OPEN aﬁlCCESS

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 — 8958 (Online), Volume-9 I ssue-4, April 2020

Estimation of Efforts During Testing of OOP

using The AVISAR Framework

Chack far
updatas

Prashant Vats, Manju Mandot

Abstract: In thisresearch paper we have proposed our research
work on the evaluation of efforts during the testing of OOP using
the AVISAR object oriented testing framework which is based on
the Genetic Algorithm. The proposed framework AVISAR
provides a platform to address the issues which are related to the
testing of Object Oriented aspects of OOP like Polymorphism,
Inheritance, Polymorphism etc. which plays a key role in Effort
Estimation of an Object Oriented Software.

Keywords: Genetic Algorithm (GA), I nheritance, Polymorphism,
Object Oriented Programs (OOP), Object Oriented Software
under Test (OOSUT)

I. INTRODUCTION

An object-oriented testing framework should be able to
distinguish between dissimilar entities. During testing the test
coverage criteriaplays avital rule for selecting the test and at
what time to stop it. When estimating OOS effort, the control
flow chart approach also does not seem to be helpful as an
OOS abstraction. Throughout the production and testing of
0OO0S, the centra problem with the application of
conventional metrics is that it cannot determine the SUT
complexity using the control framework. In most OOS, the
methods called in classes that use objects in a system under
test are so small that it is amost impossible to resolve the
number of decisions in the control flow chart when these
OOPs are tested for a SUT. The use of the GA-based rolling
test approach tackles the control flow accessibility problemin
Object Oriented Software’s flow path tests and helps the
effective generation of Object Oriented test data. It also aids
the test developer in achieving the methods call patterns
between Classes during the object call by procedures between
these Classes to evaluate these OOPs to find out that which
abstractions in these classes are important to evaluate
object-oriented the software. Generally, the use of any OO
metric means abroad technique to assessthe estimate of effort
while testing classes in an object-oriented program. But in
addition, there are more complexities involved in these
metrics during object call patterns between call proceduresto
access the different classes of a system under test. So in this
paper we have proposed A methodology based on the use

Revised Manuscript Received on April 15, 2020.
* Correspondence Author

Prashant Vats*, AIMACT, Banasthali Vidyapith, Rajasthan, India
Email: prashantvats12345@gmail.com

Manju Mandot, Professor, J. R. N. Rgasthan Vidyapith, Udaipur,
Rajasthan, India. Email: Manju.mandot@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). Thisis an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Retrieval Number: D8003049420/20200BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

1210

Genetic Algorithm for the effort estimation during the Testing
of OOP using the AVISAR frame work [17].

I1.NEED FOR EFFORT ESTIMATION IN OOP

To ensure the quality of a product, a better understanding is
provided by the "object oriented metric" (OOM) for
Object-oriented Software under Testing (OOSUT). It offers
the needed access to process efficiency to improve the quality
of work done at the project level. Object Oriented Features
like such as information hiding, encapsulation, inheritance,
and the object abstraction approach lead to the requirement
for a speciaized metric applied to OO systems to estimate
effort during the testing. A well-designed OO metric must be
able to meet the requirement for an indication of the extent to
which concealment was attained in an " OO design” (OOD) to
make sure OOD quality during the OOP test.

1. RELATED WORK IN OOT

Hiroki T., et a. [1] utilized formal tests based on a Unit-class
Petri color network to analyze the present behavior of objects.
Thisapproach is does not depend upon specific requirements,
design methods, and languages. Jeff O., et al. [2] used
peer-based tests at the level of classintegration to resolve the
problem CITO (“Class Level Integration Test”) with edge
welghts taken from quantitative coupling. By automating the
CITO problem, the capacity of developers has improved, but
at the same time it cannot be applied to bigger systemsisone
of the limitations. R.B. Borie, et a. [3] used class-level Flow
Graph-based tests to allow automatic test cases generation
from properly stated classes. In it, they initiated the building
of a simple flowchart that also aids generation of test cases
and coverage analysis. However, dternatively, it may not
adequately examine class behavior as it does not model the
space of class state. Taratip S., et al. [4] used class-based
cut-off tests to find test sequences to assuage the use of test
pieces. Its key benefit is that it causes more failures to be
detected in a much shorter time; however it cannot be scaled
for big systems. Frankl, P., et a. [5]. employed the class-level
ASTOOT technique (i.e. “a set of tools for OOT”) to produce
test cases that observe class state transitions and state values.
In this technique, the test execution system can automatically
verify the accuracy of the test cases with a test oracle.
However, because test cases are randomly produced, analysis
of test coverage is hard to carry out and the anticipated
outcome of test cases can be specified on a “Boolean” value
label. Dasiewicz, P., et a. [6] employed system-level event
flow tests to prepare test cases that highlight the interaction
between interrelated events.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Exploring Innovation

mailto:Manju.mandot@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D8003.049420&domain=www.ijeat.org

