
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

2715

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6045029320/2020©BEIESP
DOI: 10.35940/ijeat.C6045.029320
Journal Website: www.ijeat.org

 Abstract— This paper takes a deeper look at data breach, its
causes and the linked vulnerability aspects in the application
development lifecycle. Further, the Vulnerabilities are mapped to
the software development life cycle (SDLC) involving requirement
elicitation, design, development, testing and deployment phases.
Being aware of exact SDLC life cycle where the vulnerabilities are
injected, suitable security practices (countermeasures) can be
adopted in delivery methodology, which can control the eventual
data breaches and safeguard the application from security
perspective.

Our research focuses on Evolution of Vulnerabilities through
the application development life cycle, and we have leveraged
“Inverted Tree Structure/Attack Tree” and “Affinity Principles”

to map the vulnerabilities to right Software Development Life
Cycle.

Keywords: Vulnerability, SDLC, Data Breach, DevSecops,

Security Requirements.

I. INTRODUCTION

In the new age world of software delivery, Agile
methodology is the most popular and widely adopted
approach. Agile has several variants such as Scrum, Extreme
Programming, Kanban, Scrum Bann, etc. The latest addition
for large organizations being SAFe approach. SAFe stands
for Scaled Agile framework that caters to Team, Value
stream, Program and Portfolio levels.
Inspite of several best practices and proven techniques
advocated by these application delivery methodologies, data
breach is still a common concern across the globe. Data
breach cases in the year 2018 reached all time high with a
greater number of well-reputed organizations coming under
threat, with their customer information being compromised.
“In computer application security, a vulnerability is a flaw

which can be exploited by a threat actor (an attacker/hacker),
to execute unauthorized actions within a computer
application”. This paper takes a deeper look at data breach, its
causes and the linked vulnerability aspects in the application
development lifecycle. Further, the Vulnerabilities are
mapped to the software development life cycle (SDLC)
involving requirement elicitation, design, development,
testing and deployment phases. Being aware of exact SDLC

Revised Manuscript Received on February 05, 2020.

* Correspondence Author
Thejasvi N.*, Computer Science and Engineering, Jain University,

Bengaluru, India. E-mail: thejasvin@gmail.com
Dr. Shubhamangala B. R., Professor, Research Head, Bengaluru, India.

E-mail: brm1shubha@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

life cycle where the vulnerabilities are injected, suitable
security practices can be adopted in delivery methodology,
which can control the eventual data breaches and safeguard
the application from security perspective.
To accurately map the vulnerability with SDLC life cycle we
use Inverted tree and Affinity approach. The clustering thus
derived will serve as key decision support input to adopt
suitable stratum of security best practices at early phases of
project delivery through appropriate counter measures.
The rest of this paper is structured as follows: We describe
the background in section 2 and survey findings in section 3.
We describe Industry specific solutions and Related work in
section 4 and 5. Problem statement and research
methodology is presented in section 6 and 7. We highlight
our experiments and results in Section 8. We discuss the
findings & conclude in Section 9 & 10.

II. BACKGROUND

The definition of success in today’s IT landscape is evolving.

The traditional measures of scope, time, and cost are no
longer enough in today’s competitive environment. Large IT

enterprises like Google, Microsoft, Salesforce, and Amazon
too are being hit by security vulnerability time-to-time inspite
of having best in class security policies and technology
advancements in place.
Several IT giants have embraced several security shields such
as Deception, Threat Intelligence, Security by design,
Security ratings, AI cyber security, BOTS, Threat hunting,
including outsourcing to managed security companies inspite
of all these counter-measures; data breach incidents are on
constant rise year after year.
As per Breach Level Index [1] data breach incidents are
getting faster and larger in scope, recent data breach alone in
the year 2017 extends around various sectors ranging from
Health, Education, Government, Technology, and Financial
sector.
Through 2015 onwards, there has been upward trend in both
data breach by volume and data breach by sensitivity. With
cloud and IOT, data breach means increased sensitive data
being more vulnerable.
Few high-profile data breach incidents in recent past:
As per FireEye report, Communications, Media and
Entertainment (CME) industry alone has found 91% of
breach caused due to failure in conventional defense
mechanism.
Uber paid hacker heavy ransom to delete the breached data
than disclosing the real breach size, which is now mandated
from non-US legislations such as European General Data
Protection Regulation (GDPR) law [5].

