
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

474
Retrieval Number: C4835029320/2020©BEIESP
DOI: 10.35940/ijeat.C4835.029320
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Edu-APCCM: Automatic Programming Code
Constructs Mining from Learning Content

Maitri Jhaveri, Jyoti Pareek

Abstract: The current education ecosystem is moving
towards centralized online blended learning. Online learning
repositories have replaced traditional libraries. Learning
repositories contain learning materials, which can be located
with the help of associated metadata. Associating metadata to the
content (definition, program, example, figure, and table) of
individual learning concept (topic) from the learning material
also leads to a better search. If a student knows the prerequisites
of the topic s/he wants to learn then the study of current topic
would be more fruitful. The prerequisites of a computer science
topic can be obtained from its explanation and the programming
code snippet used for its implementation. This paper proposes a
metadata “code construct as a prerequisite of a code snippet”.

For example “recursion and function call are prerequisite to
understand recursive module of binary tree traversal”. It also
proposes the framework to automatically identify, extract and
present the code constructs used in code snippets included in a
computer science learning material. Thus obtained list of code
constructs act as prerequisites for understanding the
corresponding code snippet. Rule-based pattern mining approach
is used for the identification of code snippet in the learning
material and identification of code constructs in the code snippet.
A pattern set is designed for the same. Natural language tool kit
of python is used to identify the code snippet. The algorithms are
tested on the programs of C, C++ and Java. Accuracy and
efficiency of the developed algorithms is checked against the
manual results given by subject experts. An average F1 score of
92% is obtained.

Keywords: prerequisites, rule based mining, code constructs,
learning material, text extraction and analysis

I. INTRODUCTION

A. Importance of Automatic Identification and
Extraction of Programming Code Constructs

If a student wants to learn a concept, it is important for
him/her to get knowledge of its prerequisites. For example,
if a student wants to implement a logic of ‘traversing a

binary tree’ the he/she must be aware of recursion, stack,

function definition, function call, array declaration, loop
structure, if-then-else structure. This can also help in
creating the prerequisite path for the student. For example,
the prerequisite map of ‘recursion’ can be “control structure

-> loop structure -> defining and accessing an array -> stack
-> recursion”. A tool is required which automatically
generates the prerequisite map. This paper proposes a
pattern based text mining approach for extracting the
prerequisites from the learning content available in
university repositories. The prerequisite path has multiple
nodes with neighbors of each node as its prerequisite (left
node) and subsequent (right node). For example, consider a
topic “pre-order traversal” of “data structures”. In order

Fig.1. Prerequisites of “pre-order traversal” [7]

Table I. Sample set of code constructs used in programming languages
Function call Control structure Looping structure Recursion
Inline function Friend Function Polymorphism Operator overloading
Function overloading GOTO statements Comments Array
Structure Union Class Inheritance
Linked List Switch-case Parameter passing (By

Reference/value)
Function definition

Include/define directives Pointers

Revised Manuscript Received on February 05, 2020.

* Correspondence Author
Dr. Maitri Jhaveri, Lecturer, Department of Computer Science,

Gujarat University, India.
Dr. Jyoti Pareek, Professor, Department of Computer Science, Gujarat

University, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

to identify its prerequisites one should look at places where
it is been defined, explained and implemented in a specific
programming language. Automatic extraction of
prerequisites from the textual content of a learning material
is already done by the authors [7] as displayed in figure 1.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.C4835.029320&domain=www.ijeat.org

Edu-APCCM: Automatic Programming Code Constructs Mining from Learning Content

475

Retrieval Number: C4835029320/2020©BEIESP
DOI: 10.35940/ijeat.C4835.029320
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

In this paper the authors propose the work done by them in
automatic extraction of prerequisites from the code snippet
which implements the given topic. In computer science
domain, programming language code constructs also serve
as the programming perquisites for the specified topic. For
example, it is important to know beforehand the concept of
‘recursion’, ‘functions call’, and ‘if/else’ constructs to

understand the code of “traversing a tree using recursion”.

Edu-APCCM automatically extracts the code constructs
required to understand the related code snippet. Table 1
shows the set of programming constructs that are present in
C, C++ and Java programming languages.

