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      Abstract: A discrete time queueing model 𝑮𝒆𝒐𝑿/𝑮/∞  is 
considered to estimate of the number of customers in the system. 
The arrivals, which are in groups of size X, inter-arrivals times 
and service times are distributed independent. The inter-arrivals 
fallows geometric distribution with parameter p and service times 
follows general distribution with parameter µ, we have derive the 
various transient state solution along with their moments and 
numerical illustrations in this paper.  

 
Key word: Discrete time, Customers, Group size, Inter-arrival, 

Transient distributions, Geometric distribution. 

I. INDRODUCTION 

In this paper, we consider a discrete time queueing 
model 𝐺𝑒𝑜𝑋/𝐺/∞, to find the solution of the numbers of 
customers in the system. The customer that are stay in the 
system or depart from the system at time k, in which arrivals 
are in groups of size X. The inter-arrival time distributed 
independently with geometrical distribution and service time 
distributed independently with general distribution. In 
addition, to that it is difficult to solve the system 𝐺𝑒𝑜𝑋/𝐺/𝑐, 
such a system can be approximated by 𝐺𝑒𝑜𝑋/𝐺/∞if we take 
c as large and 𝜌 as small. Let the time – axis is split-up into 
interval as 0,𝛿, 2𝛿, … , 𝑚𝛿, …,. For the sake of simplicity, we 
assume 𝛿 = 1. Consider in each epoch 𝑛 the arrivals occur in 
𝑛−, 𝑛 and departures in 𝑛, 𝑛 +. 

In the past decades many service systems, where the 
number of servers facilities arranged in parallel is large like 
infinite server systems. Takagi, H.[4] provide an queueing 
analysis –. a foundation of performance evaluation: discrete 
time systems. Neuts, M.[1] provide an Matrix-Geometric 
Solutions in Stochastic Models. Sivasamy, R and      
Elangovan, R. [8] discuss a bulk service queues of M/G/1 
type with accessible batches and single vacation. Tijms, H.C 
[3] has discussed Stochastic Modelling and Analysis: A 
computational Approach. Jain,G., and Sigman, K [5] are 
studied a Pollaczek-Khinitchine formula for M/G/1 Queuues 
with disasters. Latouche, G., and Ramaswami, V [7] have 
presented introduction to matrix analytic methods in 
Stochastic Modelling. Goswami, V. and Gupta,U.C [6] have 
discussed the discrete-time Multiserver queue 
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Geom/Geom/m Queue with Late and Early Arrivals. Yi, 
X.W., Kim, J.D et al.,[9] are studied the Geo/G/1 Queue with 
disasters and multiple working vacations. Holman, D.F et al., 
[2] are providing on the service system MA/G/cc. 
Sivasamy,R and Pukazhenthi,N.[10] have discussed a 
discrete time bulk service queue with accessible batch: 
Geo/NB(L, K) /1. N. Pukazhenthi and S.Ramki [12] have 
denoted the performance analysis of discrete time bulk 
service queuing model NB (L,K)/Geo/1. N.Pukazhenthi and 
M.Ezhilvanan [11] are carried out the analysis of discrete 
time queues with single server using correlated times. 
N.Pukazhenthi and S.Ramki [13] are studied analysis of 
discrete time NB/Geo/1 queuing model with system capacity 
(L,K). 

The potential applications of the model in this study 
are a self-service system, in which a customer is always 
accompanied by a server that is himself, modern 
technological service systems such as stock exchange where 
people are making demands to get information, etc. From the 
above systems, the customers can usually occur in groups 
rather than single. Now we state the assumptions of the model 
and then their moments and steady state solutions. 

II. MODEL DESCRIPTION 

The discrete-time queueing model GeoX/G/∞  follows a 

geometric distribution with the parameter p and mean   
1

p
 and 

the probability function (pmf). 
P(X = m) = am,                 m = 1,2, … ∞     

Let 𝒜{z} be the size of group of pgf by which 

𝒜{z} = E(ZX) = ∑ amzm

∞

m=1

                          … (1) 

whith 𝒜1{1} = ∑ mam
∞
m=1  

  
𝒜(k){z}

k!
= ∑ (m

k
)amzm−k∞

m=k                                

The kth derivative of 𝒜{y} is identified by 𝒜k{z} 
If the size of the ith group be Xi then 𝒜{k} be the number of 
customer arrives during (0,k) is derived as 

𝒜{k} = ∑ Xi

k

i=1

                                                         

On arrival of the customers they start the service 
immediately and according to the general distribution of the 
service time s of an individual customer are independently 

identical distributed with mean 
1

µ
= ∑ ibi

∞
i=1 . 