Thejasvi N., Shubhamangala B. R.

Detection of Vulnerability Injection Point in
Software Development Lifecycle for Effective

Countermeasures

http://www.ijeat.org/
mailto:brm1shubha@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.C6045.029320&domain=www.ijeat.org

Detection of Vulnerability Injection Point in Software Development Lifecycle for Effective Countermeasures

2716

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6045029320/2020©BEIESP
DOI: 10.35940/ijeat.C6045.029320
Journal Website: www.ijeat.org

T-Mobile, Facebook & Reddit were few more high-tech
industries segments affected by data breach but were either
reluctant to disclose the scale or were late in disclosing.

III. SURVEY FINDINGS

As per the breach data available via
https://www.informationisbeautiful.net/visualizations/world
s-biggest-data-breaches-hacks/ [3] below were the top
reasons of data breach in recent years:

TABLE 1: Data breach – Cause of Breach (Vulnerability
reasons)

Year Category Organizations
affected

2014 till 2018
 Lost/Stolen Media Advocate Medical

group
 Lost/Stolen

Computer
Florida Court,
Crescent Health

 Hacked EBay, Adobe,
AOL

2013
 Accidentally

Published
Facebook

 Hacked Evernote, Living
Social, Yahoo

2012
 Accidentally

Published
Apple, LinkedIn

 Hacked Sony Online
Entertainment,

 Poor Security Accendo
Insurance Co.

 Inside Job Emory Healthcare
 Virus Massachusetts

Govt

TABLE 2: Data breach – by Industry and cause

Major Breach Cause Industry
Hacked CME

Inside Job Health care
Virus Financial

Common Vulnerabilities & Exposures (CVE) -
https://cve.mitre.org/ lists vulnerabilities grouped by year,
per type and per product across the industries.
National Vulnerability database (NVD) maintains common
weakness enumeration (CWE) coded weakness in a
hierarchical structure [16]. NVD database also provides
exhaustive list of vulnerabilities in a system, which is further
mapped to exact product and version using SWID tags
(software identification tags / common platform enumeration
tag). Overall Impact of Vulnerability is an outcome of BASE
{Exploitability (Attack complexity) and Impact (Integrity
and availability)}, Temporal {Reported and Remediation
level} & Environmental factors [14]
Each Vulnerability or weakness in the system shall be
analyzed quantitatively as well as qualitatively. Based on
Criticality/Severity, whether the weakness is exploitable and
is publicly available? Alternatively, does the exploitation
need custom tailoring to each new setup, and accordingly the
patch cycle and urgency can be determined.

Below six are the top vulnerability types in the system across
last decade:
• Denial of Service (DoS)
• Remote Code Execution
• Overflow & Memory corruption
• XSS & Injection
• Directory Traversal
• Gain Privilege
Every industry has a different type of threat concentration,
for example in Retail industry the key threats are web
application attacks leveraging poor validation of inputs, Disk
operating systems (DOS) attacks or stolen credentials. In
Healthcare industry, data breach is the major threat involving
medical records etc. In Financial services industry, DOS,
Phishing and social engineering are key issues while new
type of threats are emerging like Automatic Teller Machine
(ATM) jackpotting
The attack surface and attack modes are continuously
changing. AI-powered attacks, sandbox-evading software
attacks, Advanced Persistent Threats (APTs) are on the rise
and data breach attacks are peaking as well.
Application vulnerabilities are the key risk area for exploits.
Vulnerabilities broadly fall into two categories: bugs at the
design and code level and flaws at the implementation level
(which include configuration, hardware, software, and
Perimeter etc.).
Firstly, assets, vulnerabilities and threats are identified. An
analysis can then take place to determine the probability of a
vulnerability being exploited, the hostile impact of a
vulnerability and, finally, the risk levels associated with each
threat-vulnerability combination and the SDLC phase in
which the vulnerability got introduced. Countermeasures are
then be applied to eliminate or prevent the exercise of
vulnerabilities.
This paper attempts to map the vulnerability source further to
SDLC life cycle using Affinity technique so to actionize
against the very introducing of weakness into the system at
right phase preferably at early stage as possible.