Estimation of Efforts During Testing of OOP using The AVISAR Framework

The detection of latent loops and restricts the loop path by
manual intervention isits main advantage. Since it makes use
of telephone “private branch exchange” (PBX) software, it is
not appropriate for systems of small-scale. Parnas, D.L ., et a.
[7] employed class-based graph-based tests to replicate class
behavior like a directed graph known as “the test graph”. A
test oracle can aso be an application of this test graph.
Manuel O., et a. [8] proposed a randomized Adaptive
object-level test to assess the effectiveness of atest approach
called “ARTOO” to discover actual flaws in actual
software’s. Wang, Y., et a. [9] to effectively state the
behavior of classes or software modules, proposed “Trace
specification rewrite” approaches for class-level testing.
Provides canonical traits assigned directly between the crawl
space and the class operation space. T.Y. Chen, et a. [10] has
declared the state-based tests at the integrated class level to
signify the changing states of the SUT. Use FSM to model an
integrated system. Other test approaches proposed by the
same authors[11] are tests based on peer-based events, which
use the relationships between events to take advantage of the
systems and verify the violation of restrictions. Tom
Maibuam, et al. [12] employed tests based on the Integrated
Class Level Coordination Contract to present a technique to
implementing test cases with the Coordination Agreement
concept. Through the use of contract, generation and
execution of test cases can be automated. A. Jefferson, et a.
[13] used integrated class-level category splitting techniques
to demonstrate that present approach can discover flaws in
0O0S; the combination of the “category partition method” and
atool to detect memory management failures are extremely
useful for OOT. They inspected a technique based on
specificationswith two small programs. Notkin, D., et al. [14]
employed tests based on unit-level statistical agebraic
abstractions, without requiring any specification, to
automatically identify common and specia unit tests for a
class. It presents the portrayal of program behaviors and the
detection of common and special tests through the use of
statistical algebraic abstractions. M. Burrows, et a. [15]
proposed another approach known as “Eraser” to dynamically
detect data executions in multi-threaded block-based
programs. It imposes a simple blocking discipline rather than
seeking careersin general parallel programs. André B., et al.
[16] proposed an a gebra-based approach to the CSP process
for class-level testing. Javaisused for itsimplementation and
it handles single processor and multiprocessor environments
and also meets real-time priority programming reguirements.
For the object oriented paradigm, thistechnique simplifiesthe
use of priorities.

IV. EFFORT ESTIMATION USING AVISAR

The proposed OO metric tool in the OOT framework
"AVISAR" consists mainly of three components: (i)
Complexity calculator, (ii) Cohesion calculator, (iii)
Estimator for OOD (OODE). With the use of these 3
components, it works collaboratively. The complexity degree
involved during the various methods will be calculated by the
Complexity calculator component, which will involve the
class and individual weights assigning for these classes. The
OODE will provide the measurement of the degree of
characteristics such as encapsulation polymorphism, &
inheritance in an OO class. In addition, the cohesion
component calculator provides the measurement of the extent

Retrieval Number: D8003049420/20200BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

1211

of cohesion in a SUT. Using its all elements together to
estimate the overall effort during testing and the devel opment
of an OOS. In thisframework, for a given OO code block, the
Lines of Code (LOC) number is fed to the input of a
Requirement Model that lay out the NOC (number of classes)
to forming the base for the estimation of the efforts in the
proposed OOS. In addition, these NOCs are saved in
requirements for the data dictionary storage that will provide
as container for storing the requirement details for these
NOC:s produced for the provided code.

4.1 Cohesion Extent Calculator: Asinput, it accepts LOC.
Using these LOC, a hipartite graph is formed. The functions
and attribute called from a class in an OOS are used to make
two nodes for the bipartite graph. A function of a class is
linked to an attribute. If the attribute of this classis accessing
this function, the degree of cohesion can be calculated as
Max{[Set of Functions*Set of Aftributes] - [Set of Biparite

Graph] 0} (D)
Max.{[T aftributes*? functioins] | Tarcs in Bipartate
Graph]0}. e 2)

In AVISAR, during the repetitive process of generating the
chromosome for the execution of the GA for an OOS, it
requires an iterative process for the selection of one or more
individual chromosomes. The execution of the test case
selection occurs as explained below.

Let TS1 given as below be a chromosomal gene with 15 Test
Cases that are chosen in a random order from the Initial
population, provides a given test suite (TS1) which is as
shown below.

TSl =4f{T1_T2 T3 _TI15}

IS N Y s e s T s

T2 |2 | 13 r14|r15 Ti6]TL7 I13|EE|\£|

LTI T

33

The value of fitness function for the initial population of
original Test Suiteis given as below,

fvTS =6.3532.

