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Mathematical Modeling of Polymer Loading 
Process in Extruders 

K. Zelensky, Ev. Nastenko, V. Bolhovitin, O. Pavlov 

Abstract: Based on the state of the problem related to high-
quality and reliable insulation coating of high-voltage cables, the 
problems of mathematical modeling of pro-cesses in the loading 
zone and the delay of the polymer mixture in a single-screw 
extruder are formulated, which is crucial in terms of providing a 
high-quality insulation coating. An iterative numerical-analytical 
method for solving the corresponding nonlinear boundary value 
problems is proposed, based on the use of finite integral 
transformations in the spatial and temporal domains and their 
implementation. 

Keywords: Bessel functions, extruder, integral 
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I.INTRODUCTION 

Due to the high productivity of the extruders, their 
substantial value, and the high cost of polymeric materials, 
experimental studies on equipment upgrades and 
technological regimes lead to costly materials and time 
costs. This leads to the development of theoretical 
foundations of the processes under study. One of the main 
tools that helps to get the results you need and allows you to 
minimize expensive field tests is mathematical modeling. 
Although the vast majority of theoretical work on the 
description of processes of heat transfer is based on the 
classical Navier - Stokes equations [1,2,3], at the same time, 
existing approaches to the modification of the processes of 
flow, heat exchange and phase transformation of polymers 
in channels of extrusion equipment [4] do not provide a 
qualitative and quantitative analysis of the processes, since 
the vast majority of them are formulated either in one-
dimensional formulation [5-11] or formulated in three-
dimensional formulation, but the corresponding boundary-
value problems are not given or solved communications link 
to know `` standard '' packages numerical solution, which by 
their nature are not designed to solve nonlinear models. In 
addition, in our view, when setting these problems, the 
boundary conditions inherent in such a complex physical 
phenomenon are incorrectly formulated [4]. In addition, a 
number of problems have not been solved in the theory of 
plastic extrusion.  
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As a rule, the rheological states of the polymer mixtures are 
not taken into account, the effect of the heat transfer 
processes in the auger on the processes of plastic extrusion 
are practically not considered. 
Addressing these issues is important in terms of improving 
product quality, improving work efficiency when designing 
and upgrading extrusion equipment, and improving 
technological modes. 

II.METHODOLOGY AND MATERIALS 

II.1 Object description 

In Fig. 1 [5], provides a diagram of an extruder for coating 
plastic wires 
.

 
Fig 1. Schematic of single screw extruder 
 

The object of this study is the loading zone and the delay 
zone in which the polymer mixture is heated to a 
temperature close to the melting point of the polymer. 
The main source of heating of the body of the extruder is 
induction heating. The density of internal heat sources is the 
electromagnetic energy released per unit time per unit 
volume. Due to the surface effect, the distribution of internal 
heat sources is significantly heterogeneous and depends on 
the electrophysical properties of the load, which change 
during heating.  
The whole process of heating is divided into intervals, in 
each of which the loading properties are assumed 
unchanged.  
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II.2 Heating the extruder housing 

The distribution of the temperature field of the body kT  is 

described by the equation of thermal conductivity, which in 
the cylindrical coordinate system has the form  
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where kkkk ca  /(=  is the coefficient of thermal 

conductivity; kkk c  ,,  is 

the coefficient of thermal 

conductivity (W/ (m C ), 
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the specific heat and density of the body material, 
respectively ; ),( zrg  is the function of the density 
distribution of the internal energy sources in the material, W 

/ m 3 . Given that the depth of penetration of 
electromagnetic energy from the inductor is small, 1 , 
we assume that it acts on the outer surface of the housing 

4= rr . Then the boundary conditions for the housing:  
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where kkh  /=1 ; k  is the heat transfer coefficient of 

the enclosure into the environment. For the contact surface 

of a steel pipe with air 9=k W/(m
2 C ).  