II. LITERATURE REVIEW

An approach to identify prerequisites is proposed [12]
based on the concept that if concept1 occurs in the definition
of concept2 then concept1 is the prerequisite of concept2.
The sequence of learning goes from lower learning level to
upper learning level. The learning level is calculated on
basis of three features. They are range in which the topic is
covered, number of incoming links from other learning
materials and number of outgoing links to other learning
materials of the repository. A personalized assessment
model is also proposed that is based on the principle of on
identification of learning gaps of the students. They intend
to reduce these learning gaps as much as possible. The
learning gaps are identified by constructing a hierarchical
prerequisite map. A tool is proposed [9] to decide the
sequence in which documents should be read, with
documents having basic (general) concept to be read first
followed by the documents covering the advanced (specific)
concepts. The documents are multiple Wikipedia pages.
Collection of documents is organized in the form of a tree.
This aids a learner to choose a reading sequence of the
documents. For identifying the prerequisite relations among
concepts, a reference distance (RefD) [10] is proposed. It is
a link-based metric that measures the relationship among
learning concepts. The relations are classified as asymmetry
and irreflexivity. Its contribution is a set of 1336 concept
pairs in computer science domain and mathematics domain.
Statistical methods and machine learning techniques are
exploited [2] to identify prerequisite concepts and defined
concepts from learning resources available on the web.
Formatting features are used as a principal technique for
identification of prerequisites and definitions. A model for
concept map construction from textbooks is presented [13].
It combines the knowledge from Wikipedia and the way
corresponding textbook is structured. The knowledge is
gained from the index of the textbooks, where prerequisites
appear earlier in the index. A three-level prerequisite path
construction approach is proposed [8], where each concept
is given weightage. The weights are based on the frequency
of learning concept in the learning material. Prerequisite
pairs are hence identified. The corresponding map is acyclic.
Norm reference technique is used to differentiate between
relevant and irrelevant items. Applications of competence-
based knowledge space theory in web based online learning
are discussed in [11]. Their approach focuses on utilization
of prerequisite path for achieving personalization and
adaptivity in distance education and web-based online

learning. Their work is based on the usage of concept maps
and semantic networks for deriving prerequisite concepts.
Bayesian network is used to establish prerequisite relations
from multiple learning materials. It is implemented by
developing a component-based MEDEA architecture [1].
Difficulty of each knowledge unit is also established. A
Clique Grow model [6] is proposed to establish all those
prerequisite relations which do not follow and are not
captured by a specific pattern. These relations are identified
based on the transitivity among prerequisite concepts
identified by a specific pattern. Versus query logs are used
to establish the graph, where nodes correspond to those
learning concepts whose attributes can be compared.
Machine learning techniques are exploited for annotating
(prerequisite or outcome) learning concepts present in the
learning material [3]. The annotation is contextual. Methods
are proposed to access and score student’s performance.
These annotations of learning resources such as web
documents lead to a sequenced learning path for study. A
prerequisite path is created [4] using machine learning
techniques with various learning objects as its nodes. A rule-
based approach is used for identification of prerequisites and
defined outcomes from a learning material are proposed [5].
This approach requires the knowledge and use of subject
domain. The domain is represented in form of ontology.

Existing methods identify prerequisites of a concept from
wrongly answered queries, concept definition statement and
statements embedding the concept. If the entire article
belongs to the concept then all those keywords which are
not defined in the article are considered prerequisites.

Automatic extraction of prerequisites from the analysis of
code snippet is not yet explored. A survey of students
(MCA, M.Sc and M.Tech from Gujarat University) was
conducted and it was found that if students knew the code
constructs present in a code then they could understand the
code easily. The proposed model first extracts all the
statements of code snippet pertaining to a given learning
concept and then analyses them to classify in any one of the
programming code constructs.

III. PROPOSED WORK

A. Automatic Identification of Code Constructs

Figure 2 shows the framework for identification of code
constructs. The proposed algorithm is implemented using
python natural language processing toolkit. DOCX parser,
PdfMiner and BeuatifulSoup parsers are used to parse DOC
files, pdf files and HTML pages. Raw text, set of images
and set of tables are obtained. Output screens are developed
using JavaScript.

A.1 Code Snippet Identification

The learning concept to which the code belongs can be
found by its presence in the caption of code snippet or 2
lines above and 2 lines below of each code snippet. The
presence of a code snippet is identified by continuous
presence of language specific words. Each sentence from the
code is analyzed for the
presence of code construct.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

476
Retrieval Number: C4835029320/2020©BEIESP
DOI: 10.35940/ijeat.C4835.029320
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Pattern matching engine looks for the existence of a specific
pattern in each sentence. A data set is prepared for the
patterns used to identify code constructs. It is prepared by
gathering the patterns after an extensive study of programs
written in C, C++ and Java languages. Using sentence
tokenizer and word tokenizer each word is separated and
tested against the patterns of table II and table III.

