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Abstract: The problem of triple diffusive surface tension driven 
convection is investigated in a composite layer in the presence of 
vertical magnetic field. A closed form solution is obtained under 
microgravity condition.  The parameters suitable for fluid layer 
dominant and porous layer dominant composite layers are 
determined.  The parameters appropriate for controlling the 
convection are determined which are useful to manufacture pure 
crystals. 

 
Keywords: Triple diffusive, Species concentration, Magnetic 

field, Surface tension, Composite layer. 

I. INTRODUCTION 

    The presence of more than one chemical dissolved in fluid 
mixtures is very often requested for describing natural 
phenomena such as contaminant transport, warming of 
stratosphere, magmas and sea water. The multi component 
has wide applications in crystal growth, geothermally heated 
lakes, earth core, solidification of molten alloys, underground 
water flow, acid rain effects and so on. For single fluid layer, 
Chand [1] has applied the linear stability analysis and a 
normal mode analysis to study the triple-diffusive convection 
in a micropolar ferromagnetic fluid layer heated and saluted 
from below. Suresh Chand [10] has investigated the 
triple-diffusive convection in a micropolar ferrofluid layer 
heated and saluted below subjected to a transverse uniform 
magnetic field in the presence of uniform vertical rotation.  In 
porous medium, the triply diffusive convection in a Maxwell 
viscoelastic fluid is mathematically investigated in the 
presence of uniform vertical magnetic field through porous 
medium studied by Pawan Kumar Sharma et al. [8] using 
linearized stability theory and normal mode analysis.  
 For the composite layers, Sumithra [9] has studied the 
triple-diffusive Marangoni convection in a two layer system 
and obtained the analytical expression for the thermal 
Marangoni Number. Manjunatha and Sumithra [3-6] have 
investigated the combined effects of magnetic field and non 
uniform basic temperature gradients on two and three 
component convection in two layer system.  
In this paper the lower rigid surface of the porous layer and 
the upper free surface are considered to be insulating to 
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temperature, insulating to both salute concentration 
perturbations.  At the upper free surface, the surface tension 
effects depending on temperature and salinities are 
considered. At the interface, the normal and tangential 
components of velocity, heat and heat flux, mass and mass 
flux are assumed to be continuous and intended for 
Darcy-Brinkman model.  The resulting eigenvalue problem is 
solved exactly and an analytical expression for the thermal 
Marangoni number is obtained for composite layer. 

II.  FORMULATION OF THE PROBLEM 
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Figure 1: Physical configuration 

   Consider a three different diffusing components with 
different molecular diffusivities, electrically conducting fluid 
layer of thickness d  horizontal above the isotropic sparsely 
packed porous layer saturated with same fluid of thickness 

md  in the presence of magnetic field 0H   in the vertical Z-   

direction. The lower surface of the porous layer is considered 
to be rigid and the upper surface of the fluid layer is free at 
which the surface tension effects depending on temperature 
and both the species concentrations is considered.  Both the 
boundaries are kept at different constant temperatures and 
salinities.  A Cartesian coordinate system is chosen with the 
origin at the interface between porous and fluid layers and the 
Z- axis, vertically upwards.  

The basic equations for fluid and porous layer respectively 
as,    
     0q  =                                                                            (1) 

0H  =                                                       (2) 
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0 p

q
q q P q H H
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Here ( ), ,q u v w= is the velocity vector, H  is the magnetic 

field,  t  is the time,   is the fluid viscosity,
2

2
p H

P p


= +   

is the total pressure, 0  is the fluid density, p  is the 

magnetic permeability,  is the porosity, 
( )
( )

0

0

p m

p f

C
A

C




=    is 

the ratio of heat capacities, pC  is the specific heat, K  is the 

permeability of the porous medium, T is the temperature,   

is the thermal diffusivity of the fluid,  1 and 2 are the 

solute1 and solute2 diffusivity of the fluid in the fluid layer,  

1C and 2C are the concentration1 and concentration2  for the 

fluid in the fluid layer, 
1

m
p


 

=  is the magnetic viscosity, 

m is the effective viscosity of the fluid in the porous layer,  

1mC  and 2mC are the concentration1 and concentration2 for 

the fluid in  porous layer, m
em





= is the effective magnetic 

viscosity and the subscripts 'm' and 'f ‘ refer to the porous and 
the fluid layer respectively. 
 