Substitution kk TTT 0=   reduces the problem to the 

equation  
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The values of thermophysical parameters for the housing 
(steel) at temperature KT 300=  are equal to: 7845=   

kg/m
3
, 0,461=Vc   kW/ (kg )Kc  , =  58, 

K1/10.5= . Find the temperature field of the body of 
the extruder on the first section of heating (the area of 
polymer loading).  
Z  native conversion functions:  

].cossin[
1

=)(
1

2
z

h
z

Z
zZ k

k
k

k
k 


 


 (4) 

).(
1

= kkQz
r

T
r

rr

T





























 (5) 

.)(1cossin= 0
1

1
1

1 k
k

k
k

kk T
h

hL
h

LhQz 






















  

Applying to (5) the integral transformation on the variable 
r  leads to the search for the solution of the Bessel equation  
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with homogeneous boundary conditions  
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The r  eigenfunctions take the form:  
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Given (6) and (4), we have an expression for the 
temperature field of the auger housing. 
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 where ))(/(= 22
knvknk c   . 

In Fig. 2 results of simulation of auger housing temperature 
field. 

 
Fig.2 Screw housing temperature field at fixed t   
 

II.3 Simulation of Polymer Temperature Field in 
Loading Area 

When formulating the boundary value of the process of 
heating the dry polyethylene mixture at the loading area, it is 
necessary to take into account the presence of a rotational 

motion of the screw at a constant speed snV  with cutting at 

an angle  . The heat transfer equation looks like:  
























t

T

z

T
V

r

T
Vc zr

v
p

snsnpp  

      .
1

=
2

p
2

p
p 



































z

T

r

T
r

rr
  (8) 

For polyethylene, 
pvc  is essentially dependent on the 

heating temperature [4]. The heat capacity coefficient  is 
approximated by the dependence  

.105,70,0242,5= 242
210p

TTTcTcccv  

At the boundary of the housing and the auger, the condition 
of equality of heat flows must be fulfilled  
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Given (7) we have a boundary condition at 3= rr  for the 

screw temperature:  
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The temperature field of the polymer mixture in the loading 
zone is described by the boundary value problem (8) - (13). 
Given the dependence of the coefficient of thermal capacity 

of the polymer on the temperature vpc , the thermal 

conductivity equation for the polymer in the loading zone 
can be written as:  
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where )/(= 01pp ca  .  
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where 011111 /= ccc  , 012121 /= ccc  . 

Since the equation (1) is nonlinear, we will look for an 
iteration scheme. Solution of the linear part of the equation  
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The difference is the condition at the boundary 3= rr , 

which gives the expression for the temperature field at that 
boundary (11). When applying integral transforms for 
spatial variables to a boundary-value problem (14) - (16), 
we take into account (11) the following condition:  
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 Using this expression as a boundary condition for solving 
the problem of heat transfer (14), (12), (13) and (17) results 
in operations with NNM   components of appearance 
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 , making it virtually impossible to use 

them again. So let's simplify this expression.  
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The algorithm behind this simplification is outlined in the 
section. The error that naturally arises from such 

simplification is offset by an iterative process when solving 
a nonlinear problem. Write the heat transfer equation in the 
screw (the temperature field of the polymer mixture) after 
applying the transformations on the spatial variables rz, :  
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We will have t  in image space  

p

gz

p
pT kn

kn

kn
,

,

, [
1

=)(0


 

]
)()(

)()(
2,2,

,,
1

,,
1

,,
0

knkn

knknknknknkn

p

pgrgrgr








  

.
00

001
=

2,
4

,
3

,
1

,
0

,

,

pptt

ptt

p

gz
knkn

knkn

kn

kn







 

In the space of originals we have  
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This expression takes into account approximate equality  
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After obtaining the solution of the equation in the form (21), 
taking into account (22), we will look for the solution of the 
equation (14) according to the iterative scheme. Recall that  
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The general scheme for solving the nonlinear equation is 
written in the form  
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We replace the expression (20) with (15).  
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Applying integral transforms to (14) on spatial variables 
leads to the following equation:  
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Further, given the temperature field of the polymer mixture, 
the index p  is omitted to simplify the calculations. Integral 

transformations on the variables z  and r  (after replacing 
(26), (27) in (15)) lead to the calculation of integrals from 
the products eigenfunctions on the variables z  and r . 

