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Abstract: In this paper neural networks applications in 

engineering design are discussed. The question for stability of 
their steady states is also considered. Some new efficient criteria 
are proposed. Since neural networks are relevant systems applied 
in various engineering design tasks, including many optimization 
and control problems, the results can be useful in design of such 
systems of diverse interest. 
 

Keywords: Engineering design, neural networks, stability.  

I. INTRODUCTION 

Neural networks (NNs) are ones of the key 
crowdsourcing technologies for engineering design and 
development [1]. They are recognized as ones of the best 
techniques for solving optimization problems, pattern 
recognition, control and forecasting in product design. In 
addition, the methods of collecting design information are 
very important factors in modern product development 
process [2] due to their:  

• Learning ability 
• Storage ability 
• Fault tolerance 
• Inductive ability 
• Parallel handling ability. 

The opportunities for applications of NNs in engineering 
design have been object of numerous investigations during 
the last decades. For example, the book [3] offers an excellent 
overview of the state-of-the-art of the research activities, 
network concepts and techniques to design and 
manufacturing.  Since 1993 NNs have been used in certain 
classes of optimal design problems [4- 6], in the automation 
design processes [7, 8], in retrieval processes, simulations, 
decision making, pattern recognition and prediction [9-15], 
including some recent contributions [16, 17, 18]. In addition 
to these [19- 21] are very good sources where the latest 
application of artificial intelligence and integrated intelligent 
systems for concurrent integration and collaboration of the 
design of a product and its related processes are presented.  

Stability is one of the main properties in a neural network 
dynamics. It is related to the opportunity of huge variations in 
the output values as a result of small perturbations in the 
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initial data. The main goal of the stability analysis is to find 
efficient criteria that guarantee that small perturbations of 
initial data lead to small variations in outputs at a later time 
(short or long period of time). It is worth to note that stability 
is also related to control of the qualitative properties of a 
neural network model.  

Due to the importance of the concept, stability analysis of 
neutral systems has received considerable attention of many 
authors. See, for example, [22-28] and the references therein. 
However, to the best of our knowledge, there has not been 
any work so far considering a stability strategy for a neural 
network model used in engineering design, which is very 
important in theories and applications and also is a very 
challenging problem. That is exactly what is planned in the 
proposed research.  

Among the existing methods for stability analysis, the 
Lyapunov function method seems to be very effective in 
applications since no knowledge for the solution is required. 
The method, also known as second or direct method of 
Lyapunov, is based on the existence of an auxiliary function 
with certain properties. The Lyapunov function technique 
[29] and its modifications have been greatly applied in the 
stability analysis of numerous dynamical systems [23, 
30-34], including NNs [24, 27, 28, 35- 40].  

In this paper, a Lyapunov-based approach is adapted to 
analyze the stability behavior of a generalized NN model 
used for the form design of product image [4].  

The paper is organized as follows. Section II provides 
information on main issues related to neural network models. 
Section III describes the structure of a generalized 
Hopfield-type neural network model considered in this paper. 
In Section IV after some preliminaries, a Lyapunov-based 
stability analysis is proposed to provide stable design 
process. The paper concludes in Section V. 

II.  NEURAL NETWORKS 

NNs are non-linear models that are widely used to examine 
the complex relationship between input variables and output 
variables [4, 41]. The connections between the input 
variables and output variables are weighted. In many NNs, 
the architecture allows one or more layers (hidden layers) 
between the layer of the input and the layer of the output 
variables. Fig. 1 shows a NN with a hidden layer. In it 

nxxx ,...,, 21 are the input variables, pyyy ,...,, 21  are the 

output variables, and ijw , jkw are the connections weights.  
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Fig. 1. Three-layer NN [4]. 
The variables (nodes, neurons, units) in each layer are 

their structural elements. A typical graph of a neuron which 
process information by its dynamic state is given in Fig. 2.  

 
Fig. 2: A model of a neuron [42]. 

An activation (transfer) function for each neuron defines 
the output of the neuron. The sigmoid function 

xe
xf

−+
=

1

1
)(  that assumes a continuous range of values 

from 0 to 1 is the most commonly used activation function in 
a NN architecture.   

Neural nets thus mimic the human brain. They lead to the 
design principles for constructing human-brain-like 
machines [15]. The inputs correspond to the signals to the 
synapses of a biological neuron, while each weight 
corresponds to the strength of a single biological synaptic 
connection.  

Feedforward NNs and recurrent or feedback NNs are the 
most typical categories of NNs. In feedforward networks 
nodes are updated starting with the input layer, and then 
updated layer by layer to the output layer (Fig. 1). In 
recurrent or feedback networks where there is no such 
direction in the flow of control, computation is a relaxation in 
which the nodes are updated until a specified point is reached 
after which updating has no effect [15]. 

