
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

1210

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org


Abstract: In this research paper we have proposed our research

work on the evaluation of efforts during the testing of OOP using
the AVISAR object oriented testing framework which is based on
the Genetic Algorithm. The proposed framework AVISAR
provides a platform to address the issues which are related to the
testing of Object Oriented aspects of OOP like Polymorphism,
Inheritance, Polymorphism etc. which plays a key role in Effort
Estimation of an Object Oriented Software.
 Keywords: Genetic Algorithm (GA), Inheritance, Polymorphism,
Object Oriented Programs (OOP), Object Oriented Software
under Test (OOSUT)

I. INTRODUCTION

An object-oriented testing framework should be able to
distinguish between dissimilar entities. During testing the test
coverage criteria plays a vital rule for selecting the test and at
what time to stop it. When estimating OOS effort, the control
flow chart approach also does not seem to be helpful as an
OOS abstraction. Throughout the production and testing of
OOS, the central problem with the application of
conventional metrics is that it cannot determine the SUT
complexity using the control framework. In most OOS, the
methods called in classes that use objects in a system under
test are so small that it is almost impossible to resolve the
number of decisions in the control flow chart when these
OOPs are tested for a SUT. The use of the GA-based rolling
test approach tackles the control flow accessibility problem in
Object Oriented Software’s flow path tests and helps the

effective generation of Object Oriented test data. It also aids
the test developer in achieving the methods call patterns
between Classes during the object call by procedures between
these Classes to evaluate these OOPs to find out that which
abstractions in these classes are important to evaluate
object-oriented the software. Generally, the use of any OO
metric means a broad technique to assess the estimate of effort
while testing classes in an object-oriented program. But in
addition, there are more complexities involved in these
metrics during object call patterns between call procedures to
access the different classes of a system under test. So in this
paper we have proposed A methodology based on the use

Revised Manuscript Received on April 15, 2020.
* Correspondence Author

Prashant Vats*, AIMACT, Banasthali Vidyapith, Rajasthan, India.
Email: prashantvats12345@gmail.com

Manju Mandot, Professor, J. R. N. Rajasthan Vidyapith, Udaipur,
Rajasthan, India. Email: Manju.mandot@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Genetic Algorithm for the effort estimation during the Testing
of OOP using the AVISAR frame work [17].

II. NEED FOR EFFORT ESTIMATION IN OOP

To ensure the quality of a product, a better understanding is
provided by the "object oriented metric" (OOM) for
Object-oriented Software under Testing (OOSUT). It offers
the needed access to process efficiency to improve the quality
of work done at the project level. Object Oriented Features
like such as information hiding, encapsulation, inheritance,
and the object abstraction approach lead to the requirement
for a specialized metric applied to OO systems to estimate
effort during the testing. A well-designed OO metric must be
able to meet the requirement for an indication of the extent to
which concealment was attained in an "OO design" (OOD) to
make sure OOD quality during the OOP test.

III. RELATED WORK IN OOT

Hiroki T., et al. [1] utilized formal tests based on a Unit-class
Petri color network to analyze the present behavior of objects.
This approach is does not depend upon specific requirements,
design methods, and languages. Jeff O., et al. [2] used
peer-based tests at the level of class integration to resolve the
problem CITO (“Class Level Integration Test”) with edge

weights taken from quantitative coupling. By automating the
CITO problem, the capacity of developers has improved, but
at the same time it cannot be applied to bigger systems is one
of the limitations. R.B. Borie, et al. [3] used class-level Flow
Graph-based tests to allow automatic test cases generation
from properly stated classes. In it, they initiated the building
of a simple flowchart that also aids generation of test cases
and coverage analysis. However, alternatively, it may not
adequately examine class behavior as it does not model the
space of class state. Taratip S., et al. [4] used class-based
cut-off tests to find test sequences to assuage the use of test
pieces. Its key benefit is that it causes more failures to be
detected in a much shorter time; however it cannot be scaled
for big systems. Frankl, P., et al. [5]. employed the class-level
ASTOOT technique (i.e. “a set of tools for OOT”) to produce

test cases that observe class state transitions and state values.
In this technique, the test execution system can automatically
verify the accuracy of the test cases with a test oracle.
However, because test cases are randomly produced, analysis
of test coverage is hard to carry out and the anticipated
outcome of test cases can be specified on a “Boolean” value

label. Dasiewicz, P., et al. [6] employed system-level event
flow tests to prepare test cases that highlight the interaction
between interrelated events.

