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Abstract: Thiswork proposes a linear phase sparse minimum
error entropy adaptive filtering algorithm. The linear phase
condition is obtained by considering symmetry or anti symmetry
condition onto the system coefficients. The proposed work
integrates linear constraint based on linear phase of the system
and l4-norm for sparseness into minimum error entropy adaptive
algorithm. The proposed I;-norm linear constrained minimum
error entropy criterion (l; -CMEE) algorithm makes use of
high-order statistics, hence worthy for non-Gaussian channe
noise. The experimental results obtained for linear phase sparse
system identification in the presence of non-Gaussian channd
noise reveal that the proposed algorithm has lower steady state
error and higher convergence rate than other existing MEE
variants.

Keywords. Constrained adaptive filtering, | nformation theory,
non-Gaussian noise, sparse system

. INTRODUCTION

Constrai ned adaptive filtering has now become a topic of

deep interest due to substantial advancements in linear
constrained applications. A linear congraint based on some
advance information about the filter coefficientsis utilized in
developing constrained adaptive agorithm. For example,
linear phase of system is utilized as constraint in developing
constrained adaptive algorithm [1]. Similarly information
about pseudorandom code in spread spectrum and direction
of interest in adaptive beam forming are utilized as
congtraints in devel oping adaptive algorithm [2-3].

In this paper, we are considering the linear phase adaptive
filtering problem. Some examples of linear phase adaptive
filtering are.  system identification, channel equalization,
spectral estimation, line enhancement [4]. These applications
need to preserve the constant phase delay among the
frequency components to restrict the phase distortion in pass
band. Hence, several constrained adaptive filtering algorithm
have been developed in the past. Constrained least mean
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square (CLMS) algorithm iswell known adaptive algorithm
because of simplicity and low computational cost [5]. Several
other constrained adaptive agorithms have been developed,
for example: constrained affine projection (CAP) for colored
input, least square algorithm for linear phase filtering, fast
least square algorithm for linear phase system, constrained
recursve least square [6-9]. However, these algorithms are
based on minimum mean square error (MSE) criterion by
considering only second order datistics. Hence, these
agorithms perform wel in the presence of Gaussian
observation noise. But the performance is degraded in the
presence of non-Gaussian observation noise due to higher
order dtatistics. Meanwhile information theory based
adaptive agorithms have been developed to deal with
non-Gaussian noise [10]. Some examples of information
theory based adaptive filtering algorithms are; maximum
correntropy criterion (MCC) adaptive agorithm, minimum
error entropy adaptive algorithm (MEE), mutua information
based adaptive algorithm [11-13]. . Recently, Siyuan Peng et
a. have proposed constrained MEE (CMEE) agorithm for
constrained adaptive filtering in the presence of impulsive
channel noise [14]. CMEE adaptive algorithm is devel oped
by adding a linear constraint on the system coefficients into
cost function of minimum error entropy adaptive algorithm
(MEE). The idea behind developing any MEE based
adaptive algorithm is to lower the entropy of error between
desired output and unidentified system output. Asentropy is
of higher order statistics, hence suitable for non-Gaussian
channel noise. The entropy considered in MEE based
algorithms is quadratic i.e. Renyi entropy. The aforesaid
CMEE agorithm performs imperfectly in sparse system.
Recently Jos'e F. de Andrade J. and Marcello L. R. de
Campos have proposed [, -norm linear constrained LMS
algorithm to consider the linear constraint and sparsity of the
system [15]. Based on the same approach, the proposed work
integrates the I, -norm based sparsity penalty and linear
constraint into MEE adaptive algorithm to take into account
the sparseness of constrained system in the presence of
non-Gaussian noise. [; -norm based adaptive agorithm
increases the convergence speed of small coefficients and
reduce the bias of large coefficients. Hence, the proposed
l; -CMEE algorithm excels in constrained sparse system
identification in the presence of non-Gaussian noise. Therest
of the paper is organized as follows. In section 2, we review
constrained minimum error entropy (CMEE) agorithm. In
section 3, we propose [; -CMEE agorithm by integrating
l; -norm into the cost function of CMEE algorithm. In
addition, we derive the update equation of [, -CMEE
algorithm by using the concept of Lagrange multiplier.
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In section 4, the estimation performance of proposed
1,-CMEE algorithm is examined by the experiments carried
out in MATLAB and compared with exising MEE,
CMEE, [,-CLMS agorithms. Finaly the conclusion of the
proposed work isdrawn in section 5.

