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Abstract: Functional Magnetic Resonance Imaging (fMRI), 
a non-invasive technique, is used for the recognition of different 
Cerebral Blood Flow (CBF) and Blood Oxygenated level 
dependent (BOLD) measures which result into the identification 
of various neural activities related to different physiological 
processes such as Hunger Regulation, Water Balancing etc.  
Different BOLD contrast levels (blood oxygenated and 
deoxygenated level) specify diversity in various state of human 
brain functioning subject to various tasks. The proposed model is 
a hybrid combination of Sparse method (Carroll et al., 2009) and 
Hypothalamic Hunger Regulation Model i.e. Sparse matrix for 
Hypothalamic BOLD Signal method (SMHB Method).  SMHB 
method is dynamic and linear in nature. It defines the sparse 
parameters which act on the mapping between the fMRI signal 
for hunger regulation process and sparse representation of the 
signal segmented from the input image by which every voxel of 
fMRI signal in temporal domain can be expressed as a sparse 
signal. A sparse model provides a well define results for task 
based localized activity. It can be applied on a single image as 
well as an fMRI dataset. The implementation of SMHB method 
divided into different sub-modules such as Input image analysis 
and visualization, Linear Voxel Module and Neuro Activation 
Module. Our study have completed first two module with 
different pre-processing techniques used for image analysis and 
linear representation of each voxels of fMRI signal in the form of 
sparse parameters.    

Keywords: Hunger Regulation, fMRI, BOLD, Linear Sparse 
Model, Sparse Matrix.  

I. INTRODUCTION 

he complex technique of fMRI has been studied through 
different models and numerical simulation.  The fMRI 

signal depends on neurovascular factors, brain activity for 
physiological and homeostatic functions, oxygen 
metabolism, neurovascular coupling and more [7].  The 
Homeostatic functions has been described with 
mathematical perspective under consideration of various 
spatial and statistical parameters like fractals, entropy, 
membership function, wavelets and correlation, variance 
and Skewness respectively [1][2]. An accurate analysis of 
BOLD contrast gives correct interpretation of the 
physiological functions. Different biophysical models 
calibrated and quantify the functional changes. The basic 
key features of such methods are mono-variant and multi-
variant, Linear and Non Linear, convolution, regression and 
covariance etc.  
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BOLD fMRI simulators and software has been developed 
under the challenging environment created by these 
physiological based parameters. The fMRI technique reveals 
certain level of information regarding the motor, metabolic, 
cognitive, physiological and perceptual based neural activity 
of human brain. Such studies required a high resolution data 
set with variation in tasking [7] [8]. The increase in local 
CBF results in the increase in the metabolic level of oxygen 
and glucose. Due to the complexity in BOLD signal an 
optimized model is required for the vascular, physiological 
and metabolic interpretation of different brain regions [8]. 
Different categories for the Analytical Models and 
Simulation methods for the BOLD signals are introduced 
with passage of time. Biophysical Simulations methods for 
BOLD signals single voxel model, multi-voxel model and 
multi-resolution models [14]. Analytical category based 
BOLD models are Static and Dynamic Model (Figure 1). 
Dynamic Model further categorised as Linear and Non-
Linear Sparse Model, Calibrated Model and Balloon Model. 
Our study is mainly concentrated on linearly represented 
Sparse Model.  

 
Figure 1: Categories of Models for BOLD signal 

representation and Analysis 

II.  LITERATURE REVIEW 

From last decade a number of models based on different 
parametric input and functionality has been applied to fMRI 
data to describe different activity and task based result. 
BOLD, DWI, MEMRI, HMR spectroscopy based methods 
provide neuro compartment based interpretation of fMRI 
signals with metabolic and neuro-endocrine task and 
functions of human body [15] [16].  
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Pulse Arterial Spin Labelling Magnetic Resonance Imaging 
(PASL MRI) can also be used to create discrepancy between 
the signals generated for food deprivation and satiety in 
healthy obese humans. Satiety hormone i.e. Leptin triggered 
the neurons at arcuate nucleus at Hypothalamus for increase 
and decrease in food consumption and energy expenditure 
[3]. The functionality based connection between 
Hypothalamus and pituitary gland differentially influence 
the BMI (Body Mass Index) of human body positively. The 
multiple linear regression based method has been used for 
this implementation [5]. Analysis and Classification 
techniques can be apply on different metabolic functions 
like hunger regulation, energy balance, water balance etc. A 
classical method, Machine learning classifier (MLC), can be 
used to classify different brain activities. Multi-voxel pattern 
Analysis (MVPA) examines the mapping between activities 
and cognitive states of brain. Support Vector Machine 
classifier with machine learning scenario gives more than 80 
% accuracy on fMRI signals with resting state to 
differentiate between two major metabolic states of 
Homeostasis process i.e. Hunger and Satiety state[6]. A 
convolution based model is constructed for the fMRI signals 
classification for multiple tasks depends on Regression 
based General Linear Model (GLM) and gives output with 
variation in BOLD signal with time based parameters [7]. 
Multivariate methods are more relevant and optimized to 
map the complexity of the fMRI imaging techniques. An 
elastic network method interpret fMRI activity network to 
various task and its parameters [9].A multivariate method 
using sparse representation can be used positively to analyse 
various states and groups of brain network for Autism 
disorder. The Multilink analysis method provides an optimal 
result with an above average accuracy level defining the 
cross dependency and connectivity between different 
features of Brain networks [4]. A different range of methods 
can also be used to filter noise from the fMRI signal. These 
noises can be either instrumental because of machine or 
physiological fluctuations or object movement based noise 
or many more. For the de-noising process, regression 
(Global signal regression method) and variance based 
method can be applied on the acquired fMRI signal [12]. For 
spatial fMRI dataset with richer texture and with noise 
Empirical mode decomposition model with green function 
resultant an optimized outcomes than previously used 
standard methods but increase the computational weight to 
the machine [13]. Wavelets transform is beneficial with both 
spatial domain and temporal domain fMRI signals. The 
decomposition and de-correlation properties of Wavelets 
transform provides parametric lead to General Linear 
Model‘s variables and the activity map of an fMRI signal. 
For Sparse Representation, a Threshold based iterative 
algorithm is proposed for an activity which is sparsely 
distributed in time [17]. 