IV. INDUSTRY SPECIFIC SOLUTION

According to industry reports, cyber-crime damages will cost
the world $6 trillion annually by 2021. This represents the
greatest transfer of wealth in history through mischievous
means, risking the incentives for innovation and investment.
There are several industry frameworks around threat
modelling and scoring:
STRIDE – Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, or Elevation. STRIDE enables
a structural way of categorizing the relevant threats by
attacker goals.
DREAD–Damage, Reproducibility, Exploitability, Affected
Users, & Discoverability. DREAD enables business view of
the Threat.
CVSS – Common Vulnerability scoring system is popular for
relative ranking of risks based on how easy a vulnerability is
to exploit.
DevOps is already becoming DevSecOps in lieu with
application security
OCTAVE stands for Operationally Critical Threat, Asset,
and Vulnerability Evaluation.

http://www.ijeat.org/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

2717

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6045029320/2020©BEIESP
DOI: 10.35940/ijeat.C6045.029320
Journal Website: www.ijeat.org

It is a qualitative risk analysis methodology; Octave is
designed and available for large and small organizations.
Standards organizations such as the National Institute of
Standards and Technology (NIST), International
Organization for Standardization (ISO), the Open Web
Application Security Project (OWASP), the Software
Engineering Institute (SEI),
Payment Card Industry Data Security Standard (PCI DSS)
and few others have been providing guidance and standards
for application security. Some of these organizations (ISO,
NIST) have the power to enforce the standards they publish
with help of rule of law.
From our literature survey, it is found that organizations are
still being attacked inspite of several industry best practices
and governances put in place.

V. RELATED WORK

Data breach is inherent issue within system security
discipline in Information Technology (IT) applications.
Extensive research work has taken place to find the reasons
of system vulnerabilities, secure development process,
security issues in agile methodologies, threat modelling and
measuring quality of application.
To author’s best understanding and efforts any research

undertaken to map the breach incident against the SDLC
lifecycle was not found. The summary of the literature survey
is as below: Author in [4] discusses challenges and mitigation
around integrating security into Agile methodologies.
Authors in [7] have undertaken study on threat modelling for
enterprise scale and address scalable issues in attack trees.
Authors in [8] have report on the “Threat agent and

Vulnerability analysis’ and introduce the TAME

methodology (Vidalis '01). Author in [9] studies the security
of specific Myproxy system using attack tree methodology.
Authors in [10] studies security centered approaches in
Scrum, Extreme Programming and suggests for Risk based
security model. Authors in [11] proposes collaboration in
secure development process by discussing security centric
design patterns and highlights design phase as the most
creative part of development process, Authors in [12]
contributed a metric to measure quality of application
security considering threat resistance, countermeasure
effectiveness, vulnerability intensity and breach cost.
The summary of related work indicates the absence of
research approach to study data breach incidents and trace
them back to vulnerability sources in SDLC life cycle. The
research undertaken in this paper is unique in two ways. First,
the research was conducted in diverse application domains.
projects considered are from low, medium to high
complexities and different methodologies of development.
Secondly, solution to reduce breach cost is centered on the
practical study carried over in IT industries; our process can
be used in conjunction with existing development processes
thus adapting to the needs of the software delivery
methodologies.

