded by 
increasing the value of input noise variance. 

 
Fig. 5.Performance of l1-BC-CAP algorithm under 

various input noise variance (Gaussian input noise, µ 

=0.05, SNR=20dB, K=13, 𝛃 = 𝟓𝐗𝟏𝟎−𝟓, 𝐋 = 𝟔) 

 
Fig. 6.Performance of the proposed algorithm under 

various channel SNR on the estimation (Gaussian input 

noise, 𝛔𝐯
𝟐=0.08,  µ =0.05, K=13, 𝛃 = 𝟓𝐗𝟏𝟎−𝟓, 𝐋 = 𝟔) 

In fig. 6, the performance of the proposed algorithm is tested 
for varying SNR values of channel noise. The channel noise 
and input noise are considered as white Gaussian noise. The 
other parameters are taken as: step size µ =0.05, input noise 
variance 𝜎v

2 =0.08, sparsity constant K=13; sparsity 
regularizer 𝛽 = 5X10−5. Here four different values of SNR 
of channel noise, SNR= [30dB 20dB 10 dB 5dB] are adopted 
to check the performance of the proposed algorithm. 
As the value of SNR rises up, the performance improves and 
as it goes down, the performance degrades. So the channel 
SNR has severe impact on the performance of the proposed 
algorithm. 
In next simulation, the impact of sparsity regularizer𝛽 on the 
performance of the proposed algorithm is tested. The other 
parameters are taken as: step size µ =0.05, input noise 

variance 𝜎v
2=0.08, sparsity constant K=13; channel SNR=

20 dB. 

 
Fig. 7.Performance ofl1-BC-CAP algorithm under 

various sparsity regularizer𝛃(Gaussian input 

noise, 𝛔𝐯
𝟐=0.08, µ =0.05,  𝐒𝐍𝐑 = 𝟐𝟎𝐝𝐁, 𝐊 = 𝟏𝟑, 𝛃 =

𝟓𝐗𝟏𝟎−𝟓, 𝐋 = 𝟔) 

 
From fig. 7, it is clear that when the value of the parameter 𝛽 

decreases from 5 ∗ 10−3 to 5 ∗ 10−5 , the performance 
improves considerably. However, as it goes below 5 ∗

10−5 to 5 ∗ 10−6 , the performance starts to deteriorate. 
Therefore, the parameter 𝛽 should therefore be chosen wisely 
as it directly affects the amount of zero attraction on the 
system coefficients. 

VI. CONCLUSION 

This paper presents an l1-norm penalized bias compensated 
linear constrained affine projection (l1-BC-CAP) algorithm. 
The proposed algorithm is used to identify a sparse system 
with linear phase aspect in the presence of colored input, 
corrupted by the additive input noise and channel noise. From 
table 1, it is clear that the l1-BC-CAP achieves -27.3 dB 
NMSD errors in just 1120 iterations than other APA based 
algorithms. Thus, the convergence speed is higher than other 
algorithms as shown in table 1. The simulation time is 
slightly higher than other algorithms as shown in table 2. 
However, the increase in simulation time is mainly due to 
addition of bias compensator term. Further, the performance 
is also tested for several sparsity levels and different input 
noise variances. The impact of several other parameters like 
step size µ, output SNR, sparsity regularizer 𝛽  is also 
illustrated. The proposed algorithm outperforms for different 
sparsity levels and input noise variances. Thus the 
l1-BC-CAP algorithm has the ability to replace the existing 
adaptive algorithms in many practical implementations 
which involve combined effect of linear constrained adaptive 
filtering, sparseness characteristics, and colored input 
corrupted by input noise 
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