B(j) = P(S ≤ j) = ∑ bi

j

i=1

                                 … (2) 

Let us consider at time k = 0 there are I ≥ 0  customers 
available in the service are, 
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P(I = i) = di ,    ∑ di = 1,

∞

i=0

d̅  =  ∑ idi

∞

i=1

      

The random variables are defined as follows. 
N(k) =   Total number of customers in system at  

   time k. 
𝒜(k) =  Total number of customer that arrive  

  during (0,k]. 
C(k) =   Total number of customers that depart  

during (0,k] out of the customers that        
arrive  during the same period  

N1(k) =  Total number of customers in system at  
   time k out of the initial number I in the  
   system at time zero 

Xn(k) =  Total number of customer that stay in  
system at time k out of n groups that arrive 
during (0,k]. 

N2(k) =   Total number of customers that stay in  
system at time k out of the total number that 
arrive during (0,k]. 

= ∑ Xn(k),

k

n=0

          k = 1,2, …            

Clearly, 
    𝒜(k) =  N2(k) + C(k)                           

and  
Z(k) =  N1(k) +   N2(k)              

III. DERIVATIONS OF VARIOUS DISTRIBUTIONS 

Distribution of number of busy servers. 
First, we consider the distribution of 𝑁1(𝑘). If out of the 
initial number I at time 𝑘 = 0, 𝑛 are left in the system by time 
𝑘, then 

𝑃𝑁1 (𝑘)
(𝑛) = (𝑃𝑁1(𝑘) = 𝑛) =  ∑ (

𝑖

𝑛
) (𝐵(𝑘))

𝑖−𝑛
∞

𝑖=0

 

                (1 − 𝐵(𝑘))
𝑛

𝑑𝑖 ,    0 ≤ 𝑛 ≤ 𝑖              … (3) 

It is easy to see that pgf of  𝑁1(𝑘) is 

𝑃𝑁1 (𝑘)
(𝑛) = ∑ 𝑃𝑁1 (𝑘)

(𝑛)

𝑖

𝑛=0

𝑧𝑛                               

       =  ∑ [∞
𝑖=0 (1 − 𝐵(𝑘))𝑧 + 𝐵(𝑘)]𝑖𝑑𝑖               … (4) 

which gives mean  𝐸𝑁1(𝑘) = �̅�[1 − 𝐵(𝑘)] 

and variance  

𝑉𝑎𝑟(𝑁1(𝑘)) = ∑{𝑖2(1 − 𝐵(𝑘))2}

∞

𝑖=1

𝑑𝑖                

+𝐵(𝑘)𝐸(𝑁1(𝑘)) − (𝐸(𝑁1(𝑘)))
2

 

If 𝑘 → ∞, both mean and variance tend to 0, as expected. In 
fact, lim

𝑘→∞
𝑃𝑁1 (𝑘)

(0) = 1. Out of the initial number I at time 

zero, the distribution of the number that departs during 0, 𝑘] 
can be discussed similarly.  

Next, we study the distributions of  𝑿(𝟏)(𝒌) and 𝓐(𝒌). 
First, note that, 𝑋𝑟(𝑘) = r independently identically 

distributed random variables each distributed as 𝑋(1)(𝑘).  
Then, using the fact that the arrival time of a group is 
uniformly distributed over k intervals, 
𝑝𝑛(𝑘) = 𝑃(𝑋(1)(𝑘) = 𝑛)    
            = ∑ 𝑃(𝑆 > 𝑘 − 𝑚 𝑘

𝑚=1 for n customers from           
      a group arriving at epoch m)            … (5)                
            = ∑ ∑ 𝑃(𝑆 > 𝑘 − 𝑚∞

𝑙=1  𝑘
𝑚=1 for n customers  

      of a group of size 𝑙|, a group of  size  
          arrives 𝑙at epoch 𝑚)𝑎𝑙 

=
1

𝑘
∑ ∑ (

𝑙

𝑛
) (1 − 𝐵(𝑘 − 𝑟))

𝑛
𝑘

𝑚=1

∞

𝑙=1

            

                   (𝐵(𝑘 − 𝑟))𝑙−𝑛𝑎𝑙                                 … (6) 

=
1

𝑘
∑ ∑ (

𝑙

𝑛
) (1 − 𝐵(𝑗))𝑛

𝑘−1

𝑗=0

∞

𝑙=1

(𝐵(𝑗))𝑙−𝑛𝑎𝑙 ,    1 ≤ 𝑛 ≤ 𝑙. 