The basic steady state is assumed to the quiescent and 
consider the solution of the form, 

bq q= , ( )P P z= , ( )bT T z= , ( ) ( )1 1 2 2,b bC C z C C z= = , 

( )0H H z=                                                                         (15) 

( )1 1, ( ), ( ), ,m mb m mb m m mb m m mb mq q P P z T T z C C z= = = =

( )2 2m mb mC C z=                                                                  (16) 

The temperature and species concentration distributions 
respectively are found to be 
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  are the interface temperature and 

concentrations and the subscript 'b' denotes the basic state. 
 
To examine the stability of the system, we give a small 
perturbation to the system as 

bq q q= + , ( )bP P z P= + , ( )bT T z = + , 

( ) ( )1 1 1 2 2 2,b bC C z S C C z S= + = + , ( )0H H z H = +       (23) 

m mb mq q q= + , ( )m mb m mP P z P= + , ( )m mb m mT T z = + , 

( ) ( )1 1 1 2 2 2,m mb m m m mb m mC C z S C C z S= + = + , 

( )0m m mH H z H = +                                                              (24) 

Where the primed quantities are the dimensionless ones. 
Equations (23) & (24) are substituted into the  (1) to (14), 
apply curl twice to eliminate the pressure term from (3) & 
(10) and then the variables are  nondimensionalized. 
To render the equations nondimensional, we choose different 
scales for the two layers (Chen and Chen [2], Nield [7]), so 
that both layers are of unit length such that 
( ) ( )' ' ', , , ,x y z d x y z= and ( ) ( )' ' ', , , , 1m m m m m m mx y z d x y z= − . 

Omitting the primes for simplicity, we get in 0 1z   and 
0 1mz   respectively 
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Where, for the fluid layer Pr



=  is the Prandtl number, 
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salinity2 diffusivity to thermal diffusivity,   and m  are the 

temperature in fluid and porous layers respectively,  1 2,S S  

and 1 2,m mS S are the concentrations in fluid and porous layer 

respectively and W and mW are the dimensionless vertical 

velocities in  fluid and porous layer respectively. 
 
We apply normal mode expansion on dependent variables as 
follows, 
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With 2 2

2 0f a f + =  and 2 2
2 0m m m mf a f + = , where a  and 

ma  are the nondimensional horizontal wavenumbers, n  and 

mn   are the frequencies.  Since the dimensional horizontal 

wavenumbers must be the same for the fluid and porous 

layers, we must have m

m

aa

d d
=  and hence ˆ

ma da= . 

Introducing Eqs. (35) and (36) into the  Eqs. (25) to (34)   then 
we get an Eigen value problem consisting of the following 
ordinary differential equation in 0 1z   and 0 1mz   
respectively 
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It is known that the principle of exchange of instabilities 
holds for triple diffusive magneto convection in both fluid 
and porous layers separately for certain choice of parameters. 
Therefore, we assume that the principle of exchange of 
instabilities holds even for the composite layers. In other 
words, it is assumed that the onset of convection is in the 
form of steady convection and accordingly we 
take 0mn n= = . Eliminating the magnetic field in Eqs. (41) 

and (46). The Eigen value problem becomes, in 0 1z   and 
0 1mz   respectively. 

( )
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(47) 
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III. BOUNDARY CONDITIONS 

The boundary conditions are nondimensionalized then 
subjected to normal mode analysis and finally they take the 
form 
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2
2
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ˆ s

s m

S

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=  is the ratio of  solute2  

diffusivities of fluid to porous layer. 

IV. METHOD OF SOLUTION 

From eqs (47) and (51), we get velocity distributions for fluid 
and porous layer respectively 

( ) 1 2 3 4W z Acosh z A sinh z A cosh z A sinh z   = + + +  (56)                            
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arbitrary constants are obtained by using velocity boundary 

conditions of (55). The expressions for ( )W z  and 
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appropriately written as 
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We get the species concentration for fluid layer 1 2,S S  from 

Eqs. (49) & (50) also from Eqs. (53) & (54), we get the 
species concentration for porous layer 1 2,m mS S  using the 

species concentration boundary conditions of (55) as  
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f z

c a

a c z a c z

c a

+
= −

−

+
−

−

 

8 1 10 11 47
ˆ ( cosh sinh )m ma S a a a a= + −   

9 11 10 48

1
( cosh sinh )m m m ma a a a a a a

a
= + −   

51
10

50

a


= −


, 49
11

m

a
a


=  

16 2 18 19 59
ˆ ( cosh sinh )m ma S a a a a= + −   

17 19 18 60

1
( cosh sinh )m m m ma a a a a a a

a
= + −   

63
18

62

a


=


,  61
19

m

a
a


=  
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( )