The above value of fitness function for the initial population
has been calculated by addition of the weights of the whole
test casesthat are being related to TS.

The value for the Fitness Functions of TS1, fvTS1 = 2.553.
The initial probability for the crossover (Cp) of test gene is
being chosen in arandom manner and Cp = 0.4.

This value of the fitness function for atest geneis calculated
by addition of the weights of whole set of test cases that are
related to the chosen individual test genes during a genetic
operation. The commencing test suite during the inception
TS1, isasfollows.

0 B

E]] 155

HiNENEnn

4.2 Complexity Calculator:

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

WWW.IIEAT.ORG,

Exploring Innovation

OPEN 8ACCESS

4.3 InAVISAR, during the OOD, it accepts the Number
of Classes (NOC) as input to a OOSUT for
calculating the level of complexity. Complexity can
be calculated as when allocating weights to the OO
classes:

Complexity level ={1/NOC)*? "oy(Cw n(j) * NOM n(i))}

Where,

Cw n(i) = Complexity w eights of the n Classes,

NOM n(i) = Number of methods in individual n classes.

While calculating the effort estimationin AVISAR, our aimis
to keep the level of complexity for an OOSUT, as lower as
possible. The consecutive iterations for generation of test
suites in AVISAR are given as below. The reasonable
predictive numbers are generated for each test case gene of
TSlarelisted below in Table 1.1. where Mutation Probability
=0.10.

R(Ti) for TS1

Ta
T2 T10
T3 T11

] e
b

T1

T4

T
|1 |
E
Table 1.1 Arbitrary numbers generated during the
mutation with probability is0.10 on TS1 for its each test
case

During the successive iterations for generating the test suites
usingthe GA, The Test Casesfor theindividual genestest sets
are being generated in a random fashion with the mutation
probability (Mp = 0.10) were being restored by a set of new
test genes from the native test suite (TS) that were not related
to the TS1. The crucial tests T11 and T14 are substituted by
new test cases from the initial population of the Test genes.
These test genes are to be chosen in a random manner. The
crucial tests T17 are being substituted with T16. These crucia
tests cases are chosen in arandom order, asthey would be the
next available new test genes from the actual lists of the
crucial test gene set TS. Let us consider TS2 is to be the new
test chromosomal gene that has been obtained as a result of
the mutation and crossover operation on the test genes
depending upon the value of their fitness function. The value
of the fitness function of IP, fvTS is 6.3532 and value of the
fitness function of TS2 whichisgiven by fvTS2 is 2.4084.
After the first iteration in the test gene, the value of Cp is
obtained as result of 2.4084 divide by 6.3532, which is equal
to 0.3791, which is comparatively lesser than the value the
initial crossover probability that isequal to 0.4. So as aresult
the crossover operation first iteration in the test geneis being

used as accepted convention and the new individual test gene
is accepted as contemplate for the next iteration.

D_?EEI T14 D-Dﬂ?l

0482

3

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

1212

International Journal of Engineering and Advanced Technology (IJEAT)

| SSN: 2249 — 8958 (Online), Volume-9 I ssue-4, April 2020

In AVISAR, the efficacy of thistest suite has been evaluated
and examines to present them separately by examining the
other different metrics like, (i) Test Suite Efficiency, (ii)
Complexity Calculation using APFD value, and (iii) Fault
Coverage. As aresultant, the freshly resultant chromosome,
TS2 is as shown below.

IEEEENEEDEE

T TI3TITYTIS

For the next successive dteration in the test chromosomal
genes, the chosen individual test gene is TS2, which was
generated as a resultant in the previous successive alteration
in the test chromosomal genes. Let probability for the
mutation of the successive alteration in the test chromosomal
genesis 0.10. The numbers generated randomly for each test
chromosomal genes test cases are being shown asalist in the
Table 1.2 given below.

R(Ti) for TS2
=1

T2 0_300 TIEII
T3 ID-E!-ilITlIﬁE!-

T12
T13

T17
T15

TS In_1s4|_|_|

Table 1.2 Arbitrary numbers generated during the
mutation with probability is 0.10 on TS2 for its each test
case

The Test cases T10 & T1 are being substituted with new test
cases in the test chromosomal genes from its existing
population by utilizing the random selection approach new
test cases in the test chromosomal genes. These test cases are
being substituted with T19 & T18, which would be available
next to from its actual population, TS. The new test
chromosomal genes are given as TS3, which will be attained
after substituting these test genes that will meet the
expectations of the convincing value of the fitness function.

