
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

3131
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

Abstract: Distributed System, plays a vital role in Frequent

Subgraph Mining (FSM) to extract frequent subgraph from Large
Graph database. It help to reduce in memory requirements,
computational costs as well as increase in data security by
distributing resources across distributed sites, which may be
homogeneous or heterogeneous. In this paper, we focus on the
problem related complexity of data arises in centralized system by
using MapReduce framework. We proposed a MapReduced based
Optimized Frequent Subgrph Mining (MOFSM) algorithm in
MapReduced framework for large graph database. We also
compare our algorithm with existing methods using four
real-world standard datasets to verify that better solution with
respect to performance and scalability of algorithm. These
algorithms are used to extract subgraphs in distributed system
which is important in real-world applications, such as computer
vision, social network analysis, bio-informatics, financial and
transportation network.

Keywords: Distributed System, subgraph, support count, Graph

Database, Mapper, and Reducer.

I. INTRODUCTION

Recently, the algorithm used to enhance the performance of
graph data mining are classified into two groups. First, Graph
Mining emphasis on searching those pattern are most
frequent subgraphs in that graph. Second, Graph Partition
that based on classification of a big graph database into
smaller so that we can easily manage consecutively.

Due to the advent of new technologies, devices, and
communication means like social networking sites, the
amount of data produced by mankind is growing rapidly
every year. As data size increasing very fast, the main
challenges are to deal with graphs of big sizes that grow in
terabytes or petabytes scale. To overcome these problem, we
use graph division that reduce the complexity of graph
mining algorithm, which helps to secure the most sensitive
data, less cost used in memory, computation as well as in
transmission during distributed system.

Revised Manuscript Received on February 05, 2020.

* Correspondence Author
Ms. Sadhana Priyadarshini*, Ph.d. scholar, Department of Computer

Science and Engineering, GITAM (Deemed to be University),
Vishakhapatnam, India

Dr. Sireesha Rodda, is a Professor in the Department of Computer
Science & Engineering, GITAM (Deemed to be University)
Vishakhapatnam, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Distributed Graph Mining broadly classified into Agent
based, or Client-Server model. Single-agent and Multi-agent
are two sub groups of Agent-based model. Client-Server
model is further classified into Classifier Based and Privacy
Preserving model. We can use either Homogeneous or
Heterogeneous Technique to calculate patterns between
distributed data depending on datasets. The Privacy
Preserving model used to protect our data from unauthorized
exposure. It can be used either Cryptographic or
Randomization techniques. The Cryptographic technique
have better result than other one on the basis of accuracy and
privacy [6].

In Distributed Graph Mining, researcher have to
concentrate how to distribute the entire graph database and
computation of algorithm over the entire network of similar
or diverse types. Graph Database are easy to store in
heterogeneous than homogeneous. Not only the cost
associated with transmission, computation and memory can
be less by distributing data mining, but also we can able to
provide more data privacy on our database. In this paper, we
mostly emphasis on extraction of data in form of subgraphs
presented in heterogeneous sites .We follow Decentralized
Graph Mining technique to make entire system can be
distributed workload properly heterogeneous sites.
Arabesque, a system for distributed graph mining, follows
“think like a vertex” (TLV) programming paradigm [16],
which provide a high-level filter-process computational
framework consist of frequent subgraph mining, counting
motifs, and finding cliques. Arabesque provide both graph
computation and graph mining algorithm to run on the top of
same infrastructure (i.e. Apache Graph [15]) by using Bulk
Synchronous Processing (BSP) model.

In recent years, MapReduce becomes main model for
computation on big data. It supports centralized data of
distributed computing system. During big data analysis, it
utilise the “Distributed File System” to improve input/output

operations. The framework provide higher level of data
abstraction and keep hides system level details from
programmer, so that they can able more concentrate on
problem oriented computation logic .Recently scientist are
more emphasis on analyse and design of large network graph
database to overcome major challenges arise in Big data like
capturing data, storage, searching, sharing, transfer, analysis,
presentation, etc. However, in various discipline’s like,

computational mining, computer biology, link spam
detection, reachability and distance query indexing, use
MapReduce[7] framework for generate densest subgraphs
which more result able and sufficient compare to heuristic
approach.

Map Reduce Based Optimized Frequent
Subgraph Mining Algorithm for Large Graph

Database

Sadhana Priyadarshini, Sireesha Rodda

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.C6141.029320&domain=www.ijeat.org

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database

3132
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

Paper organization. The remainder of the paper is consist of
following section. Section 2 establishment of previous work
on distributed system. Section 3 provides fundamental
concept and definitions,
whereas Section 4 describes overview as well as detail of our
proposed Model. All the experimental analysis represent in
Section 5 followed with conclusion in Section 6.