VI. PROBLEM STATEMENT

Based on the research gaps identified from the existing
literature, our research goal is to study evolution of
vulnerabilities and determining injection point in the SDLC

life cycle and propose prevention approach at early phase.
This paper addresses below research problems:
Trace back the Data breach incidents to the originating
Vulnerability injection source and map to appropriate phase
in SDLC life cycle.

VII. RESEARCH METHODOLOGY

Projects chosen for study was selectively spread across four
major application domains of software development. The
domains considered were communications, healthcare,
manufacturing (Mfg.) and banking. Projects chosen were of
applications software development type under the Agile
methodology with diverse technology platforms. These
projects were studied from its inception until post live in a
confederation of Capability Maturity Model (CMM)-5
organizations.

TABLE 3: Projects studied

Project
Size (in
Person

months)
Technology

Complexity
level

Domain

P1 20 (S)
Salesforce

Communities
Medium CME

P2 35 (M) Siebel CRM Low Health

P3 40 (L)
Oracle

eCommerce
High Mfg.

P4 42 (L)

Online
Banking

Application
(Java)

High Banking

Below Techniques have been utilized in this research:

1. Inverted Tree approach or the Attack tree
Attack trees helps in defining and analyzing
possible threats expressed in a node hierarchy,
allows the decomposition of a nonrepresentational
attack into a number of more concrete attack steps.

2. Affinity
An Affinity Diagram gathers large amounts of
attributes (ideas, opinions, issues) and organizes
them into groupings or clustering based on their
natural relationships.

VIII. EXPERIMENT & RESULTS

What path an attacker might take to get into the application?
What by-pass mechanisms are required to defeat the existing
security measure? What are the possible signs of an attack
under a given category of application?
Can existing countermeasures detect or deter the attack?
Answering above interrogations ensures that the organization
has considered potential attacks and helps in devising
required controls, if existing measures are insufficient.

http://www.ijeat.org/

Detection of Vulnerability Injection Point in Software Development Lifecycle for Effective Countermeasures

2718

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6045029320/2020©BEIESP
DOI: 10.35940/ijeat.C6045.029320
Journal Website: www.ijeat.org

Experimentation setup:

We worked on four real-time projects as indicated in Table-3
of Research methodology section above out of which 3
projects results are described in section 8A below and fourth
project involving banking application results are discussed in
detail in Section 8B.
Our first three projects shortlisted for our experimentation
was almost getting over, few of the projects had entered
technical warranty phase, while few projects were
undergoing final user acceptance testing phase. As part of our
experimentation, defect dumps were taken from JIRA. The
dump had Defect Id, type, subtype, reported date, description
of the issue, category of the issue, owner and comments
sections. Based on the comments RCA was also conducted
and reported in the findings on what exactly went wrong? For
focusing on data breach related defects only, security
category defects were shortlisted as part of this experiment.
To ensure traceability and proof to establish RCA was indeed
correct, Requirements dump, and Design Wiki were also
utilized as part of this experiment.

Experiment 1: Defect reports under Security incident – PII
data breach in Salesforce communities was picked up.
Experiment 2: Defect reported under security incident –
quotation access by unauthorized user was chosen.
Experiment 3: Defect reported under security incident –
health data access by unauthorized user was chosen
Experiment 4: Defect reported in CVE-2018-6335 was
picked up to depict Denial of service issue.

4th experiment was conducted using a publicly reported data
breach incident as details around the breach, the patch
applied, root cause of the breach is already available from
CVE reference number from the National vulnerability
database.

As depicted below an attack path was drawn and based on the
defect dump of security category – the RCA was mapped into
the attack tree.

Below are few Illustrations of the vulnerability mapping techniques derived from our experiments.