III. MOTIVATION 

Apart from providing the mapping between the voxel of 
the fMRI signal and sparse array, gives multiple optimized 
outcomes which are as follows: 

• It gives mapping for the aperiodic activity of any 
neuron with respect to time individually.  

• The response of a single neuron from passive to 
generating spike for a selective stimulus activity 
generating by group of neurons. 

• For a particular point of time range, the stimulation 
of a small cluster of neurons to a single stimulus 
activity. 

• Sparse dictionary learning based model can be 
applied to complete fMRI dataset. 

• It determines and interprets the task based activity 
parameters from an fMRI activity pattern.   

• Pattern analysis and classification can be 
performed with multivariate model. 

IV. METHODOLOGY 

Our Simulation method, Sparse Model [9] [10] for 

Hypothalamic BOLD signal (SMHB) described by the 
following four steps (Figure 2) including the equations 
(procedures) and assumptions.  

Step 1: Input image is the synthesized image which 
required multiple methods image analysis to visualize the 
image features.    

Step 2: Each fMRI voxel’s element is sparse and the 
activation spikes integration for that neuron is linear in 
nature. The observations at ith voxel stimuli generated by a 
single neuron i.e. variable ni can be calculated using Linear 
Voxel Module where the column vector of generated matrix 
(S) can be map to the fMRI signal for a single neuron.  

 
   ∑ 𝑛𝑖

𝑐
𝑖=1 = 𝑆 ∗ 𝑉𝑖 +  ℇ𝑖     (1) 

 
Such that ni belongs to ℝ with M dimension and where i 

can be number of voxel such that i = 1, 2 ….C, S is matrix 
with dimension M × N, generated after fMRI scan for a 
single experimental task.  Vi is the optimized average signal 
potential with a number of P parametric functions. ℇ𝑖 is the 
noise at each voxel (ith voxel). For (Equation 1) each 
stimulated spike for a single neuron is equivalent to the 
experimental pattern in the parametric dictionary.  

Step 3: Using convolution and Hemodynamic response 
function two parametric dictionary introduced for our 
resultant matrix X. For Neuron Activation Module (NAM) 
for any Sparse representation model a statistical model can 
be used. To prompt discrepancy and sparseness to our model 

Laplacian function [9]. Laplacian function gives the 

statistical mapping between the different stimuli and 
regression individually applied to each Vi , fMRI signal.   

 
𝐻𝑖 = 𝑃𝐷 ∗ 𝑅(𝑉𝑖)    (2) 
  For i = 1, 2… C. 
 
Further calculation includes False Probability Detection 

Function (FPDF) and Stimulus Threshold Evaluation (STE).  
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A threshold variable Tv for each stimulus is calculated 
from a Laplacian distribution function.  

Step 4: Result will be in the represented in the form of 
Sparse matrix. Our   

  

 
Figure 2: Step by Step procedure for Simulation of 

Sparse Model for Hypothalamic BOLD signal (SMHB) 

V. RESULTS AND DISCUSSION 

The deployment of the SMHB model can be tool-wise 
divided into two major parts: ImageJ (1.52a, Java1.8.0_112 
(64bit)) and MATLAB R2018a. ImageJ is used to acquire 
the data (Image) specific to neural activity at Hypothalamus 
for food and non-food images [11]. For our result which 
include image acquisition and analysis of input data. With 
help of MATLAB R2018a, a series of user defined functions 
has been developed for each equation (Equation 1 and 2). 
The result from our study can be described by the following 
points:  

• Input Image: For pre-processing, an image (32 
bits) with resolution 175 X 288 X 288 (length, 
width, slice) is used for input (Figure 3 and Figure 
4). 