II. RELATED WORK

Frequent Subgraph Mining is recently studied research field
in Distributed System. Broadly existing algorithm based on
either Apriori-based or Pattern-growth methods which based
on Breath-First Search (BFS) or Depth-First Search (DFS)
respectively. Gonzalez, Low, Gu, Bickson, and Guestrin.
discovered frequent subgraph mining by using Minimum
Description Length (MDL), which can be implemented on
both supervised concept learning and unsupervised pattern
discovery and illustrate its scalability and effectiveness[6].

To make mining process faster Kuramochi and Karypis
used heuristic algorithm GREW in canonical graphs. He
proposed a mechanise for cutting in frequent subgraph, which
focus on bigger subgraph candidate based on smaller
subgraph and satisfy all criteria of frequent subgraph. Then
he implemented with both BFS and DFS approaches and
developed new algorithm HSIGRAM and VSIGRAM that
used to find out frequent subgraph candidate [9].

Khan and Yan et [1] derived a proximity pattern concept
that is counted by pFP(probabilistic algorithm FP_growth),
where the complexity of algorithm is lower than
isomorphism graph technique. This algorithm transfer a
complex graph mining problem to a simplified probabilistic
item set miming pattern. They introduced an objective
function to measure the interestingness of a proximity pattern
and make the algorithm more efficient and effect to generate
only the top-k interesting pattern.

Sun, Wang, Shao, and Li [19] ,developed the algorithm
that make graph matching faster by changing function of
index to become join and expand sungraph which lead to save
memory requirement as well as index managing during
frequent subgraph mining. They elucidated the algorithm,
that support efficient subgraph matching for graph placed on
a distributed memory stored. The algorithm use efficient
graph exploration and massive parallel computing for query
processing. This technique validity of performing subgraphs
matching on web_scale graph data.

Zhao et al [20], derived SAHAD, an algorithm to
overcome problem associated with extraction labelled
subgraphs in network, which are isomorphic to template. The
subgraphs are represented in form of tree by using Hadoop.
The technique is able to find out motifs and computing graph
lets frequency distribution. It can be able to run easily on
Amazon EC2, without needs for system level optimization.

Han and Wen [8] proposed a model that based on the VIL
(Vertex Identification List) in enumeration phase of solution
candidate can be defined as pattern to be search.They
proposed a new class of pattern names as frequent
neighbourhood pattern, where a neighbour is a specific
topological pattern in which a vertex (node) is embedded, and
pattern is frequent if it is stored by a large position of nodes.
The targets are clear semantics and are not limited to tree like
shapes. The technique is feasible and unique ability to
provide user with especially interesting pattern.

In 2009, Kang, Meeder, Papalexakis, and Faloutsos [17]
developed PEGASUS algorithm by using MapReduce model
to analysis big graph, they used Page Rank for combing the
distance between modes and diameter of graph. Bulk
Synchronous Processing (BSP) platform used to find the
shortest path verification of bipartite Semi Clustering graph
in 2010.

Teixeira et al [15] developed Arabesque system that
generates process of extracting a very large number of
subgraphs by using a high-level filter-process computational
model. It solve the problem associated with frequent
subgraph mining, counting motifs, and finding cliques. This
system concentrates on scalability and provide
customer-friendly simple programming API that allows
non-experts to build workload.

Aparicio, D.,Ribeiro, and Silva, proposed a graph pattern
mining engine for distributed graph processing system that is
both fast and scalable to large graphs. They used
neighbourhood sampling technique, which increases the
probability that an estimator would actually find an instance
of given pattern, hence need less estimator to get same
accuracy. This algorithm also overcomes following
challenges, general pattern, distributed setting, error-latency
profile, and handling updates [12].

Mccune, Weninger, and Madey [11], tried to sort out the
issues related to billion-node graph that exceed the memory
capacity of standard machines are not well-supported by
popular Big data tools. The new vertex-centric programming
framework challenges one to “think like a vertex “(TLAV)
and executes the customer-defined programs from the
perspective of a vertex rather than graph. The timing,
communication, execution model, and partitions are main
milestone related to distributed algorithm.