 Training the network to perform well with reference to a 
training set is one of the main issues in building a NN model. 
Training a neural net refers to determining the proper values 
of all the weights in the architecture, and is accomplished 
most commonly through backpropagation [43]. 

III. GENERALIZED HOPFIELD-TYPE NEURAL 

NETWORK MODELS IN ENGINEERING DESIGN 

Several authors suggested the use of Hopfield-type NNs for 
engineering design tasks. For example, in the paper [15] a 
model of the type 

         ,1,)(sgn)1( nikxwkx
j

jiji 













=+                     (1) 

where sgn is the sgn )1( function, )(kx j is the state of the 

input j  at time k , ,...2,1,0=k , ijw are the connection 

weights, has been applied to model a design retrieval problem 
encountered in batch production systems. The initial values  
                            )0(ix , ni 1   

are the elements of the input design pattern. The model (1) 
offers the opportunity to make design retrieval based not only 
on shape but other technological factors as well. The 
developed design storage and retrieval system (1) is 
interactive, since based on the initial responses, the designer 
can refine the query at any step. 

A similar model is proposed in [4] to determine how the 
product form elements can be best combined to match a 
desirable product image. For this task the authors considered 
a three-layer NN shown in Fig. 1. In training the network, a 
set of input patterns or signals, ),...,,( 21 nxxx , is presented 

to the network input layer. The network then propagates the 
inputs from layer to layer until the outputs are generated by 
the output layer. This involves the generation of the outputs 

jy  of the neurons in the hidden layer as follows 

           .1, njxwfy j
i

iijj 







−=                            (2) 

The neurons in the output layer are then given as 

          .1, pkxwfy k
j

jjkk 

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
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





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The authors used a sigmoid activation function in (2) and 
(3), j  and k are threshold values, ijw and jkw represent 

the weights for the connection between neuron i  
),...,2,1( ni = and neuron j  ),...,2,1( mj = , and between 

neuron  j ),...,2,1( mj = and neuron k  ),...,2,1( pk = , 

respectively. 
In this paper, a generalized models is proposed described 

by the following discrete time Hopfield neural network 
system 
        ,))(()()1( i

j
jjijiii Jkxgwkxckx ++=+               (4) 

where ,,1 nji   n corresponds to the number of nodes in 

the NN, )(kx j  is the state of the input j  at time k , 

,...2,1,0=k , ijw are the connection weights, 

))(( kxg jj denotes the activation function of the neuron  

j ),...,2,1( nj = , iJ is an external bias. 

In the proposed model we take into account the 
opportunity of the neuron  j ),...,2,1( nj =  to resets its 

potential to the resting state when isolated from other nodes 

and inputs with a constant rate ic . In most cases hia
i ec −

=   

where 0ia  and 0h is small enough [38].  

In addition, a specific activation function for each node is 
proposed. System (1) can be regarded as a discrete time 
analogue of the continuous time delayed  

 
 
 

http://www.ijeat.org/


International Journal of Engineering and Advanced Technology (IJEAT) 
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020 

1864 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: C5562029320/2020©BEIESP 
DOI: 10.35940/ijeat.C5562.029320 
Journal Website: www.ijeat.org 

Hopfield neural networks studied extensively in the 
literature. See, for example, [36, 44, 45, 46] and the 
references therein. 

IV. STABILITY CRITERIA 

A. Preliminaries 

In this section efficient criteria for stability of the neural 
network model (4) will be presented. First we will need some 
notations and definitions.  

A state ),...,,( **
2

*
1

*
nxxxx = is said to be an equilibrium 

(steady state) of the NN (4) if it satisfies the following 
relation 

 

                i
j

ijijiii Jxgwxcx ++= )( *** .                          (5) 

The equilibrium points are very important in the stability 
analysis. For example, in solving of optimization problems, 
the equilibrium position is the optimal solution solution. 
When a NN is applied in the pattern recognition, the 
equilibrium position is the pattern. The stability of an 
equilibrium (pattern) means that the states will approach the 
pattern independently of the initial data.  

One of the most important concepts in the stability analysis 
of NNs is the global asymptotic stability of the equilibrium 
points. If an equilibrium of a NN is globally asymptotically 
stable, it means that it is an attraction point for the whole 
space and the convergence is in real time. This is significant 
both theoretically and practically. Such NNs are known to be 
well-suited for solving some class of optimization problems. 
In fact, a globally asymptotically stable neural network is 
guaranteed to compute the global optimal solution 
independently of the initial data, which in turn implies that 
the network is devoid of spurious suboptimal responses [33].  