• Pre-processing method:  It includes contrast 
enhancement and sharpening (Figure 7) and quality 
analysis for fMRI signal includes histogram 

(Figure 5 and Figure 9) and Fourier transforms 
method (Figure 11(a) and 11(b)).  

• Transform function: Fire colormap (Figure 3(c)) 
with variables colours and alphas, Thermal 
colormap and surface plot are applied to enhance 
the visibility of the images.  

• Localization (Figure 4): For the location of 
Hypothalamus in the input image the Co-ordinated 
value for the voxel x=87, y=148, z=94 and voxel 
value=79 and rotation co-ordinates are x= 86 y =-
82 z=4. 

• Local Thresholding (bitwise figure 8): The 
methods provided by ImageJ to show active 
different neuro-compartments of brain at threshold 
range which are Maxentropy method, Otsu method 
and Percentile method (figure 6). 
 

Table I: Threshold values for Local Thresholding   
Threshold 
Level 

Max 
Entropy  

Otsu 
method  

Percentile 
Method 

Minimum  106 98 101 

Maximum 125 110 110 

  
Table II: Histogram Parameters (Figure 9) 

Count Mean StdDev 

480053 31.622 52.859 

Min Max  Mode 

0 255 0 (301849) 

 

• The histogram (Figure 5 and 9) of the input image 
to represent intensity level (weighted and un-
weighted) with the histogram parameters like no of 
pixels, mean and standard deviation shows in Table 
I and II. 

• Contrast, saturation and edges enhanced image is 
used for further processing where we used the Fast 
Fourier Transform (figure 11 (a) and 11 (b)) and 
surface plot (figure 10(a) and (b)) to visualize the 
voxels’ value for the co-ordinated value (x, y, z). 
The Fourier transform of the original image and the 
edge enhanced image can be easily differentiated 
visually and parameterized level.  

Two modules have been implemented 
successfully and results have been displayed with 
the help of Figure 3 to 11.    

STEP 4 : Results (Mapping between fMRI to Sparse)

STEP 3 : Neuron Activation Module

Laplacian Function Regression method

STEP 2 : Linear Voxel Module

User defined MATLAB 
function

Input signal from fMRI 
Image 

STEP 1: Signal preprocessing and Quality Analysis

Image acquisition from fMRI Image Data set (ImageJ) 
(fMRI Signal)  
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Figure 3: (a, b, c) Location of Hypothalamus in an input Image 

 
Figure 4 : ImageJ environment used to locate the Hypothalamus in a data set (Sequence of Images (32 bit) with 288 

slices) of resolution 175 X 288. 

 
Figure 5 : Histogram of the original Image (Figure 4) with un-weighted Intensity and mean and standard Deviation 

 
Figure 6 (a, b, c): Resultant Images with MaxEntropy, Otsu method and Percentile method for local Thresholding. 
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Figure 7: Input Image (a), Image with Enhanced contrast and sharpening technique (b) and Image with edge 

identification (c). 
 

 
Figure 8 fMRI Image after local threshold method (bitwise) of an 8bit grayscale image. 

 

 
Figure 9:  Histogram for image 9(a) 
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Figure 10 : (a) Surface plot for image 9(a), (b) Surface plot for image 9(b).

  
Figure 11(a): Fourier transforms of image at 9(a), (b): 

Fourier transform of image at 9(c). 

VI. CONCLUSION  

Since we are using the secondary dataset we are analysing 
it using multiple pre-processing methods such as histogram, 
Fourier transforms and surface plot (Figure from 3 to 11) to 
get better synthesized image. The minimum and maximum 
threshold values for Local Thresholding methods (Figure 6) 
are approximate to similar range. Thus we can conclude that 
this step has been completed with an optimized and 
synthesized image with Hypothalamus localization. The 
simulation process reached to half way with the completion 
of initial two modules. Thus SMHB method has been 
partially applied and result has been evaluated for a 3D 
image initially and further limited data set of ten images 
which are divided in two different sub-categories 5 images 
with anatomical information and 5 images with BOLD 
signals with Hunger Regulation functionality.  

 FUTURE SCOPE 

We will also applied the regression based strategy for 
optimized estimation of the signal mapping with zero false 
probability (FPDF) (Equation 2) for the mapping between 
sparse matrix and fMRI voxels. Wavelet transform can also 
be used to synthesize an fMRI image. Afterwards, 
successive steps will be completed and final result will be 
generated. A regression based statistical analysis (Gaussian 
model or Laplacian Model) of the sparse parameters can be 
performed for the fMRI data set. A supervised machine 
learning tool like Support vector machine (SVM) for Linear 
and Non Linear aspect can be for the classification method 
for various task and stimuli activities. A multi-voxel, multi 
spectral, multivariate hybrid model with supervised or 
reinforcement training can also be implemented in near 

future to find the discrepancy between fMRI signals for 
different physiological functions.     
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