The parallel methods, which are used to handle large graph
fully rely on the expensive join operation which reduces the
performance. Shao, Cui, Chen, Yao, and Yingxia [14],
designed a parallel subgraph listing frame name PSgl, that
repetitively eliminates the subgraph instances and use
divide-and-conquer method to solve the subgraph listing. It
purely based on graph traversal, and avoids the explicit join
operations. The performance, scalability, and fault-tolerance
of Pregel are already satisfactory for graph with billions of
vertices.

Giuseppe et al[5], described three vital aspects of the
proposed distributed framework, namely a distribution
process based on a peer-to-peer communication, and
dynamic partitioning of search space, and a novel
receiver-initiated load balancing algorithm. It tolerates node
failure and communication latency and supports dynamic
resource aggregation. Its dynamic resource aggregation make
feasible for large-scale, multidomain, heterogeneous
environments.

Aparicio, Ribeiro, and Silva [12], derived a novel parallel
method for subgraph counting geared towards multicores.
They used state-of-art g-tries data structure, which is core of
fastest sequential algorithm for subgraph counting. The
g-tries are multiway trees, much like prefix tree that use
common topologies in subgraphs in order to prune the search
tree. They developed an efficient sharing mechanism that is
able to stop, split and resume the execution of dynamically
divide the search tree among
threads.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

3133
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

The g-tries, a data structure specifically designed for
discovering subgraphs frequencies.

Ribiro and Silva build a tree structure to summarize the
structure of entire graph set, by combining the common
prefix topologies in the same way a prefix tree. A g-tries is a
multiway tree that can store a collection of graphs. They used
sampling methodology capable trading accuracy for even
faster execution times, additionally improving the potential
of the developed data-structure [13].

Anchuri, Zaki, Barkol, Golan and Shamy [3], derived an
algorithm to extract frequent approximate pattern in a single
large graph database in the presence of a cost matrix between
labels. They proposed label based repetitive pruning method
to compute the representative set efficiently .It relied on k-top
label and neighbor concatenated labels, which handle both
arbitrary as well as binary cost matrices.

III. PRILIMINARIES

In this section, we explore some of definition and study
related to our work. Table-I outlines the basic notations used
throughout our paper. Section A illustrate topics related to
Frequent subgraph Mining, whereas Section B emphasis on
overview of MapReduce Framework.

A. Frequent Subgraph Mining (FSM)

Let, GD={GD1, GD2, GD3…. GDn }, ∀ i=1,2,3…n be a graph
where n is number of graphs present in GD. We define each
GDi є GD as a quadruple GD=(Vgd,Egd,Lgd,lgd),where
Vgd,Egd,Lgd,lgd are set of vertices , edges, labels, and labelling
function that map every vertices and edges to a single Label
in Lgd respectively. For our proposed work, we consider
undirected and connected graph only.

Table-I: List of Notations

Symbol Description
GD Graph Database(collection of graphs)
Vgd Set of all vertices in GD
Egd Set of all edges in GD
n=|GD| Number of graphs in GD
Gi Number of subgraphs in GDi
FE Set of frequent Edges
CS Candidate Set
τ User given minimum threshold value
R Result Set
S Subgraph
N Number of MapReduce machines(worker nodes)

Definition1:(Subgraph) Given a graph S=(V`gd,E`gd,L`gd,l`gd)
is said to be subgraph of another graph GD=(Vgd,Egd,Lgd, lgd),
if there exit an injective function ψ : V`gd→ Vgd such that ∀
(a,b) є Egd it must hold that (lgd(a)= l`gd (ψ(a)))ᴧ l`gd(b)=
l`gd(ψ(a)) ᴧ lgd(a,b)= lgd(ψ(a), ψ(b)).

Definition2:(Subgraph Isomorphism)A subgraph isomorph-
hism from subgraph S=(V`gd,E`gd,L`gd,l`gd)) to graph
GD=(Vgd,Egd,Lgd,lgd), is denoted by G ⋍S, which is an
bijective function ϕ :Vgd→V’ gd such that for every pair of
vertices vi, vj if (vi , vj) є Egd then ϕ(vi), ϕ(vj) є E’gd .
Definition 3:(frequency of subgraph)The frequency of
subgraph S is calculated by number of times it present in GD.
f(S)={S|S є GD ᴧ S⊂GD}.

B. MapReduce Framework

MapReduce is a processing technique and a program model
for distributed computing based on java. It consist of two
tasks, Map and Reduce. The Fig.1 shows that, the Map takes
input as a set of data and transform into a specific form where
each element split into tuples (key/value pairs). Secondly
Reduce, that takes the output from Map as input data and
merge those data into a similar set of tuples. MapReduce
programs implements in tree steps, namely map, shuffle and
reduce [7].
• Map: The map or mapper task to organize input data

which is in form of file dictionaries stored in Distributed
File System (DFS) or Hadoop Distributed File System
(HDFS)

The input file is processed in mapper function line by
line and generate several small chunks of data (i.e.
key/value pair).