( )
( )

( )
1 2 3

46 2 2 2 2
1

sinh cosh sinh cosh1 a a a

a a

     

  

 + +
  = +

− −  

 

1 470 471
47

1 1

ˆ

m

S

 

 
 = −  

( )

( )
( )

( )
5 4 4 4 7 5 6 5

470 2 2 2 2
4 5

sinh cosh sinh cosh

m m

a c a c a c a c

c a c a

+ +
 = +

− −
 

( ) ( )
2

471 2 2 2 2

1 a

a a 
 = +

− −
, 480 481

48
1 1m 

 
 = −  

( )

( )
( )

( )
4 4 4 5 4 5 6 5 7 5

480 2 2 2 2
4 5

sinh cosh sinh cosh

m m

c a c a c c a c a c

c a c a

+ +
 = +

− −

 
 
 

( ) ( )
31

481 2 2 2 2

aa

a a



 
 = +

− −
, 

( ) ( )
5 4 5 7

49 2 2 2 2
1 4 5

1

m m m

a c c a

c a c a

 
  = +

− −  

 

50 1
ˆ sinh cosh cosh sinhm m maS a a a a a = +  

( )49
51 1 510

ˆ sinh sinh cosh coshm m m
m

aS a a a a a
a


 = + −   

510 47 48 46sinh cosha a a =  +  +   

1 46
58

2






 = , 2 470 471

59
2 2

ˆ

m

S

 

 
 = −  

480 481
60

2 2m 

 
 = − , 

( ) ( )
5 4 5 7

61 2 2 2 2
2 4 5

1

m m m

a c c a

c a c a

 
  = +

− −  

 

62 2
ˆ sinh cosh cosh sinhm m maS a a a a a = +  

( )61
63 2 630

ˆ sinh sinh cosh coshm m m
m

aS a a a a a
a


 = − + +   

630 59 60 58sinh cosha a a =  +  +   

V. THERMAL MARANGONI NUMBER 

From eqs (48) & (52), we get temperature distributions for 
fluid and porous layers using temperature boundary 
conditions of (55) and they are 

( )  1 12 13 ( )z A a coshaz a sinhaz f z = + −                           (64)
 

( )  1 14 15 ( )m m m m m m m mz A a cosha z a sinha z f z = + −           (65) 

Where  

12 14 15 52
ˆ( cosh sinh )m ma T a a a a= + −   

13 15 14 53

1
( cosh sinh )m m m ma a a a a a a

a
= + −   

57
14

56

a


= −


, 55
15

m

a
a


=  

52 480 470 53 480 481
ˆ ,T =  −   =  −   

( )

( )
( )

( )
1 2 3

54 2 2 2 2

sinh cosh sinh cosha a a

a a

     

 

+ +
 = +

− −
 

( ) ( )
5 4 5 7

55 2 22 2 2 2
4 5m m

a c c a

c a c a
 = +

− −
, 56 38 =  , 

( )55
57 570

ˆ sinh sinh cosh coshm m m
m

aT a a a a a
a


 = + −  , 

570 52 53 54sinh cosha a a =  +  +   

Now the thermal Marangoni number is obtained by the 
boundary condition (55) as 

2 2 2
1 1 2 2

2

(1) (1) (1)1

(1)
s sD W M a S M a S

M
a

 + +−
=  

 
                       

1 2 3

4

M
  +  + 

= −  
 

                                                                 (66)  

Where  
2 2 2 2

1 1 2 3cosh sinh cosh sinha a a        = + + +  

2 1
2 1 8 9

1

cosh sinhs

R
M a a a a a



 
 = + − 

 
 

2 1
3 2 16 17

2

cosh sinhs

R
M a a a a a



 
 = + − 

 
 

 2
4 12 13 1cosh sinha a a a a R = + −  

( )

( )
( )

( )
1 3 2

1 2 2 2 2

sinh cosh sinh cosha a a
R

a a

   

 

+ +
= +

− −
  

VI. RESULT AND DISCUSSION 

The thermal Marangoni number M obtained as a function 

of the parameters is drawn versus the depth ratio ˆ md
d

d
= and 

the results are represented graphically showing the effects of 
the variation of one physical quantity fixing the other 
parameters. The dimensionless fixed values are  
ˆ ˆ1.0, 1.2, 2.0, 0.3, 1.0, 50,T a Q  = = = = = = 1 10sM =

2 1 2 1 2 1 2
ˆ ˆ10, 0.75s m mM S S   = = = = = = = .  

