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Abstract: Distributed System, plays a vital role in Frequent 

Subgraph Mining (FSM) to extract frequent subgraph from Large 
Graph database. It help to reduce in memory requirements, 
computational costs as well as increase in data security by 
distributing resources across distributed sites, which may be 
homogeneous or heterogeneous. In this paper, we focus on the 
problem related complexity of data arises in centralized system by 
using MapReduce framework. We proposed a MapReduced based 
Optimized Frequent Subgrph Mining (MOFSM) algorithm in 
MapReduced framework for large graph database. We also 
compare our algorithm with existing methods using four 
real-world standard datasets to verify that better solution with 
respect to performance and scalability of algorithm. These 
algorithms are used to extract subgraphs in distributed system 
which is important in real-world applications, such as computer 
vision, social network analysis, bio-informatics, financial and 
transportation network. 

 
Keywords: Distributed System, subgraph, support count, Graph 

Database, Mapper, and Reducer. 

I. INTRODUCTION 

Recently, the algorithm used to enhance the performance of 
graph data mining are classified into two groups. First, Graph 
Mining emphasis on searching those pattern are most 
frequent subgraphs in that graph. Second, Graph Partition 
that based on classification of a big graph database into 
smaller so that we can easily manage consecutively. 

Due to the advent of new technologies, devices, and 
communication means like social networking sites, the 
amount of data produced by mankind is growing rapidly 
every year. As data size increasing very fast, the main 
challenges are to deal with graphs of big sizes that grow in 
terabytes or petabytes scale. To overcome these problem, we 
use graph division that reduce the complexity of graph 
mining algorithm, which helps to secure the most sensitive 
data, less cost used in memory, computation as well as in 
transmission during distributed system. 
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Distributed Graph Mining broadly classified into Agent 
based, or Client-Server model. Single-agent and Multi-agent 
are two sub groups of Agent-based model. Client-Server 
model is further classified into Classifier Based and Privacy 
Preserving model. We can use either Homogeneous or 
Heterogeneous Technique to calculate patterns between 
distributed data depending on datasets. The Privacy 
Preserving model used to protect our data from unauthorized 
exposure. It can be used either Cryptographic or 
Randomization techniques. The Cryptographic technique 
have better result than other one on the basis of accuracy and 
privacy [6]. 

In Distributed Graph Mining, researcher have to 
concentrate how to distribute the entire graph database and 
computation of algorithm over the entire network of similar 
or diverse types. Graph Database are easy to store in 
heterogeneous than homogeneous. Not only the cost 
associated with transmission, computation and memory can 
be less by distributing data mining, but also we can able to 
provide more data privacy on our database. In this paper, we 
mostly emphasis on extraction of data in form of subgraphs 
presented in heterogeneous sites .We follow Decentralized 
Graph Mining technique to make entire system can be 
distributed workload properly heterogeneous sites. 
Arabesque, a system for distributed graph mining, follows 
“think like a vertex” (TLV) programming paradigm [16], 
which provide a high-level filter-process computational 
framework consist of frequent subgraph mining, counting 
motifs, and finding cliques. Arabesque provide both graph 
computation and graph mining algorithm to run on the top of 
same infrastructure (i.e. Apache Graph [15]) by using Bulk 
Synchronous Processing (BSP) model. 

In recent years, MapReduce becomes main model for 
computation on big data. It supports centralized data of 
distributed computing system. During big data analysis, it 
utilise the “Distributed File System” to improve input/output 

operations. The framework provide higher level of data 
abstraction and keep hides system level details from 
programmer, so that they can able more concentrate on 
problem oriented computation logic .Recently scientist are 
more emphasis on analyse and design of large network graph 
database to overcome major challenges arise in Big data like 
capturing data, storage, searching, sharing, transfer, analysis, 
presentation, etc. However, in various discipline’s like, 

computational mining, computer biology, link spam 
detection, reachability and distance query indexing, use 
MapReduce[7] framework for generate densest  subgraphs 
which more result able and sufficient compare to heuristic 
approach. 
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Paper organization. The remainder of the paper is consist of 
following section. Section 2 establishment of previous work 
on distributed system. Section 3 provides fundamental 
concept and definitions,  
whereas Section 4 describes overview as well as detail of our 
proposed Model. All the experimental analysis represent in 
Section 5 followed with conclusion in Section 6. 