• Reduce: This step is consist of Shuffle and Reduce. The
shuffle accumulate key-pair into a group of list of same
key and sort it. Then individual key associated list of
value sent to different machines (systems).The result of
shuffle and sort sent to reducer, where reducer use
“reduce” function each list of value and generate a
unique key,final output <key, value> will be stored or
display. The table-II illustrates how the Input and Output
types of a MapReduce job are going to done (i.e. (Input)
<k1, v1> → map → <k2, v2> → reduce → <k3, v3>
(Output)).

Fig. 1. Flow chart of MapReduce Framework

Table-II: Mapper and Reducer job
 Input Output

Map <k1,v1> List<k2,v2
Reduce <k2,list(v2) List<k3,v3>

IV. OVERVIEW OF PROPOSED MODEL

In case of parallel computation of Graph Mining, we get
faster result and better performance than sequential approach.
However, in case of the large-scale graph processing, it is
difficult to handle in parallel due to shortage of memory
requirement, complexity of graph computational and privacy
of data. In this paper, we proposed a model MapReduced
based Optimized Frequent Subgrph Mining (MOFSM)
shown in Fig.2, that used repetitive MapReduce framework
with Optimized Frequent Subgraph Mining dynamically.

http://www.ijeat.org/

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database

3134
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

Homogeneous Classifier-based method, that based on
Ensemble Learning, Distributed association Rule
Mining(DARM),MetaLearning, Knowledge Probing is
implemented for evaluation of pattern in distributed system.
It is purely based on Client-Server model, where graphs are
accumulated and processed at global level. Hadoop
MapReduce is the processing component of Apache Hadoop
that process the data parallel in distributed environment.
MapReduce[7] can be implemented in Google, Apache
Hadoop. In our proposed work, we use Hadoop Distributed
File System (HDFS) for storing graph database.

Fig 2. Framework model for MapReduced based
Optimized Frequent Subgrph Mining (MOFSM).

Further, the pattern design consist of Summarization (eg.
Inverted Index), Recommendation (eg. Sorting),
Classification (eg. Top N Record) and Analysis (eg. Join,
Selection). We use the analysis design pattern for our
database. Here main precedence that, we can process data in
parallel in distributed sites that leads to less computational
time. Instead of moving entire graph database, we only shift
processing logic to different site where actual data present.

In MOFSM technology, we generate frequent subgraph
pattern from Graph Database if its support values equals to or
greater than minimum threshold value (τ). Further, in case of

dynamically division, the entire dataset is distributed over
different sites in form of worker nodes. Therefore, it is
difficult to estimate subgraph support count value in
MapReduce model, as local support in respective division at
worker nodes, are difficult form the support in global state
communication. As Apriori-based algorithm, we can’t

postpone the support calculation. To overcome this problem,
we introduced a new value to each node before partition
which further used in worker nodes site for calculation of
support count. At destination site, first we
Algorithm 1: Filter (GD, τ)

1. Fe ← φ
2. for each e є Fe do
3. Calculate f(e)
4. If(f(e))≥ τ
5. then Fe← Fe U e

6. return Fe

Algorithm 2: Geometric Two-Way Graph Division
Input: GD = (X, x, y, z)
Output: GD1 and GD2
1.Let xyzw = π (xyz)
2.Select the center point Cp of xyzw.
3.Perform conformal mapping to choose the largest circle

LCp on the unit sphere in Rn+1
4.Transform the LCp into a sphere S in Rn using reverse

conformal mapping.
5.Divide the sphere S vertices into two parts xyz1, xyz2.
6.Generate two graphs GD1 and GD2 are constructed from

xyzwI , xyzw2 respectively.

check each node frequency value, if its value more that
threshold value (τ), then consider else discard it [20].

Our proposed work is based on four phases: Splitting,
Mapping, Shuffling, and Reducing. We consider our database
in form of a single large graph or set of small graphs. During
Splitting phase, we use GMOFSM to split entire dataset into
number of graphs GDi, i=1,2,3..n,where n is number of
workers nodes. Mapper used in mapping phase to extract
subgraph with local frequency associated with each graph-id.
During Shuffling phase ,each subgraphs is associated with its
global frequency which become input to Reducer and
generate all the frequent subgraphs whose frequency value
equal to or greater than threshold value. Fig: shows the
framework of different phases for generation of frequent
subgraphs.

