
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

349

Retrieval Number: C6639029320/2020©BEIESP
DOI: 10.35940/ijeat.C6639.049420
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Abstract: In this paper our aim is to propose a Test Case

Selection and Prioritization technique for OOP for ordering the
test cases as per in accordance with their priority for finding the
faults in the OOS. We have used the heuristic Genetic Algorithm,
in order to generating the order of these prioritized test cases for a
given OOS. The motive is to put a test case first into the ordered
sequence that may have the highest prospective of finding an error
in the given OOS & then soon..

Keywords: Test Case Selection, Test case prioritization, Genetic
Algorithm, Fitness function, Object Oriented Software.

I. INTRODUCTION

Whenever we perform, testing onto the software during

the development & maintenance phase, we want to make sure
that after rerunning of all the existing test cases they should be
able to detect the presence of errors if any. But it is quite
tedious & a bit difficult to test the entire program under the
peer pressure of meeting the deadlines for the delivery of a
software project on time. So a better alternative for this to is
that we should prioritize our test cases test cases for fault
detection in such a manner that they should appear during
execution in accordance to their relevant order of detection of
probabilities of error in the given Object oriented software
(OOS). It provides an ordered sequence of test cases that
provides with a prioritized set of test cases, which are more
likely to find errors in the given OOS. Now in order to
propose a technique for ordering the test cases as per in
accordance with their priority for finding the faults in the
OOS, we would use the Genetic Algorithm, for generating the
order of these prioritized test cases for a given OOS. The
motive is to put a test case first into the ordered sequence
which has the highest probability of finding an error in the

Revised Manuscript Received on March 16, 2020.
* Correspondence Author

Prashant Vats*, AIMACT, Banasthali Vidyapith, Rajasthan, India.
Email: prashantvats12345@gmail.com.

Manju Mandot, J.R.N. Rajasthan Vidyapith, Udaipur, Rajasthan, India.
Email: Manju.mandot@gmail.com.

Saurabh Mukharjee, AIMACT, Banasthali Vidyapith, Rajasthan, India.
Email: mukherjee.saurabh@rediffmail.com.

Neelam Sharma, AIMACT, Banasthali Vidyapith, Rajasthan, India.
Email: sharmaneelam27@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

given OOS & then soon.

II. RELATED WORK FOR THE GA ON OOT

A Kumar, M., et al. [1] for evaluating the OOS has proposed a
GA in tree representation by using class diagrams. In they
have increased the efficiency of the OOS by solving the
problem of optimization, thus facilitating effective code
reusability with memory management.
For the Object-Oriented metrics Satish, et al. [2] has proposed
software fault prediction models based on a GA based used in
Fault based Testing. These predictive fault prone classes for a
SUT are adaptable to OOS.
For aspect-oriented OOS based on GA, R. Delamare, et al. [3]
has proposed a Fault based Testing approach for the class
integration test order problem. By integrating the classes &
aspects of the SUT based information with the information of
class methods integration order is produced based on class
aspects thus for the un-impacted classes in a SUT resulting in
avoidance of the test case suite modifications. It can’t be

applied on large chunks of codes.
During integration testing, for measurement of inter- class
coupling Jie F., et al. [4] has used GA by using minimal
stubbing complexity.
Using a GA programming approach by implementing in Java
for generation of test cases for classes in Evolutionary Testing
at the unit level, Nirmal G., et al.[5] has given a method in
OOS using statements in test cases in form of the tree
representation.
Using the identification of path clusters by using GA
Sabharwal S., et al. [6] in Rational Rose has done their work
for the selection and prioritization of the test case scenarios.
Considering the IF metrics & stack based memory allocation,
using the State Dependency Graph & prioritization of the
nodes of control flow graph they have addressed requirements
change issues.
For model based cases in an OOS using GA for the automated
generation of the test cases Chandran, K., et al. [7] has
proposed their work onto prediction of internal and external
stimuli based behavior of the objects which is dynamic in
nature.
For symbolic execution & evolutionary testing of objects
during Structural Testing of the OOS Inkumsah K., et al. [8]
has proposed a framework at the integrated class level called
Evacon uses GA algorithms to find method sequences with for
a Software under Test (SUT) thus ensuring higher branch
coverage.