Fig.2. Proposed Framework of Edu-APCCM

A.2 Pattern Matching Engine

A.2.1 Algorithmic steps taken to identify various code
constructs

Table 2 lists different Code constructs to be identified and
corresponding rules for identifying their occurrences.
Column 1 list the code constructs to be identified. Column 2
lists corresponding set of core steps to be executed for
automatic extraction.

Table II. Steps taken for identification of code constructs
Code Construct Core Algorithmic Steps
Function call • Check each code statement

• Check whether each word is any one word from return_types,
• Occurrence of word after all return_type words followed by ‘(‘ or ‘<operator>(‘is

the function name
Recursion • extract function name with the help of succeeding ‘(‘parenthesis

• check each statement in code segment
• before occurrence of ‘}’ if same function name appears then it shows presence of

recursion
Function overloading Three ways of overloading

1. number of parameters
2. type of parameters
3. sequence of parameters
But in all cases name of function remains the same

Split by function name
Identify two function names with same name

Parameter passing by
references

Split the code statement by function name
After ‘(‘ if the word is from return_type followed by ‘&’ without space

Parameters passing by value Split the code statement by function name
After ‘(‘ if the word is from return_type followed by space

Looping structure Check each code statement
Presence of any looping_structure_keyword

Friend function Ocuurence of ‘friend’ keyword followed by occurrence of a function
 ‘friend’ keyword
Return_type
‘(‘

Go to Presence of ‘goto’ statement
Comments in Python,
Java, C, C++

 Presence of
// /*..*/
but not ‘#include’ or ‘#define’

Class Presence of ‘class’ keyword
Array Presence of any word from Return_types

Followed by ‘[‘
Switch-case Presence of ‘switch’ and ‘case’
Struct Presence of ‘struct’ keyword
Union Presence of ‘union’ keyword
Operator overloading Check each code statement

If two statement with same function names followed by same operator
Inline function If the code statement contains ‘#define’ in C or ‘lambda’ in python
Polymorphism If the code statement contains ‘extends’
Pointer If the code statement starts with ‘struct’ and followed by a word ending with ‘*’.

A.2.2 Supportive patterns used for automatic
identification of code constructs

Table 3 list the supportive patterns used to identify the
occurrences of return types, looping structures, operators
and special words. These patterns help in executing steps
to identify code constructs.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Edu-APCCM: Automatic Programming Code Constructs Mining from Learning Content

477

Retrieval Number: C4835029320/2020©BEIESP
DOI: 10.35940/ijeat.C4835.029320
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Table III. Supportive patterns
Return_types 'int', 'integer', 'float', 'char',

'void', 'double', 'static',
'boolean', 'decimal', 'string',
'point'

Loop structure
keywords

'if', 'else', 'for', 'while', ‘do’

Operators '\+', '\-', '*', '\/', '\='

Special_words 'struct', 'void', 'bool', 'char',
'return', 'push', 'namespace'

IV. RESULTS AND ANALYSIS

This section includes sample input (table IV) to the
algorithm, results (Figure 3) obtained for the sample input
and results (table V) for 7 other programs written in
JAVA, C and C++. Table VI presents the tabular result
analysis.
A. An Example of ‘Java’ program (Sample Input to
the proposed algorithm)

Table IV shows a sample input which is a code snippet
covering various programming concepts of a java
program. Figure 3 gives the output screenshot containing
the list of automatically extracted code constructs
obtained as a result. Table V shows the experimental
results obtained on 7 programs.

Table IV. A sample java code snippet incorporating

different programming constructs.
import java.util.*;
class One {
public void display(){
 System.out.println("One");}}
class Two extends One {
@Override
public void display() {
 System.out.println("Two");
}
public int add(int x, int y) //Parameter Passing{
 return x+y;
}
//Overload
public double add(double x,double y) {

 return x+y;
}}
abstract class TwoWheeler {
public abstract void run();
}
class Honda extends TwoWheeler{......}
public class MainClass
static int factorial(int n){
 if (n == 1)
 return 1;
 else
 return(n * factorial(n-1));
 }
public static void main(String[] args) {
 One a=new One();
 a.display();
 Two b=new Two();
 b.display();
 System.out.println(b.add(4,2));
 System.out.println(b.add(5.,2.)); //polymorphism
 TwoWheeler test = new Honda();
 test.run(); //function call
 int x = 10;
 while(x < 20) {
 System.out.print("value of x : " + x);
 x++;
 System.out.print("\n");
 }
 if(x > 18)
 System.out.println("above 18 ");
Else