Start

Data Breach
Incident /

Attack

Root Cause
Known

Use Affinity
principle to map

the RCA with right
SDLC life cycle

Parse through an Attack tree
(domain specific) to establish the

RCA and the path traversed by the
hacker

Stop

No

Yes

FIGURE 1: Steps to map a Breach Incident against the Vulnerability source in SDLC stage

Steal PII Data

Access Live
Instance

Access Data
in transit

Access PII
data from file

system

Access
through

Brute force

Misuse
SuperAdmin

Access

Get
Credentials
from Target

BlackmailThreaten Bribe

Requirement NA

Design NA

Implementation NA

Testing NA

Operation
Support

Y

Requirement Y

Design N

Implementation N

Testing N

Operation
Support

N

PII data was
not

Encrypted

FIGURE 2: Attack Tree depicting PII data compromise (Source study: P1 – Salesforce from Table-3 above)

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

2719

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6045029320/2020©BEIESP
DOI: 10.35940/ijeat.C6045.029320
Journal Website: www.ijeat.org

In above attack tree depiction, Personally Identifiable
Information (PII) data have been compromised due to two
reasons – one misuse of super admin access at operation
support level in SDLC life cycle; another due to blackmailing
of user to procure the credentials and access the PII data from
the live instance of the system; the breach is costlier due to
the fact that data at rest was not encrypted. The Affinity
principle identifies that the application never had any
requirement to encrypt the PII information on live systems,
this requirement miss has a costly repercussion as the security

incident now can only be fixed by redesign,
reimplementation, retesting and redeploying the uplifted
encryption capability. The mapping of source SDLC phase is
handled by analyzing the breach or defect dump with root
cause analysis performed and weighing multiple rationale
from the teams involved in various software delivery life
cycle. Affinity principle helps in mapping the vulnerability
injection point based on the RCA outcome using its natural
relationship to most appropriate phase in SDLC.

Access
Competitor
Quotation

Access Live
Instance

Access Data
in transit

Access
Quotes from
file system

Session
Management

Attack
URL Hack

DNS Cache
Poisoning

Clickjacking
attack

Cross-site
scripting

 ..

Requirement NA

Design Y

Implementation N

Testing N

Operation
Support

N

URL had GET
method with
session _ID

FIGURE 3: Attack Tree depicting competitor quotes being compromised (Source study: P3 – Oracle E-Commerce

from Table-3 above)

In above attack tree depiction, Quote details of a competitor
has been compromised due to URL hack. The detailed Root
Cause Analysis (RCA) indicates that though there was no
explicit requirement, even then design had adopted privacy
by design principle in general, however due to incorrect
implementation or choice of protocol (GET method in the
Uniform resource locator (URL)) the competitor quotes were
easily being downloaded by an URL hacker.
This Vulnerability in the system was not caught in the regular
project testing and got deployed onto production and is now

caught only in the operation support phase. Source injection
of this vulnerability is either design or implementation;
during RCA it is also found that design did not mention the
GET/POST methods explicitly. Applying affinity principles
Design phase carries higher weightage and this design miss
was the first source of injection where implementation team
also let this vulnerability pass-through, hence this can be
treated as design miss. The cost of this breach is to redesign,
reimplementation, retest, and redeploy the solution.

Compromized
health data

Access Live
Instance

Access Data
in transit

Access from
file system

Session
Management

Attack
API hack

DNS Cache
Poisoning

Clickjacking
attack

Cross-site
scripting

 ..

Requirement NA

Design Y

Implementation N

Testing N

Operation
Support

N

Exposed API
had tokenID

FIGURE 4: Attack Tree depicting health data compromise (Source study: P2 – Siebel CRM from Table-3 above)

In above attack tree depiction, health data has been
compromised due to insecure Application programming
interface (API) design, the breach happened due to multiple

http://www.ijeat.org/

Detection of Vulnerability Injection Point in Software Development Lifecycle for Effective Countermeasures

2720

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6045029320/2020©BEIESP
DOI: 10.35940/ijeat.C6045.029320
Journal Website: www.ijeat.org

federated authentication systems which could use the
tokenID to get access to other customer health information
without explicitly authorization. Though the requirement
need not be explicit, the design has not considered the API
signature to be secure enough for external authenticators to
exploit! Since implementation and testing has followed the

design without explicit vulnerability checks, the breach
incident is now costing redesign, reimplementation, retesting
and redeployment of revised API. Further as quoted by
https://www.cybergrx.com/ around 63% of data breaches are
linked to a third party [13]!