V. SPLITTING

In Splitting phase of our proposed work, the entire graphs
(GD) divides into many partitions (GDi).In algorithm 1,first
we assign set of all frequent edges(Fe) as null in line-1.At
each iteration we take individual edges, and computed its
frequency f(e) inside the graph, if its value same or more than
user given threshold value, then the edge added to Fe ,else
discard(line2-5).During splitting section, each graph is
associated with <key, value> pair, GDi, ∀ i=1,2,3…n., where n is
number of graphs present in GDi. Now (key, value) pair
generated by this phase as <graph-id> as key and <gdi, Fe > as
value for input to mapper [6].In our proposed framework, we
derived Geometric Multi-way Division algorithm (Algorithm
2), which divide the entire graph database into n-disjoint
graphs. Let a Graph Database (GD) in Rn of V vertices and E
edges, we implement two-way division algorithm to get
n-disjoint graph, where n is any positive integer. The X is an
array of vertices pair that represents the edges among lattice
vertices in G, such that, X = {{(x1, y1, z1), (x2, y2,
z2)},…{(xv−1, yv−1, zv−1), (xv, yv, zv)}},where v is the
number of vertices in Rn [13].In algorithm 2 (line 2) ,the
standardized formulae of graph in eqn(1) is used to calculate
the center point of given points in sphere, where (x’,y’,z’) and

r are the center point and radius of sphere respectively.

(x-x’)2+(y-y’)2+(z-z’)2=r2 (1)

Input Graph Database

Elimination of infrequent edges from Database

Splitting the Database
<GDi=<gdi,s(gdi)>

Mapper
 <s(gdi),Lτ>

Reducer
<S(gdi),Gτ>

Result Set(S(GD))

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

3135
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

In case of conformal mapping, first, we use translation in
the space is described by tx,ty,tz. It is easy to this matrix
realizes the equations:

x=x’+tx

y=y’+ty

z=z’+tz (2)

Second, we perform in , coordinate system rotations of
the x-, y-, and z-axes in a counter clockwise direction when
looking towards the origin give the matrices.

(3)

(4)

(5)

Third, Scaling is describe by Sx,Sy,Sz. We see that this
matrix realizes the following equations:

x2=x1· Sx

y2=y1· Sy
z2=z1· Sz (6)

To achieve better performance, the number of division also
plays vital role .The different way of splitting show faster
result, which we shown in experimental section. Before
Spliting, we used a “filtration” technique to filter out
infrequent edges from graphs which reduce further
computation, transmission, i/o cost on worker nodes. In this
paper, the input Graph Database (GD) split into many
partition and the OFSM method iteratively use MapReduce.

mostly more than MapReduce jobs, therefore it optimized
the desired result. By adding load balance technique in
MapReduce task, we also achieve better result. Before Graph
partition, input graph dataset go to pre-filling stage, where
we remove all infrequent edges [14]. During scanning of
graph database for entire GD, OFSM maintain a support-list
from each edge to find out infrequent edges against the
user-defined minimum threshold value.
Algorithm 3: Frequent Subgraph Generation
Input: A graph g, user given support threshold τ value
Output: total frequent subgraphs set R
1. R← φ
2. Let FE be the set of all frequent subgraphs with all frequent
edges of graph GD.
3. for each f є FE do
4. R ← R U Subgraphextension(s,GD,τ,R, FE)
5. Delete f from FE and g
6. return R
Algorithm 4:Subgraphextension

Input: subgraph s, a graph g, min-sup τ, a set of frequent

edges FE, result set R
Output: all frequent subgraphs of g that extend s

1. Result(R)← φ
2. Candidate set(CS)← φ
3. for each edge e in FE do
4. Let extension in S` be the extended of e by adding

frequent edge e’
5. If S` ⊄ CS, then CS←CS U S`
6. for each x є CS do
7. if isomorphic check(x) =true and x contains repeated

e ,then
8. Calculate Upper_Bound of x, UB(x).
9. If UB(x) ≥ τ and x.sup ≥ τ do
10. R ← R U {x}
11. else
12. discard x from CS
13. return R

