
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

2201
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C5172029320/2020©BEIESP
DOI: 10.35940/ijeat.C5172.029320
Journal Website: www.ijeat.org

A New Compiler: Code Conversion at Assembly
Level

Ritu Sindhu, Neha Gehlot, Indu Malik

Abstract: Ever switched programming languages? If yes, you
know how difficult it is to learn the syntax and get familiar with
new language. But what if we write the code in our preferred
language and it can run as any other language’s code. The thing
is, whatever we write ultimately gets converted to 0’s and 1’s, the

only difference is how these 0’s and 1’s is shown to our machine.
We may need different languages, but what if the code with the
syntax of one language, runs reasonably well as if it was written
with syntax of some other language. This is where a compiler
comes in[1].

The aim of this paper is to develop a compiler which could
create a new code for another language, based on the machine
code developed by other languages. This compiler solves two

problems Syntax issue and Universal Compiler.
Keyword: whatever different languages, languages.

I. INTRODUCTION:

A compiler interprets and/or compiles a program
written during a appropriate language into identical target
language through variety of stages.
Starting with recognition of token through target code
generation offer a basis for communication interface
between a user and a processor in important quantity of your
time[1]. Various elements of the compiler are as follows:
Source code: It is the high-level code that we write in IDE
of a particular language.
Assembly code: It is the, high level code converted to a
basic low-level code. It contains mixture of machine code
and high-level code.
Machine code: This is the code which machine finally sees.
Compiler: It converts high-level language into assembly
code and then the assembler converts assembly code into
machine code.

Revised Manuscript Received on February 05, 2020.

* Correspondence Author
Prof. (Dr.) Ritu Sindhu, School of Computing Sciences and

Engineering, Galgotias University, Uttar Pradesh, India. E-
mail:ritu.sindhu2628@gmail.com

Ms. Neha Gehlot, Department of Computer Science and Engineering,
SGT University, Gurugram, Haryana, India. E-
mail:neha_fet@sgtuniversity.org

Ms. Indu Malik, School of Computing Sciences and Engineering,
Galgotias University, Uttar Pradesh, India. E-
mail:ritu.sindhu2628@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Figure 1: Block Diagram of Layman language of
working of suggested compiler

The idea of making a language to be able to run as any other
code written in different language, is that the compiler will
be a combination of all compilers available for every
language and it will check which language syntax the user is
using and accordingly generates the assembly code. This
assembly code is then sent to a de-assembler of the language
in which we want our code to execute. This de-assembler
returns the assembly code in required language which is
then decompiled to achieve the code conversion from one
language to another.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:Ritu.sindhu2628@gmail.com
mailto:neha_fet@sgtuniversity.org
mailto:Ritu.sindhu2628@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.C5172.029320&domain=www.ijeat.org

A New Compiler: Code Conversion at Assembly Level

2202
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C5172029320/2020©BEIESP
DOI: 10.35940/ijeat.C5172.029320
Journal Website: www.ijeat.org

So, the most challenging part is deigning this de-assembler.
De-assembler has to solve two problems firstly it has to
understand the assembly code of one language. Secondly it
must be capable of converting code of source language to
other languages [4].

Figure 2: Overview of working of compiler

Figure 3: Structure of compiler

So the question is how the language code can be
converted to another language code?
The thing is if we try to convert syntax of one language to
another language, it would consume lot of memory with
checks and loops[3].

So we take the code into assembly level and then recompile
it using reverse of compilation or de-compiler.

Figure 4: Conversion of code

So, with the proper understanding of compiler we can use
the assembly code of python and feed it to De-assembler of
C++ to set the equivalent C++ code of program written in
python.