II. RELATED WORK 

Frequent Subgraph Mining is recently studied research field 
in Distributed System. Broadly existing algorithm based on 
either Apriori-based or Pattern-growth methods which based 
on Breath-First Search (BFS) or Depth-First Search (DFS) 
respectively. Gonzalez, Low, Gu, Bickson, and Guestrin. 
discovered frequent subgraph mining by using Minimum 
Description Length (MDL), which can be implemented on 
both supervised concept learning and unsupervised pattern 
discovery and illustrate its scalability and effectiveness[6].   

To make mining process faster Kuramochi and Karypis 
used heuristic algorithm GREW in canonical graphs. He 
proposed a mechanise for cutting in frequent subgraph, which 
focus on bigger subgraph candidate based on smaller 
subgraph and satisfy all criteria of frequent  subgraph. Then 
he implemented with both BFS and DFS approaches and 
developed new algorithm HSIGRAM and VSIGRAM that 
used to find out frequent subgraph candidate [9]. 

Khan and Yan et [1] derived a proximity pattern concept 
that is counted by pFP(probabilistic algorithm FP_growth), 
where the complexity of algorithm is lower than 
isomorphism graph technique. This algorithm transfer a 
complex graph mining problem to a simplified probabilistic 
item set miming pattern. They introduced an objective 
function to measure the interestingness of a proximity pattern 
and make the algorithm more efficient and effect to generate 
only the top-k interesting pattern. 

Sun, Wang, Shao, and Li [19] ,developed the algorithm 
that make graph matching faster by changing function of 
index to become join and expand sungraph which lead to save 
memory requirement as well as index managing during 
frequent subgraph mining. They elucidated the algorithm, 
that support efficient subgraph matching for graph placed on 
a distributed memory stored. The algorithm use efficient 
graph exploration and massive parallel computing for query 
processing. This technique validity of performing subgraphs 
matching on web_scale graph data. 

Zhao et al [20], derived SAHAD, an algorithm to 
overcome problem associated with extraction labelled 
subgraphs in network, which are isomorphic to template. The 
subgraphs are represented in form of tree by using Hadoop. 
The technique is able to find out motifs and computing graph 
lets frequency distribution. It can be able to run easily on 
Amazon EC2, without needs for system level optimization. 

Han and Wen [8] proposed a model that based on the VIL 
(Vertex Identification List) in enumeration phase of solution 
candidate can be defined as pattern to be search.They 
proposed a new class of pattern names as frequent 
neighbourhood pattern, where a neighbour is a specific 
topological pattern in which a vertex (node) is embedded, and 
pattern is frequent if it is stored by a large position of nodes. 
The targets are clear semantics and are not limited to tree like 
shapes. The technique is feasible and unique ability to 
provide user with especially interesting pattern. 

In 2009, Kang, Meeder, Papalexakis, and Faloutsos [17] 
developed PEGASUS algorithm by using MapReduce model 
to analysis big graph, they used Page Rank for combing the 
distance between modes and diameter of graph. Bulk 
Synchronous Processing (BSP) platform used to find the 
shortest path verification of bipartite Semi Clustering graph 
in 2010. 

Teixeira et al [15] developed Arabesque system that 
generates process of extracting a very large number of 
subgraphs by using a high-level filter-process computational 
model. It solve the problem associated with frequent 
subgraph mining, counting motifs, and finding cliques. This 
system concentrates on scalability and provide 
customer-friendly simple programming API that allows 
non-experts to build workload. 