 System.out.println("below 18 "); System.out.println("Factorial
of 5 is: "+factorial(5));
int week = 0;
Scanner sc = new Scanner(System.in);
week = sc.nextInt();
 String day;
switch (week) {
 case 1:
 day = "Sunday";
 break;
 case 2:……..
}}

Fig.3. Result output screen displaying automatically identified programming code constructs

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

478
Retrieval Number: C4835029320/2020©BEIESP
DOI: 10.35940/ijeat.C4835.029320
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Table V. Experimental Results of Proposed algorithms on 7 programs
Sr. No. Program Description Programmi

ng
Language

No of lines in
program

Results (number of
automatically extracted
code constructs)

1 Program to convert infix expression to
postfix expression

C 57 11

2 Program to insert and element in Binary
search tree

C++ 52 15

3 Program to delete an element from Heap
tree

Java 35 8

4 Program to implement depth first traversal
of a directed graph

C 27 6

5 Program to sort a list using bubble sort C 25 9
6 Program to implement student’s result

system
Java 135 12

7 Program to calculate salary of bank
employees

C++ 165 14

B. RESULT ANALYSIS

Table VI lists the evaluation of the results obtained for 7
programs. The results were given to the subject experts for
verification of correctness, completeness and sufficiency. A
satisfactory response was obtained. The experimentation and
evaluation were then continued with 100 code snippets
written in C/C++/Java. Verification against expert generated
manual results showed an F1 score of 92%. F1 score
measure was used for measuring the accuracy of
automatically generated results. The F1 score is calculated
as weighted average of the precision and recall. F1 score
attains its best value at 1 and worst at 0.

F1=2 * recall* precision / (recall + precision)

Precision = Total number of correct results identified by

the tool /Total number of all results identified by the tool

Recall = Total number of correct results identified by the

tool/Total number of results provided by experts

Figure 4 presents the graphical analysis of the results

obtained. It plots the precision and recall of the results
obtained. X-axis represents the program number out of 100
programs (test data) and Y-axis represents the range (0-1) of
precision and recall. Precision is found to be higher that the
recall. That means that, the tool is extracting some incorrect
code constructs along with the correct code constructs. The
incorrect results were found because the tool extracted code
constructs from multiline comments as well. Work is under
progress to improve the results.

Table VI. Tabular Analysis of Automatically extracted code constructs against expert generated manual results

 Program

Number of
programming

code constructs
as suggested by

the subject
experts

Number of
automatically
extracted code

constructs by the
proposed
algorithm

Number of
correctly

extracted code
construct as per
expert’s opinion

Precision Recall

1

Program to
convert infix
expression to

postfix expression

11 10 10 1 0.9091

2
Program to insert

and element in
Binary search tree

15 17 15 0.882 1

3
Program to delete
an element from

Heap tree
8 7 7 1 0.875

4

Program to
implement depth
first traversal of a

directed graph

6 6 6 1 1

5
Program to sort a
list using bubble

sort
9 9 9 1 1

6

Program to
implement

student’s result

system

12 11 10 0.9091 0.8333

7
Program to

calculate salary of
bank employees

14 13 12 0.9231 0.8571

 Best Case 1 1

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Edu-APCCM: Automatic Programming Code Constructs Mining from Learning Content

479

Retrieval Number: C4835029320/2020©BEIESP
DOI: 10.35940/ijeat.C4835.029320
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

 Worst Case 0.8823 0.8333

 Average Case 0.9592 0.9249

Standard
Deviation

 0.0523 0.0737

Fig.4. Graphical Analysis of Automatically extracted code constructs against expert generated manual results [X-Axis
is program number; Y-Axis is range (0-1)]

V. CONCLUSION

This paper introduces the concept of programming code
constructs as prerequisites for the code snippet pertaining to
the topic specified by the learner. It discusses the methods
developed
for automatic extraction of code constructs from the code
snippets of programs written in C, C++ and Java languages.
Code constructs in a code snippet can be found in different
forms. The proposed algorithm tries to cover as many forms
as possible. A pattern set developed for their identification is
presented with corresponding rule set for automatic
identification, extraction and manifestation. A sample code
with corresponding auto generated output is also presented
to show working of the proposed approach. Satisfactory
evaluation against expert generated manual results is shown.
Work is under progress to improve the F1 score. The authors
are also working on inclusion of as many programming
languages as possible. The task of identifying code snippet
from an image is also in progress.