4.4 OOD Estimator (OODE): In AVISAR, the OODE
provides a general estimate of the various characteristics of
00D, such as inheritance depth encapsulation, visibility of
methods (Vm) and degree of polymorphism for the OO
classes. This OODE component in a SUT takes its NOC as
input. Further we will examine its various subcomponents as
given below:

T1 O 402

;

0091
0.181

il

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

WWW.IIEAT.ORG,

Exploring Innovai tion

Estimation of Efforts During Testing of OOP using The AVISAR Framework

4.3.1 Vishility Calculator: The tota no: of methods that
would be visible in the given classes in a OOSUT will be
calculated by this. Let us consider Tc be the complete no: of
classes in the OOSUT, Let us say Md(Ci) be the no: of
methods that are being asserted in a Class. If a class in
OOSUT accesses a method by calling the object of that class,
the predicate of class in OOSUT can be seen; otherwise, it
cannot be seen, so the Visibility for aMethod in the OOSSUT
can be found as:

Vi ZTcﬁPma!Lcat.‘e of [Md(Ci))ie.Visible Classes

Te-1
Where,
Vi = Visibility of Methods in 2 00SUT’s Class.
4.3.2 Encapsulation Measurement: The total number of
classes Tc obtained from the NOC, in OOSUT isprovided are
feed asinput to the Encapsulation M easur ement component
for OOSUT, provides the AHF and MHF for measuring the
encapsulation for OOSUT, given as follows. The MHF and
AHF jointly decide the encapsul ation measurement of a class
for OOSUT. _
AIF = ZTCFI zAd o (l-VEl) / ETCi:l Ad
Where,
AHF = Attribute Hiding factor
Te = Total number of classes
Ad = Attributes declared ina class ina SUT
Va = Visibility of attributes by a class ina SUT.

_ YTci=1yMdm=1(1-Vm)
MEE YTci=1Md
Where,
MHEF = Methods Hiding factor,
Te=Total number of classes,
Md= Number of methods declared in the class ina SUT,
Vi= Visibility of methods invoked by a class in a SUT.

4.3.3 Inheritance Measurement: In an OOSUT the
inheritance in the OO classes can be obtained as two different
measures for examining the level of inheritance. The total
number of classes which is denoted by Tc, will be taken as
input for an OOSUT. It mathematically determines the
number of methods that can be referred within the
interconnected classin an OOSUT as Ma
Ma=Md + Mi

Where,

Ma = Methods invoked in association with a Class.

Md = Methods declared in a Class

Mi = Methods inherited in a Class.

So the Method associated component Method Inheritance
Factor (MIF) would determine the Methods in OOSUT to be
inherited as given below:
_ YTci=1Mi

MIF = >Tci=1Ma

Where,

MIF = Method Inheritance Factor,

For the Attribute Inheritance Factor (AIF), Attribute
associated component would determine the number of
attributes that can be approached in consortium with a OO
classina OOSUT as Aa

Retrieval Number: D8003049420/20200BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

1213

Aa=Ad+ A

Where,

Aa=Number of attributes that can be accessed in association with class 1.

Ad = Number of attributes declared in a Class.

A1 = Number of attributes from a base Class that are accessible to a Class i which

is inherited from a base Class

So the Attribute Inheritance Factor (AIF) will determine the

attributes that would be approachableto aClass|, that can be

derived genetically from a parental OO Class shown as:
 Tdi=t A

Af==—— (10)

Y Tei=1Ad
Where,
AIF = Atteibute Inheritance Factor.

4.3.4 Polymorphism Factor: The "'polymorphism factor"
(PF) inan OOSUT isto ascertain the size of the possibility to
apply the polymorphism. The implementing prospective for

the polymorphism factor in an OOSUT can be estimated as:
Mo

D= (11)

- Mn +Dc
Where,

Mo = Number of overriding methods in Class i.

Mn = Number of new methods in Class 1.

Dc = Number of descendents of Class 1.

For calculating the Fitness value after the second successive
alteration of 1P, we have obtain the value of fvTS is to be
equal to 6.3532.The fitness value of TS3 obtained during the
second successive dteration of fvTS3isto be equal to 2.3608.
After the third successive alteration the Current value of the
factor Cp can be calculated by dividing the fitness value of
TS3 by value of fvTS which is found to be equal to 0.3716,
whichislessthan the previous value of Cp which wasequal to
0.3791. s0 as a result both the mutation and crossover
operations that were accomplished, are fully approved as a
new chromosome which is given as below.

This chromosomal gene TS3 is contemplated for next
successive alteration. The probability for the new mutation
process is found to be equal to 0.60. The successive random
patterns of numbers are generated for the every test case of the
chromosomal gene TS3 as shown below.