Code Injection
Attacks

Binary Code
Attacks

Source Code
Attacks

Heap
Smashing

Stack
Smashing

SQL

Domain
Specific

Language

Dynamic
Language

 ..

Requirement NA

Design N

Implementation Y

Testing N

Operation
Support

N

Maformed
H2 Frame

 ..

XPATH .. PHP Attack JS Attack

FIGURE 5: Attack Tree depicting Denial of Service (DoS) attack (Source CVE-2018-6335)

In above attack tree depiction, as reported under
CVE-2018-6335 & CWE ID 20, A Malformed h2 frame can
cause 'std::out_of_range' exception when parsing priority
meta data. This behavior can lead to denial-of-service when
using the proxygen server to handle Hyper Text Transfer
Protocol (HTTP2) requests. As this was clear case of code
injection through header padding, these kind of root causes
are mapped under Coding or Implementation stage
vulnerabilities.In principle, using attack tree, each data
security incident can be analyzed to investigate which path
did the hackers took to breach the system, based on the path
associated loopholes in the systems which were exploited can
be further studied, these vulnerabilities in the system based
on root cause analysis and discussions with delivery and
testing teams with RCA done to establish in which phase did
the vulnerability got introduced into the system.
Additionally, audits shall reveal how was data being stolen
till now, how did they found out this time, and are there more
attack paths yet to be exploited?
Using Affinity diagram, the Vulnerability can be further
mapped to suitable SDLC life cycle to compute the cost of
breach. RCA and Affinity diagram helps in suitably mapping
whether Vulnerability was due to Requirement miss, or
Design miss, or Implementation miss, so on.
Most data breach happening on live system reveals that these
have been missed through multiple phases of SDLC lifecycle
inspite of having Agile, Devops and other latest delivery
methodologies.

Result Analysis:

Majority of data security breach are mapped to either not
having explicit functional or non-functional requirement
from the business or global security stakeholders, followed
up incorrect and lack of designs which respect ‘privacy by

design’ principles. Implementation misses are next large

bucket which often gets missed due to non-adoption of best
coding practices and review process with quality assessment
tools. Limited functional testing and integration testing with
budget constraint and short timelines to launch the
application will all contribute to the end product having
several vulnerabilities contributed at different SDLC phases
waiting to be breached and threatened.
From above experiments, though most of the vulnerabilities
injection were at Requirements or design phase, further
probing using five-why principle of fishbone approach
reveals that majority of the vulnerabilities are due to
combination of reasons with different weightage from
requirements to design, further ‘Shift left’ approach in

software delivery indicates that malformed requirements
contributes heavily to vulnerability injection in upcoming
phases.

IX. DISCUSSIONS

The security needs to be built into the software from the
commencement, and that security undertakings be
throughout the delivery functions. Controlling
vulnerability injection right at requirements phase ensures
time, cost and efforts savings in rest of the phases of
software development life cycle.
The contributions of this paper are as follows:
1. Narrow down to the vulnerability injection point to

establish effective countermeasures.

http://www.ijeat.org/
https://www.cybergrx.com/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958, Volume-9 Issue-3, February, 2020

2721

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6045029320/2020©BEIESP
DOI: 10.35940/ijeat.C6045.029320

2. Attack tree and Affinity combination practically helps
in tracing the attach paths taken by the intruder as
well as exhibits which other paths are awaiting to be
exploited.