The effects of the parameters 1 1 2ˆ, , , , , , ,s sa Q M M    and 

1m   on thermal Marangoni number are depicted in figures 2 

to 10. 

 
Figure 2: Effects of horizontal wave number a  

 
 
 

http://www.ijeat.org/


 
Triple Diffusive Surface Tension Driven Convection in a Composite Layer in the Presence of Vertical Magnetic Field 

1732 

Retrieval Number: C5707029320/2020©BEIESP 
DOI: 10.35940/ijeat.C5707.029320 
Journal Website: www.ijeat.org 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Figure 2 show the effects of a , horizontal wave number on 
the thermal Marangoni number M for the values a =1.3, 1.4, 
1.5. It is evident from the graph that an increase in the value 
of a , the thermal Marangoni number decreases and its effect 
is to destabilize the system. Also the curves are converging 
indicating that the effect of horizontal wave number is drastic 
for fluid layer dominant composite layers. 
 

 

Figure 3:  Effects of porous parameter   

 
Figure 3 show the variations of the porous parameter 

2
m

K
d

 = on the thermal Marangoni number for the values 

 =0.2, 0.3, 0.4. Increase in the value of  , that is, 

increasing the permeability, the thermal Marangoni number 
increases.  Hence the surface tension driven triple diffusive 
magneto convection sets in earlier on increasing the porous 
parameter, this may be due to presence of diffusing 

components. Also, for ˆ 0.4d  the thermal Marangoni 
number decreases to destabilize the system. 
 

 
Figure 4:  Effects of porosity   

 

Figure 4 show the effects of porosity  for the values  =0.8, 
0.9, 1.0. It is observed that there is no effect of porosity for 

smaller value of depth ratio up to ˆ 0.4d  . For ˆ 0.4d  the 
curves are diverging indicating that, its effect is drastic for 
larger depth ratios, hence its effect is immense for porous 
layer dominant composite layer. Whereas  increases, the 
thermal Marangoni number decreases i.e., to destabilize the 
system. 
 

 

Figure 5: Variations of viscosity ratio ̂  

 
Figure 5 show the variations of viscosity ratio ̂ for the 

values ̂ = 1.5, 2.0, 2.5. Increase in the value of ̂ , the 

values of the thermal Marangoni number M increases for 
ˆ 0.4d  . Also, ˆ 0.4d   the increase in the values of viscosity 

ratio decreases the thermal Marangoni number. By increasing 
the viscosity ratio the system can be stabilized or destabilized 
and hence the surface tension driven triple diffusive magneto 
convection is delayed or faster. 
 

 

Figure 6:  Effects of Chandrasekhar number Q  
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Figure 6 exhibits the effects of the magnetic field on the onset 
of triple diffusive surface tension driven magneto convection 
by the Chandrasekhar number Q  for the values Q= 50, 60, 70 
.When the value of the Q is increasing, the thermal 
Marangoni number increases for smaller depth ratio.  

The curves are converging between the ˆ0 0.5d  , which is 
evident that the effect of Q is drastic for fluid layer dominant 

composite layer. Also, ˆ 0.5d  the curves are diverging 
indicating that the effect of Q is effective for porous layer 
dominant composite layer. 
      

 

Figure 7: Effects of  1  

 
Figure 7 display the effects of 1 is the ratio of solute1 

diffusivity to thermal diffusivity fluid in fluid layer for the 
values 1 = 0.50, 0.75, 1.0. As increase in the value of 1 ,   

there is a decrease in the values of the thermal Marangoni 
number. Increasing the value of 1 the surface tension driven 

triple diffusive magneto convection sets in earlier i.e., system 
can be destabilized.  
 

 

Figure 8: Effects of 1sM solute1 Marangoni number 

 

Figure 8 show the effects of 1sM is the solute1 Marangoni 

number   for 1sM =10, 20, 30. By increasing the values of 

solute1 Marangoni number, the thermal Marangoni number 
increases. The surface tension driven triple diffusive magneto 
convection can be delayed by increasing solute1 Marangoni 
number, hence the system can be stabilized. Also the curves 
are converging which is evident that the effect of 1sM is 

drastic for fluid layer dominant composite layer. 
 