REFERENCES
1. Carmona, C., Millán, E., Pérez-de-la-Cruz, J.L., Trella, M. and

Conejo, R. “Introducing Prerequisite Relations in a Multi-layered
Bayesian Student Model” published in User Modeling 2005, Lecture
Notes in Computer Science, Vol 3538. Springer, Berlin, Heidelberg,
pp. 347-356, 2005.

2. Changuel, S. and Labroche, N. “Distinguishing defined concepts from
prerequisite concepts in learning resources” Proceedings of the IEEE
Symposium on Computational Intelligence and Data Mining, Paris,
France, pp. 22-29, 2011.

3. Changuel, S., Labroche, N. and Bernadette, B. “Resources
Sequencing Using Automatic Prerequisite–Outcome Annotation”.
ACM Transactions on Intelligent Systems and Technology, vol. 6
No.1, pp.6:1-6:30, 2015.

4. De Medio, C., Gasparetti, F., Limongelli, C., Sciarrone, F. and
Temperini, M. (2016) “Mining Prerequisite Relationships Among
Learning Objects” Proceedings of the International Conference on
Human-Computer Interaction- Posters' Extended Abstracts, pp.221-
225, 2016.

5. Jain S., Pareek J “Automatic Extraction of prerequisites and learning
outcomes from learning material”, International Journal of Metadata,
Semantics and Ontologies, Vol 8, Issue 2, pp. 145-154, 2013.

6. Jang, M., Park, J. and Hwang, S. “Predictive mining of comparable
entities from the web” Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, Toronto, Ontario, Canada, pp.
66-72, 2012 .

7. Jhaveri, M. M., & Pareek, J. “Edu-ACoCM: Automatic Co-existing
Concept Mining from Educational Content”. International Journal of
Technology-Enabled Student Support Services (IJTESSS), 9(1), pp.
16-40, 2019.

8. Kavitha, R., Vijaya, A. and Saraswathi, D. “An augmented
prerequisite concept relation map design to improve adaptivity in e-
learning” Proceedings of the International Conference on Pattern
Recognition, Informatics and Medical Engineering (PRIME-2012),
Salem, Tamilnadu, India, pp. 8-13, 2012.

9. Koutrika, G., Liu, L. and Simske,S. “Generating reading orders over
document collections” Proceedings of the IEEE 31st International
Conference on Data Engineering, pp. 507-518, 2015.

10. Liang, C., Wu, Z., Huang, W. and Giles, C. L. “Measuring
prerequisite relations among concepts” Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pp. 1668-
1674, 2015.

11. Steiner C.M. and Albert D. “Personalising Learning through
Prerequisite Structures Derived from Concept Maps”, Advances in
Web Based Learning, Lecture Notes in Computer Science, Vol. 4823.
Springer, Berlin, Heidelberg, pp. 43-54, 2007.

12. Wang, S. and Liu, L. “Prerequisite Concept Maps Extraction for
Automatic assessment” Proceedings of the 25th International
Conference Companion on World Wide Web, pp. 519-521, 2016.

13. Wang, S., Ororbia II, A.G., Wu, Z., Williams, K., Liang ,C., Pursel,
B. and Giles, C. L “ Using Prerequisites to Extract Concept Maps
from Textbooks” Proceedings of the 25th ACM International
Conference on Information and Knowledge Management, pp.317-326,
2016.

AUTHORS PROFILE

Dr. Maitri Jhaveri, is Ph. D. in Computer Science.
She is working as Lecturer in Computer Science at
Department of Computer Science, Gujarat
University. She has 16 years of teaching
experience and 8 years of research experience.

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Analysis of correctness of automatically extracted code constructs

precision

Recall

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

480
Retrieval Number: C4835029320/2020©BEIESP
DOI: 10.35940/ijeat.C4835.029320
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

She has to her credit several published research papers. Her areas of interest
are Natural Language Processing, Information Retrieval, Machine
Learning, E-learning, and Object Oriented Paradigms.

 Dr. Jyoti Pareek, is Ph. D. in Computer Science.
She is working as Professor in Computer Science at
Department of Computer Science, Gujarat
University. She has 28 years of research and
teaching experience. She has to her credit a Book
and several published research papers. She has been
the reviewer of the research papers and member of

technical program committee at many International Conferences. Her area
of interest is Natural Language Processing, Machine Translation,
Information Retrieval, Machine Learning, E-learning, and Object Oriented
Paradigms. She is senior Member of IEEE and Life member of Computer
Society of India.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