Aparicio, D.,Ribeiro, and Silva, proposed a graph pattern 
mining engine for distributed graph processing system that is 
both fast and scalable to large graphs. They used 
neighbourhood sampling technique, which increases the 
probability that an estimator would actually find an instance 
of given pattern, hence need less estimator to get same 
accuracy. This algorithm also overcomes following 
challenges, general pattern, distributed setting, error-latency 
profile, and handling updates [12]. 

Mccune, Weninger,  and Madey [11], tried to sort out the 
issues related to billion-node graph that exceed the memory 
capacity of standard machines are not well-supported by 
popular Big data tools. The new vertex-centric programming 
framework challenges one to “think like a vertex “(TLAV) 
and executes the customer-defined programs from the 
perspective of a vertex rather than graph. The timing, 
communication, execution model, and partitions are main 
milestone related to distributed algorithm. 

The parallel methods, which are used to handle large graph 
fully rely on the expensive join operation which reduces the 
performance. Shao, Cui, Chen, Yao, and Yingxia [14], 
designed a parallel subgraph listing frame name PSgl, that 
repetitively eliminates the subgraph instances and use 
divide-and-conquer method to solve the subgraph listing. It 
purely based on graph traversal, and avoids the explicit join 
operations. The performance, scalability, and fault-tolerance 
of Pregel are already satisfactory for graph with billions of 
vertices. 

Giuseppe et al[5], described three vital aspects of the 
proposed distributed framework, namely a distribution 
process based on a peer-to-peer communication, and  
dynamic partitioning of search space, and a novel 
receiver-initiated load balancing algorithm. It tolerates node 
failure and communication latency and supports dynamic 
resource aggregation. Its dynamic resource aggregation make 
feasible for large-scale, multidomain, heterogeneous 
environments. 

Aparicio, Ribeiro, and Silva [12], derived a novel parallel 
method for subgraph counting geared towards multicores. 
They used state-of-art g-tries data structure, which is core of 
fastest sequential algorithm for subgraph counting. The 
g-tries are multiway trees, much like prefix tree that use 
common topologies in subgraphs in order to prune the search 
tree. They developed an efficient sharing mechanism that is 
able to stop, split and resume the execution of dynamically 
divide the search tree among 
threads. 
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The g-tries, a data structure specifically designed for 
discovering subgraphs frequencies.  

Ribiro and Silva build a tree structure to summarize the 
structure of entire graph set, by combining the common 
prefix topologies in the same way a prefix tree. A g-tries is a 
multiway tree that can store a collection of graphs. They used 
sampling methodology capable trading accuracy for even 
faster execution times, additionally improving the potential 
of the developed data-structure [13]. 

Anchuri, Zaki, Barkol, Golan and Shamy [3], derived an 
algorithm to extract frequent approximate pattern in a single 
large graph database in the presence of a cost matrix between 
labels. They proposed label based repetitive pruning method 
to compute the representative set efficiently .It relied on k-top 
label and neighbor concatenated labels, which handle both 
arbitrary as well as binary cost matrices. 

III. PRILIMINARIES 

In this section, we explore some of definition and study 
related to our work. Table-I outlines the basic notations used 
throughout our paper. Section A illustrate topics related to 
Frequent subgraph Mining, whereas Section B emphasis on 
overview of MapReduce Framework. 

A. Frequent Subgraph Mining (FSM) 

Let, GD={GD1, GD2, GD3…. GDn }, ∀ i=1,2,3…n be a graph 
where n is number of graphs present in GD. We define each 
GDi є GD as a quadruple GD=(Vgd,Egd,Lgd,lgd),where 
Vgd,Egd,Lgd,lgd are set of vertices , edges, labels, and labelling 
function that map every vertices and edges to a single Label 
in Lgd respectively. For our proposed work, we consider 
undirected and connected graph only. 