 

Figure 9. Effects of 2sM solute2 Marangoni number 

 
Figure. 9 illustrates the effects of 2sM is the solute2 

Marangoni number for 2sM =100, 300, 500. From the graph 

it is evident that, by increasing the values of solute2 
Marangoni number the thermal Marangoni number decreases 
also for smaller depth ratio solute2 Marangoni number 
increases to stabilize the system.  So, the surface tension 
driven triple diffusive magneto convection can be preponed 
by increasing solute2 Marangoni number, hence the system 
can be stabilized or destabilized. 
Figure 10 display the variations of the value of 1m  is the 

ratio of salute1 diffusivity to thermal diffusivity of the porous 
layer for the values 1m = 0.50, 0.75, 1.0. Increasing this ratio, 

thermal Marangoni number decreases. So, the surface tension 
driven triple diffusive magneto convection is preponed i.e., 
system can be destabilized. The converging curves indicating 
that 1m parameter is effective for the fluid layer dominant 

composite layer. 

 

Figure 10: Effects of  1m  
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VII. CONCLUSION 

(i) By decreasing horizontal wave number, porosity, ratio of 
solute1 diffusivity to thermal diffusivity fluid in fluid layer, 
solute2 Marangoni number, ratio of solute1 diffusivity to 
thermal diffusivity fluid in porous layer and by increasing the 
porous parameter, viscosity ratio, Chandrasekhar number, 
solute1 Marangoni number, the surface tension driven triple 
diffusive magneto convection can be delayed and hence the 
system can be stabilized. 
(ii) The parameters  1ˆ, , , ,Q      and 2sM are effective for 

porous layer dominant composite layers. 
(iii)   The parameters 1, sa M and 1m are effective for fluid 

layer dominant composite layers. 

ACKNOWLEDGMENT 

We express our gratitude to Prof. I. S.  Shivakumara, 
UGC-CAS in Fluid mechanics, Bangalore University, 
Bengaluru, for their help during the formulation of the 
problem. The author Manjunatha. N, express his sincere 
thanks to the management of REVA University, Bengaluru 
for their encouragement and support. 

REFERENCES 

1. S. Chand, (2013), Linear stability of triple-diffusive convection in 
micro polar ferromagnetic fluid saturating porous medium, Applied 
Mathematics and Mechanics, vol.34, No. 3, pp. 309-326. 

2. F. Chen and C.F. Chen, (1988), Onset of finger convection in a 
horizontal porous layer underlying a fluid layer,   J. Heat transfer, vol. 
110, pp. 403. 

3. N. Manjunatha and R. Sumithra, (2018a), Effects of non-uniform 
temperature gradients on double diffusive Marangoni convection in a 
two layer system, International journal of Pure and Applied 
Mathematics, vol. 118, No. 2, pp. 203-220. 

4.  N. Manjunatha and R. Sumithra, (2018b), Effects of non-uniform 
temperature gradients on surface tension driven two component 
magneto convection in a porous-fluid system, ARPN Journal of 
Engineering and Applied Sciences, vol. 13,   No. 2, pp. 429-441. 

5. N. Manjunatha and R. Sumithra, (2019), Effects of non-uniform 
temperature gradients on triple diffusive Marangoni convection in a 
composite layer, Open Journal of Applied Sciences, vol. 9,   No. 8, pp. 
640-660. 

6. N. Manjunatha and R. Sumithra, (2019), Effects of non-uniform 
temperature gradients on triple diffusive Surface Tension Driven 
Magneto Convection in a Composite Layer, Universal Journal of 
Mechanical Engineering, vol. 7, No. 6, pp.398-410. 

7. D. A. Nield, (1977), Onset of convection in a fluid layer overlying a 
layer of a porous medium, J. Fluid mech., vol. 81, pp. 513-522. 

8.  Pawan Kumar Sharma, Himanshu Malik, Vivek Kumar and Pardeep 
Kumar, (2014), Triply-diffusive magneto convection in viscoelastic 
fluid through porous medium, International Transactions in Applied 
Sciences , vol. 6,   No. 4,  pp. 495-510. 

9. R. Sumithra, (2012), Exact solution of triple diffusive Marangoni 
convection in a composite layer, International Journal of Engineering 
Research \& Technology, vol. 1, No. 5, pp. 1-13.  

10. Suresh Chand, (2012), Effect of rotation on triple-diffusive convection 
in a magnetized ferro fluid with internal angular momentum saturating 
a porous medium, Applied Mathematical Sciences, vol. 6,   pp. 
3245-3258. 

http://www.ijeat.org/