Figure 5 : Core concept of working of code conversion

Suppose we have a C++ program as shown in above fig. We
want our compiler to give a python equivalent code for this.
So, we start as follows.
Step1: Preprocessor- It removes all the whitespaces from
our C++ code and converts in into pureHLL.
Step2: Lexical analysis-(From here the compilation
begins) It converts the pure HLL into stream
of token that is it breaks up the code into smallest possible
units.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

2203
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C5172029320/2020©BEIESP
DOI: 10.35940/ijeat.C5172.029320
Journal Website: www.ijeat.org

Step3: Syntax analysis-This phase of compiler checks
whether the syntax of our C program is correct or not and
accordingly forwards a parse tree of the code with
instructions to the next phase.
Step4: Semantic analysis- This phase checks whether the
declaration and statements of a program has clear meaning
and are consistent in a way which control statements and
data types are supposed to be used. After verifying a
semantically verified parse tree is forwarded.
Step5: Intermediate code generation-The semantically
verified parse tree is converted to a linear representation
(e.g. postfix notation). The intermediate code tends to
machine independent. To evaluate this linear representation
a three-address code is generated and is forwarded for code
optimization.
Step6: Code optimization-The work of code optimization
is to make the three address code compact and robust.
Step7: Target code optimization-It’s the final test of our

C++ code after which assembly code is generated and then
passed to the assembler[14].

II. RESULT ANALYSIS:

Up till now we have normal compiler deign. After converted
to assembly our code and result of compilation looks like.
File Type: COFF OBJECT
main:
 0000000000000000: 48 83 EC 28 sub
rsp,28h
 0000000000000016: C3 ret
__local_stdio_printf_options:
 0000000000000000: 48 8D 05 00 00 00 lea
rax,[?_OptionsStorage@?1??__local_stdio_printf_options@
@9@9]
 00
 0000000000000007: C3 ret
_vfprintf_l:0000000000000000: 4C 89 4C 24 20 mov

qword ptr [rsp+20h],r9

 0000000000000014: 48 83 EC 38 sub rsp,38h

 0000000000000018: E8 00 00 00 00 call

__local_stdio_printf_options

 0000000000000039: E8 00 00 00 00 call

__stdio_common_vfprintf

 000000000000003E: 48 83 C4 38 add rsp,38h

 0000000000000042: C3 ret

printf:

 0000000000000000: 48 89 4C 24 08 mov qword ptr

[rsp+8],rcx

 0000000000000027: E8 00 00 00 00 call

__acrt_iob_func

 000000000000002C: 4C 8B 4C 24 28 mov r9,qwordptr

[rsp+28h]

 000000000000003C: E8 00 00 00 00 call _vfprintf_l

 0000000000000041: 89 44 24 20 movdwordptr

[rsp+20h],eax

 000000000000004E: 8B 44 24 20 moveax,dwordptr

[rsp+20h]

 0000000000000056: C3

The tricky thing begins from here. Since assembler is
platform dependent, so it will convert our C++ assembly
code to different machine code for different platform. So if
we want to go for code conversion we must revert back our
C assembly code to a assembly equivalent of python[15].

This phase conversion is where the core design idea of this
paper lies. Working at a hardware level, if we get an exact
conversion, then we can revert back the process of
compilation using python compiler to get our desired result.

III. CHALLENGES:

• The phase conversion of assembly code of our language to
another language’s assembly code is the most important

problem to tackle down.
• The designed compiler must learn to identify what

language is being used so that we can program a hybrid
language and get its equivalent code in any other
language, at advance level.

• Generating high level language code from assembly code,
it’s the reverse process of compiling so I call it de-
compiling.

• Initially I thought of developing a ML model that would
classify code, this could serve as a potential challenge in
developing such a thing and integrating it with ML.