Unlike the integration of the product of )( zZ
ikik  , which 

is not difficult, to integrate the product of )( rR
jnin   

Bessel functions of the second kind, these functions are 
approximated the sum of second-degree fractional-rational 
functions, after which the process of integration is reduced 
to the integration of second-order fractional-rational 
expressions. An algorithm for such transformations is 
described in [15,17]. Therefore, after applying the integral 
transformations for spatial variables to the nonlinear part of 
the equation (28), we obtain:  
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Recall that due to the notation introduced, the coefficients 

21,dd , is , 1,5=i , depend on the eigenvalues of the 

spatial variables. Apply to the Laplace transform equation 
over time (the initial condition is zero). We have:  
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The expression in square brackets ((20)) omits (for clarity) 

the sums of the indices 321 ,, nnn  and 321 ,, kkk . For one `` 

point'', the inverse Laplace transform to ((20)) gives the 
expression:  
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Summation by the indices of the right-hand side of the 
equation (31) will result in such an expression with respect 
to the operator p , which makes it impossible for its 

practical implementation by means of computer engineering. 
For the solution in the second approximation we have to 
substitute in (29) which will result in the production of 
expression expressions (31), etc., that is, the increase of 
constituents relative to elementary chains in geometric 
progression.  
This leads to the development of algorithms that prevent this 
growth. The accumulated errors can be compensated by 
additional iterations in the corresponding algorithm.  
So, let's go back to the equation (31) and consider the 
expression in square brackets, taking into account 

thsummation of the index 2k  
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In turn, the resulting expression can be approximated by the 
same pattern  
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Given that the eigenvalues of 2  increase quite rapidly with 

increasing N  and M , we can restrict ourselves to 

4== MN . An algorithm for such simplified fractional 
expressions is given in the section that results in:  
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This expression corresponds to the original (in the space of 
integral transformations by spatial variables)  
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Then the solution in the first approximation will take the 
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 Further approximations are implemented in the same way:  
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In Fig. 3,4 graphs of the temperature field of the polymer in 
the loading zone at the first and third iteration are shown. 
Third approximation error is 0.05 % 

 
Fig 3 Screw housing temperature field at fixed t  - first 

iteration 
 

 
Fig.4 Screw housing temperature for fixed t  - third 

iteration 
 

II.4 Delayed Processes 

After heating the polyethylene mixture in the loading zone 
to the melting point in the delay zone, a boundary layer of 
polymer melt is formed. In this zone, the mixture is 
transitioned from solid to liquid in the boundary region to 
form a thin film of molten polymer.  
This problem is mathematically described by two-phase 
equations of thermal conductivity in the solid and liquid 
phases, known as the two-phase Stefan type problem. 
The peculiarity of this problem is the abrupt change in the 
coefficient of heat capacity at the boundary of the transition 
of the mixture from solid to liquid.  
Many problems are devoted to solving problems of the 
Stefan type. They are all based on the use of difference 
schemes in mathematical physics and are usually limited to 
solving one-dimensional relative spatial variables by chance.  
Consider the problem of transitioning a mixture from a solid 
state to a liquid with the formation of a thin melt film in the 
boundary zone of the screw - housing. 
From the point of view of computational algorithms, the fact 
that Stefan's problem permits the formulation under which 
conditions at the phase transition boundary are included in 
the thermal conductivity equation is important [17]. This 

formulation is called enthalpy. 

The domain )(t  of the liquid phase, where the 

temperature exceeds the phase transition temperature *T , is 

}>),,(,),,{(=)( *TzyxTinzyxt  . Accordingly, 

the domain }<),,(,),,{(=)( *TzyxTzyxt  . 
We use the same notation for thermophysical values in each 
phase. 
In the solid phase, we have the equation of thermal 
conductivity  
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Given the convective transfer in the liquid phase,  













 


 Tv
t

T
c grad  

.),,(,)grad(div=   QzyxfTk  (25) 