 
The pgf of 𝑝𝑛(𝑘) is 

�̅�𝑘(𝑧) = ∑ 𝑝𝑛(𝑘)𝑧𝑛

𝑙

𝑛=0

                                    

     =  
1

𝑘
∑ 𝒜{(1 − 𝐵(𝑗))𝑧 + 𝐵(𝑗)}𝑘−1

𝑗=0                … (7) 

Also, Since  

𝑘𝑗
(𝑘)

= 𝑃 (∑ 𝑋𝑖 = 𝑗

𝑘

𝑖=1

),                                            

Represents the distribution of the number of customers that 

arrive during(0. 𝑘), the pgf of 𝑘𝑗
(𝑘) , using the concept of 

convolution, is given by 

𝐾(𝑘)(𝑦) = ∑ 𝑘𝑗
(𝑘)

𝑧𝑗

∞

𝑗=0

                                     

                  
                = (1 − 𝑝 + 𝑝𝒜{𝑧})𝑘                           … (8) 
 
         = ∑ ( 𝑘

𝑚
)𝑝𝑚(1 − 𝑝)𝑘−𝑚(𝒜{𝑧})𝑚𝑘

𝑚=0     … (9) 
 

Where 1 − 𝑝 + 𝑝𝒜(𝑧) is the pgf of one of the independent 
and identically distributed random variable’s 𝑋1, 𝑋2, … , 𝑋𝑘. 

Note that  𝑘𝑗
(𝑘) is the coefficient of 𝑧𝑗 in (9). Also, note that        

 P(𝑘𝑗
(0)

= 0) = 1, Since, by assumption, the new arrivals are 

permitted after 𝑘 = 0. 
Probability generating function of 𝑵𝟐(𝒌).  

If s (0 ≤ s ≤ k)  groups arrive in (0, k],  then the pgf of 
N2(k)is 

P̅N2 (k)
(Z) = ∑ (

1

k
∑ 𝒜{1 − B(j))z + B(j)}

k−1

j=0

)

s
k

s=0

 

    
                      (k

s
)ps(1 − p)k−s                         … (10) 

 

          = [
p

k
∑ 𝒜{(1 − B(j))z + B(j)} + 1 − pk−1

j=0 ]
k

 

Were we have used (7). 
Finally, since 

N(k) =  N1(k) +  N2(k)             
The use of convolutions gives  

PN k
(n) = P(N(k) = n)            

          = ∑ PN1 (k)
n
r=0 (m)PN2 (k)

(n − m)     …  (11) 

Also, the transform of the distribution C(k) is given by. 

P̅Ck
(z) = [

p

k
∑ 𝒜{B(j)z + (1 − B(j))} + 1 − p

k−1

j=0

]

k

 

                                                                                … (12) 
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IV. MOMENTS 

The performance measures for various distributions can be 
obtained as follows: 
(i) The expected value of N2(k)is given by 

E(N2(k)) = P̅N2 (k)

(1)
                          

                     

= pa̅ ∑ ∑ bi

∞

i=j+1

k−1

j=0

                         … (13) 

 To get the variance of N2(k), we first get  P̅N2 (k)

(2) (1) which 

is  given by 

P̅N2 (k)

(2) (1) = k(k − 1) [
pa̅

k
∑(1 − B(j))

k−1

j=0

]

2

 

                           +p(∑ (1 − B(j))2k−1
j=0 )𝒜(2)(1)         

and hence  

Var(N2(k)) = P̅N2 (k)

(2) (1) + P̅N2 (k)

(1) (1) − (P̅N2 (k)

(1) (1))
2

 

= −
1

k
[E(N2(k))]2 + E(N2(k)) 

                +p (∑ (1 − B(j))
2k−1

j=0 ) 𝒜(2)(1)   …  (14) 

If we let k → ∞ and take appropriate limits it can be seen that 
the discrete time results given in (13) and (14) match the 
continuous – time results.  
(ii) The moments of C(k) can be obtained similarly and are 
given by 

           

E(D(k)) = P̅C (k)