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Exploring Innovation

TE'IEI_ﬁiHI
T2 I[I_5'41 1 D-EEMI
o537]

T3 |n_nn1 T16 lo.537

Table 1.3 Arbitrary numbers generated during the
mutation with probability is 0.60 on TS3 for itseach test
case
During the third crossover the chromosomal test genes that
tend to fail to meet the expected mutation probability were
substituted. So these test cases T18, T3, T5, T6, T7, T16 are
being substituted in accordance with the arbitrary test cases as

T20, T21, T22,T23,T24, T25.

Suppose the new chromosomal test genesisto be TS4, which
is a resultant of substitution of the chromosomal test genes.
The Fitness value of IP is given be the fithess value (fvTS)
which is found to be equal to 6.3532 and the fitness value
(fvTSA) of the chromosomal test gene TS4 is found to be
equal to 2.3283. After the third successive iteration, the value
of Cpisobtained by dividing fvTSby fvTS4 and their valueis
found to be equal to 0.3665, which is less than the fitness
value of the TS3 which is 0.3716. Therefore, after the
successive genetic crossover and genetic mutation operations
that are being on the Chromosomal test gene TS3 & T4 the
new resultant chromosome TS4, is shown as follows.

oo i s

Let usfurther examine the Chromosomal test suite for the test
gene TS4 for the next successive adteration. Here the
probability of occurrence of the mutations on chromosomal
test gene is fixed at the value equal to 0.50. During this
successive ateration arbitrary numberswere generated during
the mutation on the chromosomal test gene T4 for its each
test case.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

1214

International Journal of Engineering and Advanced Technology (IJEAT)
| SSN: 2249 — 8958 (Online), Volume-9 I ssue-4, April 2020

R(Ti) for T54

T19 El
T12
T13
T17
T15
N 0

Table 1.4 Arbitrary numbers generated during the
mutation with probability is0.50 on TS4 for itseach test
case
During the fourth crossover the chromosomal test genes that
tend to fail to meet the expected mutation probability were
substituted. So these test cases T20, T2,T21, T22, T8, T19,
T25, T12, T13, T15 are being substituted in accordance with
the arbitrary test cases as T26, T27, T28,T29,T30, T31,T32,

T33, T34, T35.

Suppose the new chromosomal test genesisto be TS5, which
is a resultant of substitution of the chromosomal test genes.
The Fitness value of IP is given be the fitness value (fvTS5)
which is found to be equal to 6.3532 and the fitness value
(fvTSB) of the chromosomal test gene TS5 is found to be
equal to 2.9123. After the third successive iteration, the value
of Cpisobtained by dividing fvTS by fvTS5 and their valueis
found to be equal to 0.4584, which is not less than the fitness
value of the TS3 which is 0.3716. Therefore, after the
successive genetic crossover and genetic mutation operations
that are being on the Chromosomal test gene TS3 & T4 the
new resultant chromosome TS5, is shown as follows.

TG (T T28) T T T3 T4 T

[[B4 T T3

After the second stage crossover and further mutations on
genes using the genetic algorithms the resultant analysis of the
computed details and results attained for the AVISAR
framework are being encapsulated and being shown in Table
1.5. Further Table 1.6 provides Analysis of data and results
for the various test suites using the GA.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Estimation of Efforts During Testing of OOP using The AVISAR Framework

Test Suite Size

33
of faults not covered n

#0of TC revealtng at least a _Il_lﬂﬂ

new fault

of Requirements Covered |\i|_|uuu_|

Are all faults exposed?

METRICS
APFD Value (%)

Requirements Coverage (%)

est Suifes & Information nﬁl_l\ﬂlu
HEBEE

Fault Coverage (%) 383 66? 383 833 [][]

LT EBES S

Table 1.5 Summed up results produced by genetic GA for
OOP

V. EXPERIMENTAL SETUP

For effort estimation during the functioning AVISAR
framework we have used the following code block for
ensuring the max code coverage.
public GAMaxCodeCoverageCases
(FilejF, List<String[]> ea, int mini, int maxi, int sos)
{ selectedJavaFile=jF;

excelArray = eg;

minlndex = mini;

maxIndex = maxi;

sizeOfSubset = sos; }
public List<Integer> startGA()
{inti;
IntegerChromosomeich IntegerGeneig; Integer
caseNumber;

Genotype.of(BitChromosome.of(10,0.5));
fina Factory<Genotype<IntegerGene>> gtf =
Genotype.of(IntegerChromosome.of(minlndex, maxindex,
sizeOfSubset));
final Engine<IntegerGene, Integer>
engine=Engine.builder (GAM axCodeCoverageCases::eval gt
f).build();
final Genotype<IntegerGene> result =
engine.stream().limit(10).collect(EvolutionResult.toBestGen
otype());
System.out.printin("Result : \n\t" + result);
System.out.printin(" Count of failed casesin Result are: " +
String.valueOf(eval (result)));
List<Integer> subsetCases = new ArrayList<Integer>();
ich=
result.getChromosome().as(I ntegerChromosome. class);
for(i=0; i<=(ich.length()-1); i++)
{ig = ich.getGene(i);
caseNumber = ig.intValue();
subsetCases.add(caseNumber); }
return subsetCases, }