VI. MAPPING

The map function used to generate a list of values of
(key-value) pair from splitting phase. The algorithm for
finding FSM can be sequential or non-sequential on a single
large graph database or set of small graphs. Basically both
candidate generation and support calculation methods are
needed to pick up required subgraphs. We start with
single-edge pattern(pi).At each iteration of while loop in
algorithm OFSM ,the k+1 subgraphs is generated by mapping
two k-disjoint subgraphs by adding either forward edge or
back edge. There is chances of duplicates subgraphs
generation which we overcome by isomorphism checking.
We use min_dfs_code for it. There are more than one
generation path for each candidate pattern, we extract only
valid candidate path. The technique, we use as follows: A
valid generation path whose insertion order of edges matches
with the edge ordering in min_dfs_code. In algorithm 4, we
performed first isomorphic test, then Upper-Bound for
elimination method to find out support value, which filter out
some of infrequent edge before support count [12].The
biggest feasibility support value is called as its UpperBound,
UB(x).The computation cost is reduced by discarding
infrequent edges which further reduce by calculating Upper
Bound of edges. The {key, value} pair used to pass in
distributed phase to different sites.The key is consist of graph
identification number and value that is associated with
subgraph, edge extension embedding which applied on map
function. The Candidate Generation is implemented by
combining two (n)-size subgraph to produce (n+1)-size
subgraph. We use core identification, join and down-word
closure property of support condition to remove the repeated
one. In this phase, it reads all subgraphs associated with
graph-id. All the technologies used branch_and_bound to
find out locally frequency of subgraph. Then we add a
“dummy root” node over the single edge subgraphs that
correspond to empty subgraphs. Each node extends the graph
of its present nose(s) by adding single edge, a child node
subgraph of its parent. We use top-down approach to traverse
the tree and calculate each node support value.

http://www.ijeat.org/
http://mathworld.wolfram.com/x-Axis.html
http://mathworld.wolfram.com/y-Axis.html
http://mathworld.wolfram.com/z-Axis.html

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database

3136
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

 If a visited node is frequent correspond to graph and
frequency are output and the process continues with child
node. Otherwise, we pruned all its child node and their
descendants.
Algortihm 5:Mapper
1.S(gdi) ← φ
2.for each gdi є GDi do
3. S(gdi) ← Frequent Subgraph Generation(gdi, τ) U
 S(gdi)

VII. SHUFFLING

During Shuffling, we reduce the unnecessary I/O and
communication overhead by decomposing the output in the
map function into following ways: for each subgraphs
present in gdi, we shuffle in such a way that each subgraph is
associated with all support value in entire graph database
(GDi) and make list of subgraphs with all support value in
different worker node.

VIII. REDUCING

In this phase, we calculate global frequency of each
subgraph by summarize all local frequency present in
individual worker node. The output of shuffling and sorting
of key-value pair are input to reducer, then we calculate the
global support(gl(f))value of each candidate subgraph pattern
by aggregating the support count generated in graph partition,
If its value more than or equal to given threshold value
(τ),then reducer result appropriate key-value pair in HDFS
else discard it.

Further, a graph is consider as candidate if it is locally
frequent of any worker node. To avoid false candidate

we check the condition; if any graph in any worker node is
not reported as candidate by any machine, then frequency of
GD in Gi must be satisfy the following inequality:

= τ.ni (7)

Algorithm 6: Reducer
1. g(s))← φ
2. for each s є s(gdi)
3. calculate gl(f)
4. if gl(f) ≥ τ then
5. g(s) ← g(s) U s
6.else discard it.

IX. EXPERIMENTAL RESULT AND DISCUSSION

In this section, we represent the experimental, result that
show the performance of MOFSM for resolving the
extraction of frequent subgraphs on a large graph datasets.
All the experimental we conducted on Intel (R) CPU 3.10
GHz PC with 4 GB RAM running on 32-bit windows
operating systems. We use following four real-world graph
datasets.

Patent citation network managed by the National Bureau
of Economic Research. The data collected on period from 1st
Jan 1963 to 30th Dec. 1999 including 3,923,922 patents .The
citation graph include all citation made by patents granted
during that period, totalling 16,522,438 citations.

Twitter tweets dataset collected 467 million twitter post
from 20 million during 1st Jan 2009 to 31st Dec 2009. We use
only calculate 20-30% of public tweets published on Tweeter
during that specific time span. Each public tweet consist of

Author, Time, and Content information. We consider
17,069,982 user associated with 476,553,560 tweets.

Amazon Website dataset based on “Customer who bought

this item also brought feature” of amazon website. We
consider only largest connected component which consist of
334863,925872 numbers of nodes and edges respectively.

Google Web graph dataset use nodes and edges to
represented webpages and hyperlinks respectively. The data
was released in 2002 by Google as a part of Google
Programming Contest which consist of 875713 web pages
and 5105039 hyperlinks.