[I. REVIEW OF CONSTRAINED MINIMUM ERROR
ENTROPY ALGORITHM (CMEE)

Consider an unknown linear phase system with coefficient
vector wo € R ™, Let x(k) € R ™is input vector to
unknown system and adaptive filter andw(k) € R M
represents coefficient vector of adaptive filter.

Now we can write the ingantaneous estimation error e(k)
between adaptive filter output and unknown system output
as.

e(k) =wgx(k) + p(k) — W' (k)x(k) @
where p(k) represents the channel noise.

The information potential V(e) in term of quadratic Renyi’s
entropy Hg, () can be written as[12]:

ﬁR2 (e) =—log # Y koMt Z?:k—M+1 9oyz(e(®) —
e))=—log V(e) (2)

where g, is kernel function having bandwidth o and M is
available sample length,

and V(e) = # Z§€=k—M+1 Z¥=k—M+1 gaﬁ(e(i) —-e() (3

The most widely used kernd is the Gaussian kernel defined

as
1 =X

9o () =207 ()

Hence, the constrained minimum error entropy (CMEE)
algorithm can be derived by solving following optimization
criterion.

arg max,,(V(e)) subjectto A"w = b (5)

where A is constraint matrix of NxL dimension and b is the
corresponding L constraint values. In thiswork, the matrix A
imposes a linear phase constraint on the system coefficients.
Thelinear phase of FIR filter is obtained by symmetry or anti
symmetry property of system coefficients.

We can write linear phase condition for system coefficients
as.
Wy =Wy, (6)

where + sign represents symmetric condition and— sign
represents anti-symmetric condition.

Hence, the congtraint on system coefficients for linear phase
will be:
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r 1 0 0
0 1 0
0 0 1 Ina
A=]0 0 0|= oT for N odd (7)
0 0 T [ Ha-ne
0 F1 0
LF1 0 0
and
r 1 0 0
0 1 0
H H IN
o o 1|_|[ %
A= 0 0 1= [$ N/Z] for N even (8)
0 +1 0
L+1 0 0
b=[00...0] T 9)

where | isan identity matrix of order % andJ representsan

identity matrix in which all rows are written in reverse order
Using the Lagrange multipliers approach, we have the
unconstrained cost function for optimization problem
represented by eg. (5) as:

Jw) = V(e) + A{ (A" W — b) (10)

Here 4, is a vector of Lagrange multipliers of dimension
Lx1.

By Gradient ascent approach, the weight update equation of
CMEE becomes [14]:

Wk +1) =

R [W(k) + zﬂm [Zi‘{zk—M+1 Z?:k—M+1 Ioyz(e(@) —
e))ei—e/Xi—X(/)+S (11)

where = (1 —A(AT A)71AT) , S =AATA) 1 b, and I is
an identity matrix of dimension NXN.

I11. 1,-NORM CONSTRAINED MINIMUM ERROR
ENTROPY (1,-CMEE) ALGORITHM

In this section, we combine the effect of zero attraction based

on [;-norm and linear phase constraint with MEE algorithm
to consider sparse system identification in the presence of
impulsive channd noise. The zero attraction is based on

[{-norm.

The optimization problem of I,-CMEE algorithm becomes:

arg max,, (V(e))
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ATw=bh
subject to { (12)
lwll, =a
wherea|| ||, isl; normanda is constraint value.
The unconstrained optimization function of [,-CMEE
becomes:
JWw) =V(e) +A7(A"w — b) + L, (llwll, — a) (13)

~ 1
](W)=2M2*

[ o1 21 Goyz(e(D) — e (D)) (e —
e/(Xi—X(7)+A AL\ XF /1wk+1) (14)

Using Gradient ascent approach, the weight update equation
of [,-CMEE becomes:

wk+1) =
w(k)-l_ZMz [Z =k— M+1Z] =k-— M+1g0'\/_(e(l)_
ef)ei—e/xi—x(7)+A AL+AXF /Iwk+1)

(15

where Fj; (W) = a;|(wn)1 = sign(W) (16)
In steady state condition,

Fu(Wk+ 1) =Fy (W) (17)

Now pre multiplying eq, (15) by AT, we have:

ATwk+1) =
! (W(k) +oz M2 [Z =k- M+1Z] —k-m+195yz(e(@) —
ey)ei—e/(xi—x(7)+1 A AI+u)2(F/Iwk
(18)

From eq. (18) we let
A= ——(ATA) AT [Zh, w1 Zjk-m+1 Goyz (e =

e/) ez—e/(xz—x ()—A2A7A—1A47 (F/Iwk
(19)

Hence
Wk+1) = W) + 5 Xy ya1 Dk omr Govz (D) —

2M?
e))ei—e/(Xi—X (/) HA-L12M2ATA —14T
I=k—=M+1kj=k—M+1kgo2(e(i)—ej)ei—e/Xi—X(])—
AZA7TA—147 (F/Iwk #A2F/Iwk+1)  (20)

wk+1)=
AG‘)"‘WR[Z =k- M+1Z] —k-m+195yz(e(@) —
e))ei—e/(Xi—X(7)+HL AZRF /Iwk+1

(21)

Premultiplying eq. (21) by Fj,(W(k)), we let:
Flf, wk)H)wk+1) =
Fiw)w(k) +
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2M2F11(W(k))R[Z{( k-m+1 2g=k-m+19oyz(e(d) —
e()) (e —e(N)x(@) —x()] +
wA; (FL(WOR)RE, (W(k + 1)) (22)

Considering
e (k) = FL (W))W + 1) — Ff (W(k))w(k) (23)
q= Fzg (W(k))RF (W(k)) (24)

Hence,

AZ -_

® L E(W(K))R[E a1 2 (e() -
g Zqu 51 =k-M+1 Lj=k-M+1Yoy2

e/)ei—¢/(Xi—X(7) (25

wk+1) =

w(k) + _R[Z =k—M+1 Z] k-m+19oyz(€(0) —

e/

Yei—e/XI—X(7)Hnellimg—12gM2FI1 TWKRI=k—M+14)
=k—M+1kgo2(e(i)—ej)ei—e/(Xi—X(7)RF /Iwk

(26)

wk+1) =

WO + =5 RZ i1 T oieoirin Gova(e@ — e()) (1-
F/IwkF/17WkRgei—e/(Xi—X (7)+el14qgRF /Iwk
(27)

We can rewrite eg. (27) as.

wk+1) =

R[W() + =5 |2 yrin Do Govz(e@) —
eN)1-F/IWkF/17WkRgei—e/(Xi—X (/) +el1kgF [IWK+S.

IV. SSIMULATIONRESULTS

This section discusses the estimation performance of the
proposed work. The unknown system and adaptive filter are
considered to be of samelength N having linear phase feature.
The location and values of non-zero coefficients are
considered to be of Gaussian distribution having zero mean
and unity variance. In this work, we have considered
Gaussian distribution for the input signal having zero mean
and unity variance. At fird, we have considered impulsive
channd noise to compare the performance of proposed
l,-CMEE with CMEE, [,-MEE and [, -CLMS agorithms.
The apha stable noise as impulsive chand noise is
considered in this work [12]. In the first experiment, we
demonstrate the transient behavior of the proposed [,-CMEE
algorithm for odd N=13 for different values of sparsity
constant T={3,7}. Here, we have considered symmetric
condition for linear phase of unknown system. We compare
the convergence analysis of the proposed [, -CMEE
algorithm with CMEE, [,-MEE and [, -CLMS agorithms.
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The parameter, a =|lwyll; is taken for [, -CMEE and
[,-CLMS agorithms. We have taken the step sizep = 0.02
for CMEE and [, -CMEE algorithms and p = 0.05 for
[,-CLMS algorithm. The kernel width 6=0.8 is adopted here.
Figurel and figure 2 demonstrate the estimation performance
for N=13for different value of T={3,7}..

In the second experiment, we have taken N=16 and tested the
performance of the proposed algorithm for spargity constant
T={2,6}.

Figure 3and figure 4 demonstrate the estimation performance
for N=16for for different valuesof T.