3. Best practice adoption at each SDLC development
phases shall eliminate the need for costly repudiation
remedies at later phases in live applications.

X. CONCLUSIONS

 Our experiment provides practical and rigorous approach to
detect vulnerabilities injections of technical nature. The
prime milestones of the vulnerability injection presented in
this paper are Shift left approach, a template of attack tree
with affinity model.
The concept of Attack Tree highlights the set of essential
attack paths to breach the desired level of security in
applications. Viewing security requirement as a
countermeasure provides an objective measurement of
security in requirements level. Information on the absence of
countermeasures facilitates continuous improvement in
security requirement elicitation and business analysis.
Detection and opportunity for correction of vulnerabilities in
security requirement avoid possible vulnerabilities in the
application and enhances the quality of application security.
This ensures molding of security quality in the requirement
stage. The statement “Security cannot be assured but can be

pushed” can be actualized through this process of

vulnerability detection.
The nuance will then be in the choices and interpretation of
impact and acceptable risk and associated costs / efforts.
This paper limits its scope to detection of vulnerability
injection point, the early prevention of technical and logical
vulnerability injection at early phase are not catered in this
research and could be potential research area for future
research.

REFERENCES

1. ‘Data Breach Statistics’, https://breachlevelindex.com/, accessed Jan
2019

2. Brain,Nancy L.Russo: ‘Software development method tailoring at

Motorola’ Communications of ACM, 2003, Volume 46, Issue 4, pages

64-70, ISSN: 0001-0782
3. ‘World's Biggest Data Breaches & Hacks’,

https://informationisbeautiful.net/visualizations/worlds-biggest-data-b
reaches-static/, accessed Feb 2019

4. Nguyen .T, Sauter, (2015), ‘Development Methods’,

http://www.umsl.edu/~sauterv/analysis/F2015/Integrating%20Securit
y%20into%20Agile%20methodologies.html.htm, accessed Feb 2019

5. Bhandari .G, (2017),
https://www.infosys.com/gdpr/Documents/GDPR-industry-geography
.pdf, accessed Mar 2019

6. ‘The most infamous data breaches’,
https://www.techworld.com/security/uks-most-infamous-data-breache
s-3604586/, accessed Jan 2019

7. Bugra Karabey and Nazife Baykal: ‘Attack Tree Based Information

Security Risk Assessment Method Integrating Enterprise Objectives
with Vulnerabilities’ The International Arab Journal of Information
Technology, 2013, Vol. 10, No. 3.

8. S Vidalis and A Jones: ‘Using Vulnerability Trees for Decision
Making in Threat Assessment’ School of Computing, University of

Glamorgan, Pontypridd, CF37 1DL, Wales, UK available at:
www.comp.glam.ac.uk

9. Qiang Duan, ‘Threat Modeling Using Attack Trees’ Consortium for

Computing Sciences in Colleges Mid-South Conference, JCSC 2008,
23, 4.

10. Ahmed Alnatheer: ‘The Investigation of Security Issues in Agile

Methodologies’ University of Southampton, available at:
http://eprints.soton.ac.uk

11. Gunnar Peterson: ‘Collaboration in a secure development process’
Information security bulletin 2004, Vol.9, Page 212.

12. Shubhamangala B. R., Snehanshu saha, and M. Jayalakshmi: ‘The
Need for Measuring the Quality of Application Security’ ISACA

Journal, 2016, Volume 2
13. ‘Top Third-Party Breaches of 2018’,

https://www.cybergrx.com/resources/blog/top-11-third-party-breaches
-of-2018-so-far-data-breach-report/ accessed Feb 2019

14. Dugal.D, Rich.D,’Common Vulnerability Scoring System SIG’,

https://www.first.org/cvss/ accessed Jan 2019
15. Stroke, ‘Exploit database’, https://www.exploit-db.com/
16. ‘National Vulnerability Database’, https://nvd.nist.gov/vuln/categories

accessed Feb 2019
17. Akamai: ‘Evolving threats demand new approaches to security’,

Akamai Technologies, Inc. 2015,
http://www.akamai.com/dl/brochures/overcoming_security_challenge
s.pdf.