Table-III: Statistics of MapReduced based Optimized
Frequent Subgraph Mining with min_sup value 8.

Data
sets

No of
Node

No. of
Edge

Run
Tim

e
(mi
n)

Mappi
ng

Time
(min)

Reducing
Time
(min)

Co
mm.
Ove

r
n/w
(GB

)
Patent
citation
network

3,923,9
22

16,52
2,438

40.8 12.5 49.3 57

Twitter
tweets

17,069,
982

476,5
53,56

0

69.7
5

17.9 56.7 81

Amazon
Website

334863 92587
2

22.7
5

5.69 21.07 3.2

Google
Web

875713 51050
39

30.5 7.28 21.84 6.9

In this section, we compare efficiency and effectiveness of
our proposed methods with existing one. In Fig.3, we vary
minimum support threshold (τ) from 5 to 30 with fix number

of data node to 8.The fig. illustrate that as number of τ

increases the execution time decrease. Our result
approximate nearly 5%, 15% improve than MRFSE-J and
FSM-H respectively.

(a)

http://www.ijeat.org/
http://www.nber.org/
http://www.nber.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

3137
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

(b)

(c)

(d)

Fig.3: Relationship between different minimum support
values with execution time four different datasets.

We illustrate the performance of our proposed model in
different categories of partition in Fig.4 by using
heterogeneous and homogeneous strategies of graph
splitting, we concluded that performance of randomly
division method is better than equal size division in all four
datasets. The Table-III represents how the different datasets
affects the data communication over the network in
Gigabytes. The communication size is directly proportional
to number of nodes in each database.

During execution of MapReduce job in Hadoop, the
number of reducer we use played vital role. When devaluing
data (output) in HDFS, a MapReduce job go along with a
convention of naming the output file with the key record
“part”. Reducer calculates the number of “part” will be

produced to hold the result of job. If we use only one reducer,
then entire result stored in a single file. As we use repetitive
use of MOFSM, where result of current task is set as input to
next task, the number of reducer plays outstanding effects on
the runtime of MOFSM.

(a)

(b)

If we use less number of reducers, then result of output files
stored in larger size which will be a burden over the network
during transmission of data nodes. On other hand, if we use
large number of reducers, then there is chances of creation of
output files of zero size. Further, this zero size output file
creates overhead for next stage of mappers.

(c)

(d)

Fig.4 Relationship between different Splitting techniques
with its execution time four different datasets.

(a)

http://www.ijeat.org/

Map Reduce Based Optimized Frequent Subgraph Mining Algorithm for Large Graph Database

3138
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

(b)

(c)

(d)

Fig.5: Relationship between numbers of Reducer used
with execution time four different datasets.

Hence loading an input file is costly. In fig.5, we take
different number of mappers (i.e.5, 15, 25, 35, 45) and
calculate runtime for MOFSM .As per the fig, we conclude
that 25 is the best choice for number of reducer in our
proposed model.

X. CONCLUSION

In this paper, we derive how to perform FSM in a
distributed system. We defined a MapReduce model that we
use OFSM for extraction of frequent subgraphs .We also
analyse how to perform extraction on different type of
networks system for a large scale graph database. For
experiment analysis, we use all datasets with different
minimum support value on both random and equal division.
We make a comparative analysis with existing techniques,
which conclude that MOFSM is significantly better
performance that existing one. To get effective and correct
results, we have to select proper candidate generation
algorithm with correct partition method. In further, we plan to
extend our work to extend our result on large database.

REFERENCES

1. A.Khan, X.Yan, and K.-L.Wu(2010),‘Towards Proximity Pattern

Mining in Large Graphs’, in Proceedings of the 2010 ACM SIGMOD

International Conference on Management of Data, Indianapolis,
Indiana, USA, 2010, pp. 867–878.

2. Anand Iyer,Zaoxing Liu, Xin Jin(2018),‘Towards Fast and Scalable
Graph Pattern Mining HotCloud'18’, Proceedings of the 10th USENIX

Conference on Hot Topics in Cloud Computing, July 2018.
3. Anchuri, P.,Zaki, M. J.,Barkol,O.,Golan,S. and Shamy M.(2013),

‘Approximate graph mining with label costs’. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2013).

4. D. J. Cook and L. B. Holder (2006), Mining graph data. John Wiley &
Sons, 2006.

5. Di Fatta, G., and Berthold, M. R.(2006), Dynamic load balancing for
the distributed mining of molecular structures. IEEE Transactions on
Parallel and Distributed Systems 17, 8 (2006).