Table-I: List of Notations 

Symbol  Description 
GD Graph Database(collection of graphs) 
Vgd Set of all vertices in GD 
Egd Set of all edges in GD 
n=|GD| Number of graphs in GD 
Gi Number of subgraphs in GDi 
FE Set of frequent Edges 
CS Candidate Set 
τ User given minimum threshold value 
R Result Set 
S Subgraph 
N Number of MapReduce machines(worker nodes) 

 
Definition1:(Subgraph) Given a graph S=(V`gd,E`gd,L`gd,l`gd) 
is said to be subgraph of another graph GD=(Vgd,Egd,Lgd, lgd), 
if there exit an injective function ψ : V`gd→ Vgd such that ∀ 
(a,b) є Egd it must hold that (lgd(a)= l`gd (ψ(a)))ᴧ l`gd(b)= 
l`gd(ψ(a)) ᴧ lgd(a,b)= lgd(ψ(a), ψ(b)). 
 
Definition2:(Subgraph Isomorphism)A subgraph isomorph- 
hism from subgraph S=(V`gd,E`gd,L`gd,l`gd)) to graph 
GD=(Vgd,Egd,Lgd,lgd), is denoted by G ⋍S, which is an 
bijective function ϕ :Vgd→V’ gd such that for every pair of 
vertices vi, vj if (vi , vj) є  Egd then ϕ(vi), ϕ(vj) є E’gd . 
Definition 3:(frequency of subgraph)The frequency of 
subgraph S is calculated by number of  times it present in GD. 
f(S)={S|S є  GD ᴧ S⊂GD}. 

B. MapReduce Framework  

MapReduce is a processing technique and a program model 
for distributed computing based on java. It consist of two 
tasks, Map and Reduce. The Fig.1 shows that, the Map takes 
input as a set of data and transform into a specific form where 
each element split into tuples (key/value pairs). Secondly 
Reduce, that takes the output from Map as input data and 
merge those data into a similar set of tuples. MapReduce 
programs implements in tree steps, namely map, shuffle and 
reduce [7]. 
• Map: The map or mapper task to organize input data 

which is in form of file dictionaries stored in Distributed 
File System (DFS) or Hadoop Distributed File System 
(HDFS) 

The input file is processed in mapper function line by 
line and generate several small chunks of data (i.e. 
key/value pair). 

• Reduce:  This step is consist of Shuffle and Reduce. The 
shuffle accumulate key-pair into a group of list of same 
key and sort it. Then individual key associated list of 
value sent to different machines (systems).The result of 
shuffle and sort sent to reducer, where reducer use  
“reduce” function each list of value and generate a 
unique key,final output <key, value> will be stored or 
display. The table-II illustrates how the Input and Output 
types of a MapReduce job are going to done (i.e. (Input) 
<k1, v1> → map → <k2, v2> → reduce → <k3, v3> 
(Output)). 

 
Fig. 1. Flow chart of MapReduce Framework 

Table-II: Mapper and Reducer job 
 Input Output 

Map  <k1,v1> List<k2,v2 
Reduce <k2,list(v2) List<k3,v3> 

IV. OVERVIEW OF PROPOSED MODEL 

In case of parallel computation of Graph Mining, we get 
faster result and better performance than sequential approach. 
However, in case of the large-scale graph processing, it is 
difficult to handle in parallel due to shortage of memory 
requirement, complexity of graph computational and privacy 
of data. In this paper, we proposed a model MapReduced 
based Optimized Frequent Subgrph Mining (MOFSM) 
shown in Fig.2, that used repetitive MapReduce framework 
with Optimized Frequent Subgraph Mining dynamically.  
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Homogeneous Classifier-based method, that based on 
Ensemble Learning, Distributed association Rule 
Mining(DARM),MetaLearning, Knowledge Probing is 
implemented for evaluation of pattern in distributed system. 
It is purely based on Client-Server model, where graphs are 
accumulated and processed at global level. Hadoop 
MapReduce is the processing component of Apache Hadoop 
that process the data parallel in distributed environment. 
MapReduce[7] can be implemented in Google, Apache 
Hadoop. In our proposed work, we use Hadoop Distributed 
File System (HDFS) for storing graph database.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig 2. Framework model for MapReduced based 
Optimized Frequent Subgrph Mining (MOFSM). 