Retrieval Number: D8003049420/20200BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

u‘

] oror [E=SESR

Step 1: Open A Java Cass File Step 5:ProcessExcel Fle Siaius

D00 Eclipse JavaiTesfingJavaFileTestingClass java Process Excel File

Browse Columns Count ~Input Column Kames Output Column Name Total Cases

Step - Process Java Fike PackageMame Class Name

[Brocess Javafile | TestgClzss
Properties Methods
obj main Step 6: Generate Best Test Case Subset.
ARES (O i Size of Subset Select Method f—
pnn‘!Resull Fist'n Failing Cases | = Rz
Progress Ststus:

Step 3: Compile Java Class Complation Resalt

Compi Java File

Step 4: Test Cases SV File Step 6: Save Result Text Cases Excel

D0 Edlipse Javaitestas Save Excel File

Browse

Fig. 5.1. To show theinterface of thetool AVISAR for
implementation of the proposed work.

‘Step 1: Open A Java Class File Step 5: Process Excel Fle Status

D00 Edipse Javallesting avareiTestingClass java Process Excel File

Browse

& Opm &) petCoumaiane TotalCases
Step 2 Process JavaFile Package| Lookln: (=500 Eclipse Java ~| &) |5 |C |REl A
Process Java Fie
_ ata] TestingJavaFie
Properties | Backup 2019-10-20 (Before Maven)) SubsefTestCases.xi
] | Backup 2019-12.28 0 siCa
IARGS_COUNT } Workspace —
Generaie
reermaster [esws L]
gCases |, bt
) Tools jaCases |
I] |
Fielame: [lestis
Step 3 Compile Java Class
| Files of Type: [Excel File "xls) -
————— [
Compile Java Fle Yor
— Open seleced i

‘Step 4 Test Cases (SV File Step 6: Save Result Text Cases Excel

D00 Ecipse Javaltestzis Save Excal File

Browse

Fig. 5.2. To show the selection of any Object oriented
Sour ce code to betested using AVISAR

L/ Avar ==

Step 1: Open A Java Class File Step5: Process Excel Fle Stafus

D00 Ecipse JavalTestinglavaFieiTestngClass jara Process ExcelFle | Processed
Browse Columas Count Input Column Names Oulpot Column Nome Total Cases
4 [1.principe resut 50000
Step Process JavaFle Package Mame Class Name 5. rate
Process Java File TestingCiass [tme
Proerties Methods
abj Imain Step 6: Generate Best Test Case Subset
ARGS_COuNT intialreClass Size of Subset (Max. 50000) Select Method e
sefValues —
= Sset
printResal First w Failng Cases |

Progress Ststus:

Step 3: Compile JavaClass Compiation Result

Compile Java File

Step 4: Test Cases CSV File Step b: Save Result Text Cases Bxcel

D000 Edipse Javaltestils Save Excel Fiie

Browse

1215 © Copyright: All rights reserved.

Fig. 5.3.To show the execution of test cases using Genetic

Algorithm

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Exploring Innovation

OPEN 8 ACCESS

B =
o
Step 1: Open A Java Class File Step 5 Process Excel Fle Stalus
D00 Edipse JavaiTesling JavaFileiTestngClass java Process Excel File Processed
Browse Colmns Count Input Column Names Outpat Column Name Total Cases
4 1. principle result 50000
Step 2 Process JavaFile PackageName Class Hame 2rate
Process Java File TesfingClass 3 ime
Properties Methods
abj main Step 6 Generate Best Test Case Subset
ARGs_cour jitaizeClass Sizeof Subset (Max. 50000) Select ethod =
sefValues iy
= +
printResult o ases .. | v
Progress Ststus:
(GA Staried!
Step 3: Compile Java Class Compilation Result Subsets are being generated. Please, wail..
——— Compilafion Successfull
Compile Java Fil You can now proceedto
Step4.
Step 4: Test Cases (SV File Step 6 Save Result Text Cases Ficel
D00 Edipze Javaiestils Save Excel Fie
Browse

Fig. 5.4. To show theimmediate optimized result of test

casesusing the GA.