The global exponential stability is a specific case of the 
global asymptotic stability that guarantees the fast 
convergence rate. 

Definition 1. An equilibrium point  ),...,,( **
2

*
1

*
nxxxx = is 

globally exponentially stable, if there exist constants 1  
and 1  such that 

            kxxxkx −−−  ||)0(||||)(|| ** , ,...2,1,0=k , 

where  is the convergent rate.  
In the above definition |.|  is the norm of the 

n-dimentional vector . In this paper we will use the following 
norm 

       −=−
=

n

i
ii xkxxkx

1

** |)(|||)(|| , ,...2,1,0=k . 

B. Lyapunov-based Stability Analysis 

Lyapunov approach is related to the choice of a positive 
auxiliary function 0)( kV for any ,...2,1,0=k  for which 

the difference )()1()( kVkVkV −+= is nonnegative. Such 

functions is known as Lyapunov (candidate) function [23, 
29]. The same idea is also used for continuous systems, 
where instead of the difference )(kV  the derivative of the 

Lyapunov function V  with respect to the corresponding 
system is used. For more information about the Lyapunov 

direct method see, for example, [23-40, 45, 46]. 
We make the following assumptions in this paper: 

A1. There exists an equilibrium ),...,,( **
2

*
1

*
nxxxx = for 

system (4). 
A2. Any system output  )(kx  can be measured and its 

initial values are assumed to be in a compact set. 
A3. The activation functions ig  are such that  

               |||)()(| vuLvgug ii −−  

for any ni 1  and any real numbers u  and v , where L is 

a positive constant.  
A4. The constants  0ic for ni 1 . 

A5. The connection weights ijw and external biases 

iJ are real numbers for nji  ,1 . 

Theorem 1. Assume that A1-A5 hold and the systems’ 

parameters satisfy 
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for any nji  ,1 . 

Then the equilibrium ),...,,( **
2

*
1

*
nxxxx =  of the NN model 

(4) is globally exponentially stable. 
Proof. Let )(kx  be a system output with initial data that 

belong to a compact set. 
Consider the Lyapunov function 

         −=−=
=

n

i
ii xkxxkxkV

1

** |)(|||)(||)( . 

Since ),...,,( **
2

*
1

*
nxxxx =  is an equilibrium from (4) and 
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From the condition (6) of Theorem 1 it follows that we 

can find a positive 


1
 such 

 

 that 1 , 



1

0 + and 

                      )()1( 1 kVkV −+  .                              (7) 

From (7) we first have that 
                 
 
 

http://www.ijeat.org/


 
Stability Analysis of Neural Network Models in Engineering Design 

 

1865 

 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: C5562029320/2020©BEIESP 
DOI: 10.35940/ijeat.C5562.029320 
Journal Website: www.ijeat.org 

0)()1()( −+= kVkVkV  

for any ,...2,1,0=k , so the Lyapunov function is decreasing. 

Also, by induction on ,...2,1,0=k  we have that 

                               kVkV − |)0()(  

or 

          kxxxkx −−− ||)0(||||)(|| ** , 

which proves that the equilibrium ),...,,( **
2

*
1

*
nxxxx =  of the 

NN model (4) is globally exponentially stable and 1= . 

 
In the next results we will use the following notation. Let 

)(Q  denotes the spectral radius of the matrix )( ijqQ =  

and 0ijq  for nji  ,1 . 

Theorem 2. Assume that A1-A5 hold and 1)( Q for 

nnijqQ = )( , )1/(|| iijjij cwLq −= where 10  ic , 

nji  ,1 . 

Then the equilibrium ),...,,( **
2

*
1

*
nxxxx =  of the NN model 

(4) is globally exponentially stable. 
The proof of Theorem 2 is similar to that of Theorem 1 

following [36] and [46], and we will omit it here. 
Remark 1. Theorems 1 and 2 provide Lyapunov-based 

criteria for global exponential stability of a generalized 
Hopfield-type NN model used in engineering design. The 
proposed technique is very efficient, since no knowledge for 
the solution is required. Also, it achieves high accuracy while 
the stability is guaranteed. 

V. CONCLUSION 

In this paper the stability behavior of a generalized NN 
model used for the form design of product image is analyzed. 
A Lyapunov-based approach is applied which is very 
effective and achieves high accuracy. The practical meaning 
of the proposed results is as follows: if the system parameters 
satisfy the conditions of Theorem 1 and Theorem 2, then the 
equilibrium state of the model is globally exponentially 
stable. The obtained criteria are very easy for application. 
The proposed technique can be applied for other NN models 
used in engineering design.    
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