Further, the pattern design consist of Summarization (eg. 
Inverted Index), Recommendation (eg. Sorting), 
Classification (eg. Top N Record) and Analysis (eg. Join, 
Selection). We use the analysis design pattern for our 
database. Here main precedence that, we can process data in 
parallel in distributed sites that leads to less computational 
time. Instead of moving entire graph database, we only shift 
processing logic to different site where actual data present.  

In MOFSM technology, we generate frequent subgraph 
pattern from Graph Database if its support values equals to or 
greater than minimum threshold value (τ). Further, in case of 

dynamically division, the entire dataset is distributed over 
different sites in form of worker nodes. Therefore, it is 
difficult to estimate subgraph support count value in 
MapReduce model, as local support in respective division at 
worker nodes, are difficult form the support in global state 
communication. As Apriori-based algorithm, we can’t 

postpone the support calculation. To overcome this problem, 
we introduced a new value to each node before partition 
which further used in worker nodes site for calculation of 
support count. At destination site, first we  
Algorithm 1: Filter (GD, τ) 

1. Fe ← φ 
2. for each  e є Fe  do  
3.     Calculate f(e)  
4.      If(f(e ))≥ τ 
5.        then Fe← Fe U e 

6. return Fe 

Algorithm 2: Geometric Two-Way Graph Division 
Input: GD = (X, x, y, z)  
Output: GD1 and GD2 
1.Let xyzw = π (xyz)  
2.Select the center point Cp of xyzw. 
3.Perform conformal mapping to choose the largest circle 

LCp on the unit sphere in Rn+1  
4.Transform the LCp into a sphere S in Rn using reverse 

conformal mapping. 
5.Divide the sphere S vertices into two parts xyz1, xyz2. 
6.Generate two graphs GD1 and GD2 are constructed from 

xyzwI  , xyzw2 respectively. 
 

check each node frequency value, if its value more that 
threshold value (τ), then consider else discard it [20]. 

Our proposed work is based on four phases: Splitting, 
Mapping, Shuffling, and Reducing. We consider our database 
in form of a single large graph or set of small graphs. During 
Splitting phase, we use GMOFSM to split entire dataset into 
number of graphs GDi, i=1,2,3..n,where n is number of 
workers nodes. Mapper used in mapping phase to extract 
subgraph with local frequency associated with each graph-id. 
During Shuffling phase ,each subgraphs is associated with its 
global frequency which become input to Reducer and 
generate all the frequent subgraphs whose frequency value 
equal to or greater than threshold value. Fig: shows the 
framework of different phases for generation of frequent 
subgraphs.  

V. SPLITTING 

In Splitting phase of our proposed work, the entire graphs 
(GD) divides into many partitions (GDi).In algorithm 1,first 
we assign set of all frequent edges(Fe) as null in line-1.At 
each iteration we take individual edges, and computed its 
frequency f(e) inside the graph, if its value same or more than 
user given threshold value, then the edge added to Fe ,else 
discard(line2-5).During splitting section, each graph is 
associated with <key, value> pair, GDi, ∀ i=1,2,3…n., where n is 
number of graphs present in GDi. Now (key, value) pair 
generated by this phase as <graph-id> as key and <gdi, Fe > as 
value for input to mapper [6].In our proposed framework, we 
derived Geometric Multi-way Division algorithm (Algorithm 
2), which divide the entire graph database into n-disjoint 
graphs. Let a Graph Database (GD) in Rn of V vertices and E 
edges, we implement two-way division algorithm to get 
n-disjoint graph, where n is any positive integer. The X is an 
array of vertices pair that represents the edges among lattice 
vertices in G, such that, X = {{(x1, y1, z1), (x2, y2, 
z2)},…{(xv−1, yv−1, zv−1), (xv, yv, zv)}},where v is the 
number of vertices in Rn [13].In algorithm 2 (line 2) ,the 
standardized formulae of graph in eqn(1) is used to calculate 
the center point of given points in sphere, where (x’,y’,z’) and 

r are the center point and radius of sphere respectively.  
 