(1) (1) = pa̅ ∑ ∑ bi

j

i=1

k−1

j=0

… (15) 

and  

Var(C(k)) =  P̅C (k)

(2) (1) + P̅C (k)

(1) (1) − (P̅C (k)

(1) (1))2   =

−
1

k
[E(C(k))]

2
+ E(C(k))           

                     +p (∑ (B(j))
2k−1

j=0 ) 𝒜(2)(1)     …  (16) 

(iii) The mean and variance of 𝒜(k) can be obtained from (8) 
and are given by     

E(𝒜(k)) = pa̅k,                   …  (17) 
and  

var(𝒜(k)) = pa̅k(1 − pa̅) + pk𝒜(2)(1)  … (18) 
respectively, from (13), (15) and (17),  
we note that  

  E(𝒜(k)) = E(N2(k)) + E(C(k))       … (19) 
However, one can get Cov(N2(k), C(k)) from 

var(𝒜(k)) = Var(N2(k)) + Var(C(k)) 
                       +2 Cov(N2(k), C(k)              … (20) 

 
5. STEADY – STATE PROBABILITY 
From (10), we get 

P̅N2 
(z) = lim

k→∞
P̅N2 (k)

(z) 

= lim
k→∞

[
p

k
∑ 𝒜{B(j) + (1 − B(j))z} + 1 − p

k−1

j=0

]

k

 

= lim
k→∞

[1 −
p

k
∑[1 − 𝒜{B(j) + (1 − B(j))z}

k−1

j=0

]

k

 

= exp (p ∑[𝒜{B(j) + (1 − B(j))z} − 1]

∞

j=0

) … (21) 

For numerical computation, we rewrite (21) as 

P̅N2 
(z) = 1 + ϕ(z) +

ϕ2(z)

2!
+

ϕ3(z)

3!
+ ⋯     

Where ϕ(z) is a polynomial defined as 

ϕ(z) = p ∑[𝒜{B(j) + (1 − B(j))z} − 1]

∞

j=0

   

 
6. COMPUTATIONS OF PN(k)(n), AND PC(k)(n) 
To get PN k

(n), get PN1 (k)
(n) from (3), PN2 (k)

(n) from (10), 

and finally, PN (k)
(n) from (11). 

Since the difficult part here is to get PN2 (k)
(n)we outline 

below an efficient algorithmic procedure for this. Note that 
PN2 (k)

(n) = coefficent of zn in  (10) 

                    

= ∑(h(N))s (
k

s
) ps(1 − p)k−s

k−1

s=0

   

where  
  

h(N) =  
1

k
∑ 𝒜{1 − B(j)z + B(j)}

k−1

j=0

      

              

=
1

k
∑ ∑ ∑ (

l

n
) (1 − B(j))

n
k−1

j=0

l

n=0

∞

l=1

 

                                      
(B(j))l−nalz

n                … (22) 
Since (22) gives the coefficient of yn in h(z), we can find the 
coefficient of yn in (h(z))s as follows: 
Let 

∑ Csnzn = (h(z))s,

∞

n=0

       0 ≤ s ≤ k   

So that 
h00 = 1    and h0n = 0,          n ≠ 0       

and 

hjn = ∑ hihj−1,   n−i,

n

i=0

            j ≥ 1, n   

with 

hi =
1

k
∑ ∑ (

l

i
) (1 − B(j))i

k−1

j=0

i

l=1

(B(j))l−ial, 0 ≤ i ≤ l. 

For PC k
(n), we rewrite (12) as 

PC k
(n) = coefficient of zn in (12)    

                

= ∑(d(z))s

k−1

s=0

(
k

s
) ps(1 − p)k−s    

where 

d(z) =
1

k
∑ 𝒜{B(j)z + 1 − B(j)}

k−1

j=0

   

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/


 
Discrete- Time Queueing Model 𝐆𝐞𝐨𝐗/𝐆/∞ With Bulk Arrival Rule 

 

2588 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: C5592029320/2020©BEIESP 
DOI: 10.35940/ijeat.C5592.029320 
Journal Website: www.ijeat.org 

=
1

k
∑ ∑ ∑ (

l

n
) (B(j))n

k−1

j=0

l

n=0

∞

l=1

(1 − B(j))l−nalz
n   

and proceed as in the case of PN2 (k)(n). 