6. Gonzalez, J. E., Low, Y., Gu, H., Bickson, D,Guestrin, C. (2012),
‘PowerGraph: Distributed graph-parallel computation on natural
graphs’. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (2012).
7. Hill S, Srichandan B, and Sunder Raman R(2012). ‘An iterative

MapReduce approach to frequent subgraph mining in biological
datasets’. In Proceedings of the ACM Conference on Bioinformatics,
Computational Biology and Biomedicine (2012).

8. J. Han and J.-R. Wen(2013), ‘Mining Frequent Neighborhood Patterns
in a Large Labeled Graph’, in Proceedings of the 22Nd ACM

International Conference on Conference on Information & Knowledge
Management, San Francisco, California, USA, 2013, pp. 259–268.

9. M. Kuramochi and G. Karypis(2005), ‘Finding frequent patterns in a
large sparse graph’,Data Min. Knowl. Discov., vol. 11, no. 3, pp.
243–271, 2005.

10. Malewicz G, Austern, M. H., Bik A. J., Dehnert, J. C., Horn, I., Leiser
N., Czajkowski, G.(2010), ‘Pregel: A system for large-scale graph
processing’. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (2010).

11. Mccune, R. R., Weninger, T., and Madey, G.(2015) ‘Thinking like a

vertex: A survey of vertex-centric frameworks for large-scale
distributed graph processing’, ArXiv: 1507.04405 (2015).

12. Oliveira Aparicio, D., Pinto Ribeiro , P. M., and Silva, F(2014), ‘F. M.

A. Parallel subgraph counting for multicore architectures’. In

Proceedings of the IEEE International Symposium on Parallel and
Distributed Processing with Applications (2014).

13. Ribeiro, P., and Silva, F(2014),‘G-Tries: A data structure for storing
and finding subgraphs.’Data Mining and Knowledge Discovery 28, 2

(2014).
14. Shao, Y., Cui, B., Chen, L., Ma, L., Yao, J., and Xu, N.(2014) ‘Parallel

subgraph listing in a large-scale graph’. In Proceedings of the ACM

SIGMOD, International Conference on Management of Data (2014).
15. Teixeira, C. H. C., Fonseca, A. J., Serafini, M.,Siganos,

G.,Zaki,M.J.,and Abounga(2015), ‘A. Arabesque: A system for
distributed graph mining - Extended version’. Technical Report, Qatar

Computing Research Institute, 2015.
16. Tian,Y., Balmin, A., Corsten,S.A.,Tatikonda, S. and Mcpherson,

J.(2013), ‘ From “think like a vertex” to “think like a graph’.

Proceedings of the VLDB Endowment 7, 3 (2013).
17. U. Kang, B. Meeder, E. E. Papalexakis, and C. Faloutsos, “Heigen:

Spectral analysis for billionscale graphs,” Knowl. Data Eng. IEEE

Trans. On, vol. 26, no. 2, pp. 350–362, 2014.
18. Yan. X., Han J(2002). ‘gSpan: Graph-based substructure pattern

mining’. In Proceedings of the IEEE International Conference on Data
Mining (2002).

19. Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li(2012), ‘Efficient

subgraph matching on billion node graphs’, Proc. VLDB Endow., vol.
5, no. 9, pp. 788–799, 2012.

20. Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. A. Kumar, and M. V.
Marathe(2012), ‘Sahad: Subgraph analysis in massive networks using

hadoop’, in Parallel & Distributed Processing Symposium (IPDPS),

2012 IEEE 26th International, 2012, pp. 390–401.

http://www.ijeat.org/
https://dl.acm.org/doi/proceedings/10.5555/3277180
https://dl.acm.org/doi/proceedings/10.5555/3277180

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

3139
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C6141029320/2020©BEIESP
DOI: 10.35940/ijeat.C6141.029320
Journal Website: www.ijeat.org

AUTHORS PROFILE

Ms. Sadhana Priyadarshini, is a Phd scholar in
Department of Computer Science and Engineering at
GITAM (Deemed to be University), Vishakhapatnam,
India She completed MTech(CSE) from SQA
University in 2010.Her research interests in field of
Data Mining.

Dr. Sireesha Rodda, is a Professor in the Department of
Computer Science & Engineering, GITAM (Deemed to
be University). She has 17 years of research experience
in the fields of Artificial Intelligence, Data Mining and
Machine Learning. She has more than 30 papers
published in referred journals

http://www.ijeat.org/