E-:'D -~ test.csy - M f
~ = Hom Insert Page Layout Formulas Data Review View

Ty Hew o [- |

paite 0 [B 2 -] A I

S Format Painter W~ | = %
Clipboard = Font =
AL -~ # | principle
A B c D E F G H 1 i) K

1 [principle Jrate time result
2 395421 14 19 4767074
3 816067 14 5 1571267
a 547008 13 24 10277236
5 841753 17 16 10373070
6 9895930 14 10 3670112
7 638982 7 7 1026085
8 995530 7 1 1065217
9 623037 a 20 1365151
Lo 945517 6 20 3032401
(8§ 635208 5 17 1455908
12 475902 16 12 2824967
13 916436 22 23 88792901
14 631151 2 25 1035470
L5 102925 1 11 114830.2
L6 915983 9 5 1409353
L7 635918 11 5 1071559
-3 800795 5 25 2711776
9 930607 9 14 3109835
20 230232 7 7 3897029
21 2243139 16 6 546530
22 932403 18 2 1298278
3 789096 25 20 63443163
24 218143 14 3 3231885
25 884901 11 19 5427340
« 4 > »| test ¥

Ready
—

Z)

‘= Eclipse ..

esigned for 7OOP

T ! : || €537 Untitled
Fig.5.5. To show the Test cases being d
under Test.

VI.EXPERIMENTAL RESULTS

When implemented in Java, the proposed OO Testing
Framework AVISAR has provided better resultsfor the small
chunks of OO codes. We show the results as follows.

6.1 To measure cohesion, we achieved the following graph
in Figure 6.1 when it was drawn between a set of functions
and attributes together with the arcs in the bipartite graph. It
showed impromptu results for smaller code, however as size
of the code enlarges, it increases to infinity.

6.2 To display the performance of Complexity Calculator
To measure the Complexity in Figure 6.2, we obtained the
following graph, plotted between Number of classes and
Number of methods in individual classes.

6.3 To show the overall performances of OOD estimator
To measure the object-oriented design estimator, we plot the
graph in Fig. 6.3 for the method visibility, Polymorphism,
Inheritance, and Encapsulation for estimation of effort for
smaller codes implemented using four modulesin Java.

Retrieval Number: D8003049420/20200BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

1216

International Journal of Engineering and Advanced Technology (IJEAT)

I SSN: 2249 — 8958 (Online), Volume-9 I ssue-4, April 2020

100% T A—dr—d—h—
90%

os
80% .=.: e ArCs in
70% Bipartite
60% _gh._ p '

50% -
40% - === Functions
30%

20%
0
13;’ === Attributes
(1] 1 1 1 1
T PR]
6&\?’ &@ &Q‘l \}@
®0 @0 ‘i\o QX\O

Fig. 6.1 Outturnsfor the Cohesion Estimator in AVISAR.

5 -|/ﬁ__‘—i__‘_

4 -

3 A

i:/H M Methods
M Classes

0 '@Methods

Module 1
Module 2
Module 3
Module 4

Fig 6.2 Outturnsfor the of Complexity Calculator in

AVISAR.

Module 4 —T

- M Polymorphism
Module.3 E_‘ M Encapsulation
Module 2 ‘E—— M Inheritance
Module 1 — M Visibility of

methods
(0] 2 4

Fig. 6.3 Outturnsfor the of OOD estimator in AVISAR.

VIl. CONCLUSIONS

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Exploring Innovation

Inthi

Estimation of Efforts During Testing of OOP using The AVISAR Framework

sresearch paper, we have proposed methodol ogy for the

evaluation of efforts putted in during the carrying out thetrails
of OOP for the detection of faults, using the AVISAR
framework. During the evaluation of efforts using the
AVISAR Framework we have observed that the use of GA
has proven their worth to provide better results in terms of
reduced effort estimation while testing the OOP.

APFD

Te:st Computation Vilue

Suite Steps (%)

T8 [1(1+3+2+4+ T+ 12+ 11+ 17421+ 23+ 26+ 20)/(1 23 5)]
—[1-(2x33)]=1-(14?-47[]J(0)=1-035+00143| 6643
=0.6643

T8I [1- (1434244 T+ 12+ 1 1%+ %5 4%) (12515)] +
[1/(2x13)]= 1-@40/180)(130) = 1-0.22+ 003 = | 8100
0.81

%2 [1-(3+244+T+ 12+ 11+ 14474+ (12519)] +
[1(2x15)]= 1-G4180)(130) = 1- 03+ 0.03= | 73.00
0.73

S [1-(F+341 4+ T+ 1241 141447+ 52 (1221 9)) +
[1(2x19)]=1-521801(130)=1-020+0.03= | 7400
0.4

TS4 [1-(1+8+2+4+ 15+ 12+ *+ 1423 +6+*+1) (12015)] +
[1(2x15)]= 166/180)+(130) = 1- 037+ 0.03= | 70.00
0.10

TS5 I- 8105+ 14T+ 6+ 1+ 13 (12515)] + | 2
1659 [ETRe
=1-(85/180)+(1/30) = 1- 04722 + 0.03 = 0.6643

* refers fo the faulinot revealed by any of the test cases in the
fedt suife.