Test Case Prioritization & Selection for an
Object Oriented Software using Genetic

Algorithm.

Prashant Vats, Manju Mandot, Saurabh Mukherjee, Neelam Sharma

mailto:sharmaneelam27@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D6639.049420&domain=www.ijeat.org

Test Case Prioritization & Selection for an Object Oriented Software using Genetic Algorithm.

350

Retrieval Number: C6639029320/2020©BEIESP
DOI: 10.35940/ijeat.C6639.049420
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

For optimizing the test suites by using a coverage criterion,
for GA, Fraser, G., et al. [9] has presented a search-based
approach EVOSUITE for dynamic handling of test case
dependencies among their predicates. During Integrated Class
level testing at the early stages of design and analysis, for the
Couple Based Testing, Alexneder C., et al. [10] uses the GA
for attaining the optimization of single-objective for methods
and attributes that are used in the classes of an OOS.
Using the Mutation based testing, to fit with test optimization
by analyzing the application of GA, Franck F., et. al. [11] has
attempted for the generation of test cases.
For Evolutionary Testing of the OOS, Kanmanani et al. [12]
used Java to introduce a Class-Based Elitist involving GA
resulting in achieving of faster results over the time.

III. KEY RESEARCH CONCEPT FOR GENERATION

OF G.A.

Genetic algorithm (G.A.) is meta-heuristic search
algorithms that are based on the ideas of selection of the fittest
gene among a chromosome. In GA, the populations of
chromosomes are denoted by various reassembling codes like
as Binary, Permutation onto real world members by using
genetic operators like Selection, Crossover or Mutation etc.,
which would be applied onto a participating chromosome in
order to find the fitness function to decide that will decide the
fittest chromosome which is nothing but just an objective
function to decide that what number of prioritized test cases
ensures hundred percent code coverage with maximum fault
detection for a given OOS.

The GA provides a multidimensional search technique by
using a combination of random iterative search methods that
provides an optimized solution for a given problem. The GA
method is indeed the most efficient featured algorithm that
provides solution to search space based problem by
considering a entire commutated population of a genetic
chromosome.
The steps involved in the execution of GA are:

IV. GENERATING A CHROMOSOME

POPULATION

Initially a GA Chromosomal function’s population is

randomly selected & encoded. Each Chromosome has
denoted the possible answer to a given problem in order to
arrange the test cases in a Chromosomal order & our motive is
to optimize that genetic sequence. For e.g., we have got a
following test sequence for a given set of N test cases where
N=1 to n onwards.
Let us suppose N=10, so we may obtain the following genetic
sequence:
T1->T3->T4->T6->T12->T5->T9->T17->T8->T13.
[1] Evaluation of the fitness of the Generated Prioritized test
cases population. The fitness of a genetically populated
chromosome can be defined by an objective fitness function.

A fitness function will indicate the survival of a Chromosome
into a good or bad. This objective fitness function will
generate a sequence of number, consisting of all the
prioritized test cases that will perform a comparative two or
more chromosome.
[2] Apply Selection of test cases for individual
Chromosome. In general, the selection of chromosomes will
be dependent onto the fitness value of it. The possible
chromosome with a higher or lower value would be chosen as
a base for our problem definition.
[3] Applying the Crossover & mutation over a chosen gene.
The parents of a gene will be chosen & combined in a random
manner. This process of generation of genetic chromosome
into a random order is called as crossover. There would be
two types of crossover in genes:

For e.g. Given two sequences of test cases that has a high
probability of detection of faults in an OOS. We have got
two parents:

After using the one point genetic crossover, the resultant
genetic offspring would be as follows:

For CH1, we will write the first portion of the P1 as it is in
original form and after putting a constraint that for the
second part of P2 we will not include a test case into CH1.