V. NUMERICAL RESULTS 

The above algorithms were used to test several cases, but  
 
 
results are being presented for one particular case. They 

are shown in self-explanatory tables. 

Table-1 
Distributions of 𝑃𝒜(𝑘) (𝑛) for the model 𝐺𝑒𝑜𝑋/𝐺/∞, n=10, p 
= 0.3 𝑏1 = 𝑏2=𝑏3 = 𝑏4 = 𝑏5 = 0.2, 𝑏 = 3. 

N K = 5 K = 10 
0 0.2981 0.3282 

1 0.2308 0.2663 

2 0.1799 0.1958 

3 0.1332 0.1353 

4 0.0965 0.0865 

5 0.0605 0.0631 

6 0.0329 0.0474 

7 0.0120 0.0264 

8 0.0076 0.0158 

9 0.0009 0.0041 

10 0.0004 0.0001 

Size 11 21 

Sum 1.000 1.000 

𝐸 𝒜(𝑘) 2.550 5.100 

𝜎𝒜(𝑘) 1.830 2.588 

 
 
 
 
 
 
 

 
 
 
 

Fig-1 

Table-2 
Distributions of 𝑃𝐶(𝑘) (𝑛) for the model 

 𝐺𝑒𝑜𝑋/𝐺/∞  n = 10,   p = 0.3, 
 𝑏1 = 𝑏2=𝑏3 = 𝑏4 = 𝑏5 = 0.2, 𝑏 = 3. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig-2 

                       Table-3 
Distributions of 𝑃𝑁2(𝑘) (𝑛) for the model 

 𝐺𝑒𝑜𝑋/𝐺/∞,  𝑛 = 10,  𝑝 = 0.3, 
𝑏1 = 𝑏2=𝑏3 = 𝑏4 = 𝑏5 = 0.2, 𝑏 = 3. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

       
 
 
 
 
 
 
 
 
 
 
 

             Fig-3 

 

 

 

N K = 5 K = 10 
0 0.4344 0.2964 
1 0.2748 0.2354 
2 0.1639 0.1822 
3 0.0710 0.1325 
4 0.0274 0.0936 
5 0.0066 0.0619 
6 0.0016 0.0404 
7 0.0003 0.0254 
8 0.0000 0.0189 
9 0.0000 0.0128 
10 0.0000 0.0060 

Size 11 21 
Sum 1.000 1.000 

𝐸 𝒜(𝑘) 1.020 3.570 
𝜎𝒜(𝑘) 1.147 2.213 

N K = 5 K =10 
0 0.3008 0.3232 
1 0.2118 0.2193 
2 0.1381 0.1541 
3 0.0899 0.1042 
4 0.0476 0.0781 
5 0.0218 0.0556 
6 0.0079 0.0408 
7 0.0017 0.0233 
8 0.0004 0.0114 
9 0.0000 0.0063 

10 0.0000 0.0001 
Size 11 21 
Sum 1.000 1.000 

𝐸 𝒜(𝑘) 1.020 3.570 

𝜎𝒜(𝑘) 1.147 2.213 
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Table-4 
Distributions of 𝑃𝑁(𝑘) (𝑛) for the model 

 𝐺𝑒𝑜𝑋/𝐺/∞,   n=10,   p = 0.3, 
𝑏1 = 𝑏2=𝑏3 = 𝑏4 = 𝑏5 = 0.2 , 𝑏 = 3. 

N K = 5 K = 10 
0 0.3208 0.3432 
1 0.2518 0.2293 
2 0.1981 0.1341 
3 0.1499 0.0842 
4 0.1076 0.0381 
5 0.0718 0.0156 
6 0.0379 0.0108 
7 0.0214 0.0053 
8 0.0104 0.0011 
9 0.0058 0.0003 

10 0.0000 0.0001 
Size 11 21 
Sum 1.000 1.000 

𝐸 𝒜(𝑘) 1.020 3.570 

𝜎𝒜(𝑘) 1.147 2.213 

 
 
 
 
 
 
 
 
 
 

 
        
            
     Fig-4 

VI. CONCLUSION 

At conclusion, for the queueing system GeoX/G/  we 
have derived various transient distributions along with their 
moments and also their numerical computation. For more 
general cases the results can be derived easily by changing 
“p” to “𝑝𝑖” for the inputs of time dependent. In which “i” is an 

arrival epoch. In future the result of this paper can be further 
extended to include the case of correlated arrival.  
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