(x-x’)2+(y-y’)2+(z-z’)2=r2                                           (1)  
 

 
 
 
 

Input Graph Database 

Elimination of infrequent edges from Database 

Splitting the Database 
<GDi=<gdi,s(gdi)> 

 

Mapper 
 <s(gdi),Lτ> 

Reducer 
<S(gdi),Gτ> 

 

Result Set( S(GD)) 
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In case of conformal mapping, first, we use translation in 
the space is described by tx,ty,tz. It is easy to this matrix 
realizes the equations: 

 
x=x’+tx          

y=y’+ty           

z=z’+tz                        (2) 

Second, we perform in , coordinate system rotations of 
the x-, y-, and z-axes in a counter clockwise direction when 
looking towards the origin give the matrices. 

  

 

(3) 

 

 

 

(4) 

  

 

(5) 

Third, Scaling is describe by Sx,Sy,Sz. We see that this 
matrix realizes the following equations: 

 

x2=x1· Sx 

y2=y1· Sy         
z2=z1· Sz                                                                      (6) 
 

To achieve better performance, the number of division also 
plays vital role .The different way of splitting show faster 
result, which we shown in experimental section. Before 
Spliting, we used a “filtration” technique to filter out 
infrequent edges from graphs which reduce further 
computation, transmission, i/o cost on worker nodes. In this 
paper, the input Graph Database (GD) split into many 
partition and the OFSM method iteratively use MapReduce. 

mostly more than MapReduce jobs, therefore it optimized 
the desired result. By adding load balance technique in 
MapReduce task, we also achieve better result. Before Graph 
partition, input graph dataset go to pre-filling stage, where 
we remove all infrequent edges [14]. During scanning of 
graph database for entire GD, OFSM maintain a support-list 
from each edge to find out infrequent edges against the 
user-defined minimum threshold value. 
Algorithm 3: Frequent Subgraph Generation 
Input: A graph g, user given support threshold τ value 
Output: total frequent subgraphs set R 
1. R← φ  
2. Let FE be the set of all frequent subgraphs with all frequent 
edges of graph GD. 
3. for each f є FE do  
4.  R ← R U Subgraphextension(s,GD,τ,R, FE )  
5. Delete f from FE and g  
6. return R 
Algorithm 4:Subgraphextension  

Input: subgraph s, a graph g, min-sup τ, a set of frequent 

edges FE, result set R  
Output: all frequent subgraphs of g that extend s  

1. Result( R )← φ 
2. Candidate set(CS)← φ  
3. for each edge e in FE do 
4. Let extension in S` be the extended of e by adding 

frequent edge e’ 
5. If S` ⊄ CS, then  CS←CS U S`  
6. for each x є CS do  
7. if isomorphic check(x) =true and x contains repeated 

e ,then 
8. Calculate Upper_Bound of x, UB(x). 
9. If UB(x) ≥ τ and x.sup ≥ τ do 
10. R ← R U {x} 
11. else  
12. discard x from CS 
13. return R 