For the mutation onto any two genes, we have to select them
randomly along with their Chromosome & then swap them
randomly along with their Chromosome & then swap them
with each other.

For Ch1, we will write the first portion of P1 as its in original
form and after putting a constraint that for the second part of
P2 we will not include test case into Ch1.

For the mutation onto any two genes we, have to select them
randomly along with their chromosome & then swap them
with each other.

For e.g. when T3 & T5 get selected randomly during
mutation performed onto a chromosome.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

351

Retrieval Number: C6639029320/2020©BEIESP
DOI: 10.35940/ijeat.C6639.049420
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

V. TERMINATION CRITERIA.

The termination criteria could be selected in as many forms a
may be defined like as:

VI. PROPOSED TECHNIQUE FOR TEST CASE

PRIORITIZATION

Test
case ID

Princip
al

Rate Time
Result

s
Execution

History

T1

481411

0.0

11.0

28.0

89445
68.73

8, 9, 10,
11, 12,

13

T2

758794

.0

2.0

4.0

82134

3.2

8, 9, 10,
11, 12,

13, 14,
15,16,

20, 21, 22

T3
359575

.0
23.0 6.0

12145
45.02

10, 11, 12,
13

T4

593972

.0

6.0

30.0

34144
72.90

10, 11, 12,
13,

14, 15, 16,

20,

21, 22

Test Case Prioritization & Selection for an Object Oriented Software using Genetic Algorithm.

352

Retrieval Number: C6639029320/2020©BEIESP
DOI: 10.35940/ijeat.C6639.049420
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

T5

160253

.0

14.0

26.0

42345
67.90

12, 13, 14,
15,

16, 20,
21,22

T6

971281

.0

9.0

15.0

14312
4.56

22, 23, 24,
25,

28

T7

141261

.0

9.0

16.0

23567

.34

5, 6, 7, 8,
9, 10,

11, 12, 13,

14, 15, 16,

20,

21, 15, 16,
20, 21, 35

T8
888880

0.0
10.0 5.0

12456
.67

15, 16, 20,
21

T9
414831

.0

24.0

4.0

16915
30.98

5, 6, 7, 8,
9, 10,

11, 12, 14,

17, 18, 19,

20, 21.

Table 2: are lines of code covered that covers by each test

Now we apply genetic algorithm, on this data.

The Table. 3 for displaying Results after applying GA for
testing of OOP according to their Normalized value is given
below.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

353

Retrieval Number: C6639029320/2020©BEIESP
DOI: 10.35940/ijeat.C6639.049420
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Fig. 2. Graph to show the code coverage during
execution of Test cases using GA & without GA.

VII. CONCLUSION.

In this research paper we have provided a GA for test case
prioritization using multidimensional search technique by
using a combination of random iterative search methods
that for provides an optimized solution for a given test case
selection & their test case prioritization for a given Object
oriented program. The GA method is indeed has proven it’s

worth as the most efficient featured algorithm that provides
an optimized solution to search space based problem in the
area of testing of OOP by considering a entire commutated
population of a genetic chromosome.

REFERENCES:

1. Kumar, Manoj and Husain, Mh. (2011), “An Efficient Algorithm for

Evaluation of Object-Oriented Models”, Pub. in International Journal
of Computer Applications, Vol. 24, No. 8, pp. 11–15, June 2011.

2. Sandhu, Parvinder S. and Dhiman, Satish Kumar (2009), “A Genetic

Algorithm Based Classification Approach for Finding Fault Prone
Classes”, Pub. in Proceedings of World Academy of Science,
Engineering and Technology, Vol. 60, pp. 485–488.

3. Delamare, Romain, Kraft, Nicholas A. (2012), “A Genetic Algorithm

for Computing Class Integration Test Orders for Aspect-Oriented
Systems”, Pub. in IEEE Fifth International Conference on Software

Testing, Verification and Validation (lCST), pp. 804–813.
4. Briand, Lionel C. and Feng, Jie (2002), “Experimenting with Genetic

Algorithms and Coupling Measures to Devise Optimal Integration Test
Orders”, Pub. in Carleton University, Technical Report SCE-02-03,
Version 3, October 2002.