IV. CONCLUSION:

I was really fascinated by this thought of mine, a concept of
universal compiler which solves a great problem where we
need different compilers depending upon programming
language and on the other hand it’s also capable of
generating code in different languages vanishing the
language compatibility in the entire technical industry.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

A New Compiler: Code Conversion at Assembly Level

2204
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C5172029320/2020©BEIESP
DOI: 10.35940/ijeat.C5172.029320
Journal Website: www.ijeat.org

With this compiler being implemented a programmer can rid
of learning new languages, simple feed his code to this
compiler and just get the code in desired language.
Programming language will never be a barrier in
implementing things and solving real world problem which
is at the end of the day every one’s main motive.
Further concluding, my entire design process of this thing
will be divided into 3 steps firstly I would design the basic
structure of compiler which will be the mixture of all the
compilers present in the today’s date. Secondly the main
part would be to develop a translator which would translate
the assembly code of language to the assembly code of
another language, this will work at the assembly level. Last
part would be de-compiler which would generate HLL code
form assembly code. The most challenging phase is the
second phase which I have already discussed in the
challenges section of this paper.

REFERENCES:

1. Aho, Alfred V., Hop croft, J. E., and Ullman, Jeffrey D. [1974]. The
Design andAnalysis of Computer Algorithms.Addision Wesley,
Reading, MA

2. Ball, T., Larus, J.: Optimally profiling and tracing programs. ACM
Transactions on Programming Languages and Systems 16(3), 1319–

1360 (1994).
3. Ball, T., Larus, J.: Efficient path profiling. In: Proc. 29th Annual Intl.

Symp. on Microarchitecture (December 1996).
4. Berkeley Unified Parallel C (UPC) Project.
5. Berstein, D., Rodeh, M.: Global Instruction Scheduling for

Superscalar Machines. In: Proc. of SIGPLAN 1991 Conference on
Programming Language Design and Implementation (1991).

6. Calder, B., Feller, P., Eustance, A.: Value Profiling. In: Proc. 30th
Annual Intl. Symp. on Microarchitecture (December 1997.

7. https://stackoverflow.com/questions/47948234/assembly-code-of-a-
hello-world-program-in-c

8. https://nptel.ac.in/courses/106/105/106105190/
9. Johnstone, A., Scott, E.: Modelling GLL parser implementations. In:

Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 42–61. Springer, Heidelberg (2011).

10. Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) Parsing of
Programming Languages. In: Programming Language Design and
Implementation, PLDI 1989, pp. 170–178 (1989).

11. Visser, E.: Scannerless Generalized-LR Parsing. Technical report,
University of Amsterdam (1997)

12. https://stackoverflow.com/questions/840321/how-can-i-see-the-
assembly-code-for-a-c-program.

13. Ijirt.org.
14. www.codon.uk.org.uk.
15. ijarece.org.

AUTHORS PROFILE

Dr. Ritu Sindhu pursued her Master of Technology
from Banasthali University, Rajasthan, India. She did
Her Ph.D from Banasthali University,Rajasthan,
India.. She is currently working as a Professor, School
of Computer Science and Engineering,Galgotias
University, Greater Noida, India. She has published 40

research papers in various reputed National and International Journals. Her
teaching experience is 14 Years.

Ms.Neha Gehlot pursued her Master of Technology
from ITM University, Gurugram India. She is
pursuing her Ph.D from SGT University , Gurugram
India. She is currently working as a Assistant
Professor, in SGT University, Gurugram India. She
has published 15 research papers in various reputed
National and International Journals. Her teaching
experience is 5 Years.

Ms. ndu is working as an Assistant Professor in
Galgotias University. She have completed M.Tech
in Computer Science & Engineering from
Banasthali Vidyapith. And have worked on lidar
data during my M.Tech project.

http://www.ijeat.org/
https://stackoverflow.com/questions/47948234/assembly-code-of-a-hello-world-program-in-c
https://stackoverflow.com/questions/47948234/assembly-code-of-a-hello-world-program-in-c
https://nptel.ac.in/courses/106/105/106105190/
https://stackoverflow.com/questions/840321/how-can-i-see-the-assembly-code-for-a-c-program
https://stackoverflow.com/questions/840321/how-can-i-see-the-assembly-code-for-a-c-program
http://www.codon.uk.org.uk/