Table 1.6 Analysis of data and resultsfor the varioustest

suitesusing the GA.

REFERENCES

1.

10.

Harumi W., Hiroki T., Wenxin Wu , Motoshi Saeki; “ A Technique for
Analyzing and Testing Object-Oriented Software Using Colored Petri
Nets”; IEEE International Conference;1998;Pg.No:182-190.

Aynur Abdurazik, Jeff Offutt;” Using Coupling-based Weights for the
Class Integration and Test Order Problem” published by Oxford
University Press, The British Computer Society, 2006.

A.S. Parrish, R.B. Borie, and D.W. Cordes, “Automated Flow Graph
Based Testing of Object Oriented Software Modules," Journal of
Systems and Software, 23, 1993, pp. 95-1009.

Jaroenpiboonkit, J. , Suwannasart, T. ;” Finding a Test Order using
Object-Oriented Shcmg Techmque IEEESoftware Engineering
Conference, 2007. APSEC 2007. 14th Asia-Pacific Pg. no: 49-56.
R.K. DOONG, P.G. Frankl; “The ASTOOT Approach to Testing
Object Oriented Programs”; ACM Transactions on Software
Engineering and Methodology, Vol. 3,1994, pages 101-130.

Wayne Liu And , Wayne Liu , Paul Dasiewicz;”The Event-Flow
Technique for Selecting Test Cases for Object-Oriented
Programs”;IEEE conference proceedings 1997.

D.L. Parnas and Y. Wang, “Simulating the behavior of software
modules by trace rewriting systems”, IEEE Trans. Software Eng. 20
(10) (1993) Pg.No: 750-759.

llinca C, Andreas L., Manuel O., Bertrand M.;” ARTOO: Adaptive
Random Testing for Object-oriented Software”; published in ICSE’08,
May 10-18, 2008, Leipzig, Germany.

Yabo Wang, D. L. Parnas;” Simulating the Behavior of Software
Modules by Trace Rewriting”;IEEE transactions of software
engineering; October1994(Vol.20,N0.10) Pg. no.750-759.

H.Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen., “In black and white:
an integrated approach to class-level testing of object-oriented

Retrieval Number: D8003049420/20200BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

programs.” ACM Transactions
Methodology, 7(3):250-295, 1998.

11. W.K.Chan,T.Y.Chen,T.H.Tse;” An Overview of Integration Testing
Techniques for Object-Oriented Programs”; Proceedings of the 2nd
ACIS Annual International Conference on Computer and Information
Science (ICIS 2002), International Association for Computer and
Information Science, Mt. Pleasant, Michigan (2002).

12. Zhe Li, Hamilton M., T.;” An Approach to Integration Testing of
Object Oriented Programs”; IEEE transactions, Quality Software,
2007. QSIC '07. Seventh International Conference, Oct. 2007; Pg. No:
268 — 273.

13. Alisa Irvine, A. Jefferson Offutt;” The Effectiveness of Category
Partition Testing of Object-Oriented Software”; CiteseerX, 1995;

14. Tao Xie, David Notkin;” Automatically Identifying Special and
Common Unit Tests Based on Inferred Statistical Algebraic
Abstractions”; 2003.

15. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson;
“Eraser A dynamic data race detector for Multithreaded Programs”;
ACM transactions on computer systems, 1997.

16. Gerald H., André B., Jan B.; “A distributed real-timejava system based
on csp”; CiteseerX, 2000.

17. Vats, P., “AVISAR - athreetier architectural framework for the testing
of Object Oriented Programs” pub. In Second IEEE International
Innovative Applications of Computational Intelligence on Power,
Energy and Controls with their Impact on Humanity (CIPECH), 2016.

on Software Engineering and

AUTHORSPROFILE

Prof. Manju Mandot is a Professor and Director of Directorate of Jan

e Shikshan and Extension, J.R.N. Rgjasthan Vidyapith
(Deemed University). She has 27 years of teaching
experience. Her research interest includes image
processing, E- governance, women empowerment
with technology. She is esteemed member of
Computer Society of India

Professor from past 11 years. He has done Diplomain
Medical Electronics, B. tech. (IT), M. Tech. (IT) from
GGSIPU, New Delhi.,, MBA & M.A in Education
from IGNOU, New Delhi, PG Diplomain Cyber Laws
from Indian Law Institute, New Delhi. He is pursuing
Ph.D. in CSE from Banasthali Vidyapith, Rajasthan.
He is a member of IEEE.His research area includes

;Vlllh ~ A 4
OO paradigm, Software Engineering, 10T, Cloud Computing, BigData. He
has published more than 32 research publications in various national &

international journals of repute.

1217

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Exploring Innovation