5. Nirmal, K.G. and Mukesh, K.R. (2009), “Using Genetic Algorithm for

Unit Testing of Object Oriented Software”, Pub. in IJSSST, Vol. 10,

No. 3, pp. 99–104.
6. Sabharwal, Sangeeta and Sibal, Ritu (2011), “Applying Genetic

Algorithm for Prioritization of Test Case Scenarios Derived from UML
Diagrams”, Pub. in IJCSI International Journal of Computer Science

Issues, Vol. 8, Issue 3, No. 2, pp. 433–444, May 2011.
7. Prasanna, M. and Chandran, K.R. (2009), “Automatic Test Case

Generation for UML Object Diagrams using Genetic Algorithm”, Pub.

in Int. J. Advance. Soft Comput. Appl., Vol. I, No. I, pp. 19–32, July
2009.

8. Inkumsah, Kobi and Xie, Tao (2008), “Improving Structural Testing of

Object-Oriented Programs via Integrating Evolutionary Testing and
Symbolic Execution”, Pub. in Proceedings of 23rd IEEE! ACM

International Conference on Automated Software Engineering, pp.
297– 306.

9. Fraser, Gordon and Arcuri, Andrea (2011), “Evolutionary Generation

of Whole Test Suites”, Pub. in Proceedings of 11th IEEE International
Conference on Quality Software (QSIC), pp. 31–40.

10. Margaritis, B. and Alexander, C. (2010), “Placement of Entities in

Objectoriented Systems by Means of a Single-objective Genetic
Algorithm”, Pub. in Proceedings of Fifth IEEE International
Conference on Software Engineering Advances (ICSEA), pp. 70–75.

11. Baudry, Benoit and Fleurey, Franck (2005), “From Genetic to

Bacteriological Algorithms for Mutation-based Testing”, Pub. in

Journal of Software Testing, Verification and Reliability, Vol. 15, pp.
73–96.

12. Maragathavalli, P. and Kanmani, S. (2012), “Multi- objective Genetic
Algorithm using Class-Based Elitist Approach”, Pub. in Computer

Science & Engineering: An International Journal (CSElJ), Vol. 2, No.
5, pp. 3I–41 , October 2012.

AUTHORS PROFILE

Mr. Prashant Vats, is working in the field of CSE &
IT as an Assistant Professor from past 11 years. He is
pursuing Ph.D. in CSE from Banasthali Vidyapith,
Rajasthan. He is a member of IEEE. He has
contributed more than 35 publications in various
National and International Journals, Conferences of
International repute.

Prof. Manju Mandot, is a Professor and Director of
Directorate of Jan Shikshan and Extension, J.R.N.
Rajasthan Vidyapeeth (D) University. She completed
her Ph.D (Computer Science) and has 27 years of
teaching experience. Her research interest includes
image processing, E- governance, women
empowerment with technology. She is esteemed

member of Computer Society of India.

Prof. Saurabh Mukherjee, currently works at the
Department of Computer Science, Banasthali
University. Saurabh does research in
Human-computer Interaction and Computing in
Mathematics, Natural Science, Engineering and
Medicine.

Dr. Neelam Sharma, is an Assistant Professor at the
Department of Computer Science, Banasthali
University. She has completed her PhD in Computer
Science and has 13 years of teaching experience and
her research interest includes machine learning,
pattern recognition.

8

7

6

5

4

3

Running
Test
Case
using
without
GA

Running
Test
Case
using
GA

2

1

0

Test Case Prioritization & Selection for an Object Oriented Software using Genetic Algorithm.

354

Retrieval Number: C6639029320/2020©BEIESP
DOI: 10.35940/ijeat.C6639.049420
Journal Website: www.ijeat.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