18. Kitain.L: ‘Root Cause Analysis in the Age of Industry 4.0’,
https://medium.com/datadriveninvestor/root-cause-analysis-in-the-age
-of-industry-4-0-9516af5fb1d0, 2018

19. ‘Increasing Production Capacity with Automated Root Cause
Analysis’,

https://iot.seebo.com/hubfs/PDFs%202018/Root%20Cause%20Analy
sis%20%282%29.pdf, 2017

20. Mee.R, ‘2019 Software Trends’,

https://content.pivotal.io/blog/software-trends-for-2019 accessed Apr
2019

21. Dam.R, Sian.T, ‘Stages in the Design Thinking Process’,
https://www.interaction-design.org/literature/article/5-stages-in-the-de
sign-thinking-process, 2015

22. ‘CVE Details’, https://www.cvedetails.com accessed Jan 2019
23. Robert Layton and Paul A. Watters, ‘A methodology for estimating the

tangible cost of data breaches’ Journal of information security and
applications, 2014, 19 vol 321-330

24. David Byers and Nahid Shahmehri Linkoping, Sweden, , ‘Design of a

process for software security’ in proceedings of the second internation

conference on availability, reliability and security, 2017, pages
196-203, IEEE Computer Society

25. Ludovic-Alexandre Vidal and Franck Marle Malabry, France, ‘A

systems thinking approach for project vulnerability management’

Kybernetes 2012, Vol. 41 No. 1/2, pp. 206-228.

AUTHORS PROFILE

Thejasvi N., Department of Computer Science &
engineering, Jain University Bengaluru India, has
Bachelor’s degree in Information Science and Master’s
degree in Telecommunications. He is currently pursuing
Ph.D. in Computer Science and Engineering with areas
of interest being Application

Shubhamangala B. R., is a researcher in software firm
with particular intrests in data science,Data
analytics,Application security, Security requirements
, Compliance and risk. She has authored paper in the
domain of product quality, requirements and application
security.She holds a bachelor and master degree. in
CS.She is member of IEEE.

https://breachlevelindex.com/
https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-static/
https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-static/
http://www.umsl.edu/~sauterv/analysis/F2015/Integrating%20Security%20into%20Agile%20methodologies.html.htm
http://www.umsl.edu/~sauterv/analysis/F2015/Integrating%20Security%20into%20Agile%20methodologies.html.htm
https://www.infosys.com/gdpr/Documents/GDPR-industry-geography.pdf
https://www.infosys.com/gdpr/Documents/GDPR-industry-geography.pdf
https://www.techworld.com/security/uks-most-infamous-data-breaches-3604586/
https://www.techworld.com/security/uks-most-infamous-data-breaches-3604586/
https://www.cybergrx.com/resources/blog/top-11-third-party-breaches-of-2018-so-far-data-breach-report/
https://www.cybergrx.com/resources/blog/top-11-third-party-breaches-of-2018-so-far-data-breach-report/
https://www.first.org/cvss/
https://www.exploit-db.com/
https://nvd.nist.gov/vuln/categories
https://medium.com/datadriveninvestor/root-cause-analysis-in-the-age-of-industry-4-0-9516af5fb1d0
https://medium.com/datadriveninvestor/root-cause-analysis-in-the-age-of-industry-4-0-9516af5fb1d0
https://iot.seebo.com/hubfs/PDFs%202018/Root%20Cause%20Analysis%20%282%29.pdf
https://iot.seebo.com/hubfs/PDFs%202018/Root%20Cause%20Analysis%20%282%29.pdf
https://content.pivotal.io/blog/software-trends-for-2019
https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process
https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process
https://www.cvedetails.com/