VI. MAPPING 

The map function used to generate a list of values of 
(key-value) pair from splitting phase. The algorithm for 
finding FSM can be sequential or non-sequential on a single 
large graph database or set of small graphs. Basically both 
candidate generation and support calculation methods are 
needed to pick up required subgraphs. We start with 
single-edge pattern(pi).At each iteration of while loop in 
algorithm OFSM ,the k+1 subgraphs is generated by mapping 
two k-disjoint subgraphs by adding either forward edge or 
back edge. There is chances of duplicates subgraphs 
generation which we overcome by isomorphism checking. 
We use min_dfs_code for it. There are more than one 
generation path for each candidate pattern, we extract only 
valid candidate path. The technique, we use as follows: A 
valid generation path whose insertion order of edges matches 
with the edge ordering in min_dfs_code. In algorithm 4, we 
performed first isomorphic test, then Upper-Bound for 
elimination method to find out support value, which filter out 
some of infrequent edge before support count [12].The 
biggest feasibility support value is called as its UpperBound, 
UB(x).The computation cost is reduced by discarding 
infrequent edges which further reduce by calculating Upper 
Bound of edges. The {key, value} pair used to pass in 
distributed phase to different sites.The key is consist of graph 
identification number and value that is associated with 
subgraph, edge extension embedding which applied on map 
function.  The Candidate Generation is implemented by 
combining two (n)-size subgraph to produce (n+1)-size 
subgraph. We use core identification, join and down-word 
closure property of support condition to remove the repeated 
one.         In this phase, it reads all subgraphs associated with 
graph-id. All the technologies used branch_and_bound to 
find out locally frequency of subgraph. Then we add a 
“dummy root” node over the single edge subgraphs that 
correspond to empty subgraphs. Each node extends the graph 
of its present nose(s) by adding single edge, a child node 
subgraph of its parent. We use top-down approach to traverse 
the tree and calculate each node support value. 
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 If a visited node is frequent correspond to graph and 
frequency are output and the process continues with child 
node. Otherwise, we pruned all its child node and their 
descendants. 
Algortihm 5:Mapper 
1.S(gdi) ← φ 
2.for each gdi  є GDi do 
3.    S(gdi) ← Frequent Subgraph Generation(gdi, τ) U     
                     S(gdi) 

VII. SHUFFLING 

During Shuffling, we reduce the unnecessary I/O and 
communication overhead by decomposing the output in the 
map function into following ways: for each subgraphs 
present in gdi, we shuffle in such a way that each subgraph is 
associated with all support value in entire graph database 
(GDi) and make list of subgraphs with all support value in 
different worker node. 

VIII. REDUCING 

In this phase, we calculate global frequency of each 
subgraph by summarize all local frequency present in 
individual worker node. The output of shuffling and sorting 
of key-value pair are input to reducer, then we calculate the 
global support(gl(f))value of each candidate subgraph pattern 
by aggregating the support count generated in graph partition, 
If its value more than or equal to given threshold value 
(τ),then reducer result appropriate key-value pair in HDFS 
else discard it. 

Further, a graph is consider as candidate if it is locally 
frequent of any worker node. To avoid false candidate 

we check the condition; if any graph in any worker node is 
not reported as candidate by any machine, then frequency of 
GD in Gi must be satisfy the following inequality: 

= τ.ni            (7) 

 
Algorithm 6: Reducer 
1. g(s) )← φ 
2. for each s є s(gdi ) 
3. calculate gl(f) 
4. if gl(f) ≥ τ then 
5.     g(s) ← g(s) U s 
6.else discard it. 

IX. EXPERIMENTAL RESULT AND DISCUSSION 

In this section, we represent the experimental, result that 
show the performance of MOFSM for resolving the 
extraction of frequent subgraphs on a large graph datasets. 
All the experimental we conducted on Intel (R) CPU 3.10 
GHz PC with 4 GB RAM running on 32-bit windows 
operating systems. We use following four real-world graph 
datasets.  

Patent citation network managed by the National Bureau 
of Economic Research. The data collected on period from 1st 
Jan 1963 to 30th Dec. 1999 including 3,923,922 patents .The 
citation graph include all citation made by patents granted 
during that period, totalling 16,522,438 citations. 

Twitter tweets dataset collected 467 million twitter post 
from 20 million during 1st Jan 2009 to 31st Dec 2009. We use 
only calculate 20-30% of public tweets published on Tweeter 
during that specific time span. Each public tweet consist of 

Author, Time, and Content information. We consider 
17,069,982 user associated with 476,553,560 tweets. 

Amazon Website dataset based on “Customer who bought 

this item also brought feature” of amazon website. We 
consider only largest connected component which consist of 
334863,925872 numbers of nodes and edges respectively. 