Mean Sqaure Deviation (dB)
&

n L n L n n L
0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

Fig. 1. Comparison of the proposed I;-CMEE algorithm
with other MEE variantsfor sparsity level T=3 and N=13
in the presence of impulsive channel noise

I‘-CLMS

I1-MEE

Mean Square Deviation (dB)

I‘-CMEE 4

L n L n L L L
“0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

CMEE

Fig. 2. Comparison of the proposed |,-CMEE algorithm
with other MEE variantsfor sparsity level T=7 and N=13
in the presence of impulsive channel noise

Fromfgs. 1, 2, 3and 4, it isclear that the proposed algorithm
has lower mean sguare deviation eror and higher
convergence rate than other MEE based algorithms for any
value of sparsity level T in even or odd length linear phase
system. The exiging [; -CLMS dgorithm performs very
poorly in the presence of impulsive noise, asthisis based on
second order datigtics of error signal and impulsive noiseis
of higher order statigtics.

The same can be inferred from theresultsgiven in table | that
isbased on Fig. 1.

Table- |: Convergence behavior of the proposed
algorithm extracted from fig. 1

Minimum
. Mean Square Iteration
Algorithms Deviation Number
Error (dB)
[,-CMEE -25.29 689

Retrieval Number: C5721029320/2020©BEIESP
DOI: 10.35940/ijeat.C5721.029320
Journal Website: wwww.ijeat.org

2353 & Sciences Publication

CMEE -23.2 1489
l,-MEE -20.19 1930
Does not
[,-CLMS converge

11-CLMS

-CMEE

Mean Square Deviation (dB)
z 3

g L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

Fig. 3. Comparison of the proposed |;-CMEE algorithm
with other MEE variantsfor sparsity level T=2 and N=14
in the presence of impulsive channel noise

CMEE

Mean Square Deviation (dB)
= n

T RN A WA At W

L L L L L L L
) 500 1000 1500 2000 2500 3000 3500 4000
Iteration

Fig. 4. Comparison of the proposed |;-CM EE algorithm
with other MEE variantsfor sparsity level T=6 and N=14
in the presence of impulsive channel noise

In the next experiment, we compare the proposed [,-CMEE
with CMEE, [, -MEE and [, -CLMS agorithms in the
presence of Gaussian noise having channd SNR=20 dB.
The other parameters taken are: N=14, T=6, the step size
u = 0.02 for [,-MEE, CMEE and [,-CMEE a gorithms and
u = 0.05 for [;-CLMS algorithm.

However, the performance of [;-CLMS improves in the
presence of Gaussian channel noise. Still the proposed
l, -CMEE dgorithm peforms better than [, -CLMS
algorithm. Fig.5 confirms the same.
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CMEE | yee
25} 1,-CMEE J

Mean Square Deviation (dB)

L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

Fig. 5. Comparison of the proposed I;-CMEE algorithm
with other MEE variantsfor sparsity level T=6 and N=14
in the presence of Gaussian channd noise.
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35

0 500 1000 1500 2000 2500 3000 3500 4000
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Fig. 6. Performance of the proposed |;,-CMEE algorithm
under different values of step size

The impact of step size on the performance of MEE
algorithm is shown in fig. 6. Here the channe noise is
impulsive as taken in the first experiment. As the step size
increase, the convergence speed increases but mean square
deviation error also increases. Hence, the step size should be
chosen very carefully to improve the performance of the
proposed algorithm so that the ba ance between convergence
speed and mean square deviation error should be maintained.
The other parameters taken are: N=14, T=2, kernal width
6=0.8.

5 =6 4

10 «=0.4 1
s q
20 q

251 o=08 1

o=2
30l R
sl L e e e 7

500 1000 1600 2000 2600 3000 3600 2000
Iteration

Fig. 7. Performance of the proposed |;-CMEE algorithm
under different values of kernal width ¢

Fig. 7 shows the effect of kernel width of [;-CMEE on its
performance. The kernel width affects both the convergence
speed and MSD error. Hence it should be selected very
carefully. Other parameters taken are: N=14, T=2, p = 0.02
for CMEE and [, -CMEE algorithms and p = 0.05 for
l,-CLMS algorithm.

Mean Square Deviation (48]

V. CONCLUSION

This paper presents an information theory based |,-CMEE
algorithm for sparse linear phase system identification. The
proposed algorithm performs better in the presence of both
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impulsive and Gaussian channd noise. As higher order
statistics of error is utilized in developing the proposed
algorithm, hence performs better in the presence of impulsive
noise which is of higher order statistics. The performance of
the proposed algorithm is examined for different values of
gparsity constant (number of non-zero coefficients). The
proposed algorithm has higher convergence speed and lower
MSD than other MEE agorithms in sparse system
identification. The effects of other parameters are al so tested
in the proposed work.
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