.),,(0,=][ SzyxT   (26) 

where ][  denotes a jump in the boundary of the S  phase 

transition. 
The phase transition is accompanied by the release / 
absorption of a certain amount of heat. Therefore, the 
thermal flux at the boundary of the phase transition is 
discontinuous and is determined by the magnitude  
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n
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Here L  is the enthalpy of the phase transition, nV  the 

velocity of the phase transition boundary at normal. 
At the boundary of the phase transition conditions of the 
first kind are fulfilled:  

).(),,(,=),,,( * tSzyxTtzyxT   (28) 
Conditions (37)-(39) -- Stefan conditions, and the 
corresponding problem for the equations (35), (36) is called 
the Stefan problem. From the point of view of constructing 
efficient algorithms, it is important that the Stefan problem 
admits a generalized formulation under which the conditions 
(37)-(39) are included in the thermal conductivity equation 
itself.  
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Near the boundary of the phase transition, we introduce a 
local orthogonal coordinate system ),,( zyx  , whose 
metric coefficients are equal to one. In these new 

coordinates, the surface   -function S  is 

)(= 0xxS  , where the equation 0= xx   defines the 

limit S . Similarly, for the speed of free boundary motion 

we have dtxdVn /=  . The Stefan condition ( ref stef.05) 

corresponds to the fact that in the new coordinates 
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Substituting ( ref stef.10) into ( ref stef.09) gives the desired 
equation  
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Considering the phase transition heat is equivalent to setting 
the effective heat capacity:  

).(
1

= *TTLccef  


 

,)grad(div=grad Vef qTkTv
t

T
c 













  (32) 

Vq  is the bulk density of internal sources. 

In [18] proposes an approach based on the implementation 
of the internal energy density function )(T . The 
disadvantage of this approach is the lack of a convective 
component in the proposed thermal conduction equation 
(see (43), which must be present in the equation for the 
liquid phase of the polymer state. The disadvantage of this 
approach is the lack of a convective component in the 
proposed thermal conductivity equation (see (43), which 
must be present in the equation for the liquid phase of the 
polymer state.  
We formulate the problem of polymer melt motion in the 
boundary region of the auger - auger housing, taking into 
account the convective component. To the equation (43) 
must be added the equation of motion of the melt film. Since 
the melt film is thin, it is sufficient to consider the velocity 
distribution of the fluid along the axial coordinate z . Then 
we will have:  
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Initial conditions:  

,0).(=,0)(),(=,0)( zTzTzVzv pz  (35) 

 Boundary conditions:  

),(=)(),(=)( 1=1= tTtTtVtv pzzzzz  

.=),,=( ,,ml3 tzTtzrrT  (36) 

 The iterative procedure for solving the given system of 
equations is as follows.  
1. First, we obtain the solution of the linearized equation 
corresponding to  
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 2. The solution obtained for the velocity ),((0) tzv  to solve 
the equation of the linear part of the equation with respect to 
temperature  
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3. Find the solution of the equation taking into account the 
dependence of the heat content coefficient on the melt 

temperature )(0 *TTLc V   - ),((1) tzT .  

4. Determine the expression for pressure using 

),(= (1) tzRTp  .  
5. We obtain the solution of the equation (44) in the first 
approximation, that is, we solve the equation  
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6. Repeat steps 2--5 until  >),(),( )(1)(  tzTtzT mm  

with the indexes 0 and 1 replaced by m  and 1m .  
Since the iterative procedure for solving nonlinear equations 
is outlined in the previous sections, we do not give it in this 
section. 

III.RESULTS AND DISCUSSION 

Mathematical modeling of the processes of heating of the 
screw housing and the polymer mixture in the loading zone 
and the delay zone is performed. 
The solutions of the nonlinear boundary value problems of 
heat transfer in the loading zone and the delay are obtained, 
taking into account the nonlinear properties of the 
coefficient of heat capacity and convective transfer of speed 
in the delay zone. An algorithm for solving the problem of 
moving boundaries of the solid and liquid phases of a 
polymer is proposed.  

IV.CONCUSION 

The problem solved,in our opinion, is essential for solving 
the problem of optimal heating of the polymer mixture in 
terms of providing high-quality insulating coating of the 
cable to ultra-high voltages. 
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