Google Web graph dataset use nodes and edges to 
represented webpages and hyperlinks respectively. The data 
was released in 2002 by Google as a part of Google 
Programming Contest which consist of 875713 web pages 
and 5105039 hyperlinks. 

Table-III: Statistics of MapReduced based Optimized 
Frequent Subgraph Mining with min_sup value 8. 

 
Data 
sets 

No of 
Node 

No. of 
Edge 

Run 
Tim

e 
(mi
n) 

Mappi
ng 

Time 
(min) 

Reducing  
Time 
(min) 

Co
mm. 
Ove

r 
n/w 
(GB

) 
Patent 
citation 
network 

3,923,9
22 

16,52
2,438 

40.8 12.5 49.3 57 

Twitter 
tweets 

17,069,
982 

476,5
53,56

0 

69.7
5 

17.9 56.7 81 

Amazon 
Website 

334863 92587
2 

22.7
5 

5.69 21.07 3.2 

Google 
Web 

875713 51050
39 

30.5 7.28 21.84 6.9 

In this section, we compare efficiency and effectiveness of 
our proposed methods with existing one. In Fig.3, we vary 
minimum support threshold (τ) from 5 to 30 with fix number 

of data node to 8.The fig. illustrate that as number of τ 

increases the execution time decrease. Our result 
approximate nearly 5%, 15% improve than MRFSE-J and 
FSM-H respectively. 
 
 

           
(a) 
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(b)

 

 
(c ) 

 
 

(d) 

Fig.3: Relationship between different minimum support 
values with execution time four different datasets. 

We illustrate the performance of our proposed model in 
different categories of partition in Fig.4 by using 
heterogeneous and homogeneous strategies of graph 
splitting, we concluded that performance of randomly 
division method is better than equal size division in all four 
datasets. The Table-III represents how the different datasets 
affects the data communication over the network in 
Gigabytes. The communication size is directly proportional 
to number of nodes in each database. 

During execution of MapReduce job in Hadoop, the 
number of reducer we use played vital role. When devaluing 
data (output) in HDFS, a MapReduce job go along with a 
convention of naming the output file with the key record 
“part”. Reducer calculates the number of “part” will be 

produced to hold the result of job. If we use only one reducer, 
then entire result stored in a single file. As we use repetitive 
use of MOFSM, where result of current task is set as input to 
next task, the number of reducer plays outstanding effects on 
the runtime of MOFSM. 
 

 
(a) 

 

 
 

(b) 

If we use less number of reducers, then result of output files 
stored in larger size which will be a burden over the network 
during transmission of data nodes. On other hand, if we use 
large number of reducers, then there is chances of creation of 
output files of zero size. Further, this zero size output file 
creates overhead for next stage of mappers. 

      
( c) 

  
(d) 

Fig.4 Relationship between different Splitting techniques 
with its execution time four different datasets. 

    
(a) 
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(b) 

 

  
( c ) 

 

  
(d) 

Fig.5: Relationship between numbers of Reducer used 
with execution time four different datasets. 

Hence loading an input file is costly. In fig.5, we take 
different number of mappers (i.e.5, 15, 25, 35, 45) and 
calculate runtime for MOFSM .As per the fig, we conclude 
that 25 is the best choice for number of reducer in our 
proposed model. 
 

X. CONCLUSION 

In this paper, we derive how to perform FSM in a 
distributed system. We defined a MapReduce model that we 
use OFSM for extraction of frequent subgraphs .We also 
analyse how to perform extraction on different type of 
networks system for a large scale graph database. For 
experiment analysis, we use all datasets with different 
minimum support value on both random and equal division. 
We make a comparative analysis with existing techniques, 
which conclude that MOFSM is significantly better 
performance that existing one. To get effective and correct 
results, we have to select proper candidate generation 
algorithm with correct partition method. In further, we plan to 
extend our work to extend our result on large database. 
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