Estimation of Efforts During Testing of OOP
using The AVISAR Framework

Prashant Vats, Manju Mandot

mailto:Manju.mandot@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D8003.049420&domain=www.ijeat.org

Estimation of Efforts During Testing of OOP using The AVISAR Framework

1211

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

The detection of latent loops and restricts the loop path by
manual intervention is its main advantage. Since it makes use
of telephone “private branch exchange” (PBX) software, it is

not appropriate for systems of small-scale. Parnas, D.L., et al.
[7] employed class-based graph-based tests to replicate class
behavior like a directed graph known as “the test graph”. A

test oracle can also be an application of this test graph.
Manuel O., et al. [8] proposed a randomized Adaptive
object-level test to assess the effectiveness of a test approach
called “ARTOO” to discover actual flaws in actual
software’s. Wang, Y., et al. [9] to effectively state the
behavior of classes or software modules, proposed “Trace

specification rewrite” approaches for class-level testing.
Provides canonical traits assigned directly between the crawl
space and the class operation space. T.Y. Chen, et al. [10] has
declared the state-based tests at the integrated class level to
signify the changing states of the SUT. Use FSM to model an
integrated system. Other test approaches proposed by the
same authors [11] are tests based on peer-based events, which
use the relationships between events to take advantage of the
systems and verify the violation of restrictions. Tom
Maibuam, et al. [12] employed tests based on the Integrated
Class Level Coordination Contract to present a technique to
implementing test cases with the Coordination Agreement
concept. Through the use of contract, generation and
execution of test cases can be automated. A. Jefferson, et al.
[13] used integrated class-level category splitting techniques
to demonstrate that present approach can discover flaws in
OOS; the combination of the “category partition method” and

a tool to detect memory management failures are extremely
useful for OOT. They inspected a technique based on
specifications with two small programs. Notkin, D., et al. [14]
employed tests based on unit-level statistical algebraic
abstractions, without requiring any specification, to
automatically identify common and special unit tests for a
class. It presents the portrayal of program behaviors and the
detection of common and special tests through the use of
statistical algebraic abstractions. M. Burrows, et al. [15]
proposed another approach known as “Eraser” to dynamically

detect data executions in multi-threaded block-based
programs. It imposes a simple blocking discipline rather than
seeking careers in general parallel programs. André B., et al.
[16] proposed an algebra-based approach to the CSP process
for class-level testing. Java is used for its implementation and
it handles single processor and multiprocessor environments
and also meets real-time priority programming requirements.
For the object oriented paradigm, this technique simplifies the
use of priorities.

IV. EFFORT ESTIMATION USING AVISAR

The proposed OO metric tool in the OOT framework
"AVISAR" consists mainly of three components: (i)
Complexity calculator, (ii) Cohesion calculator, (iii)
Estimator for OOD (OODE). With the use of these 3
components, it works collaboratively. The complexity degree
involved during the various methods will be calculated by the
Complexity calculator component, which will involve the
class and individual weights assigning for these classes. The
OODE will provide the measurement of the degree of
characteristics such as encapsulation polymorphism, &
inheritance in an OO class. In addition, the cohesion
component calculator provides the measurement of the extent

of cohesion in a SUT. Using its all elements together to
estimate the overall effort during testing and the development
of an OOS. In this framework, for a given OO code block, the
Lines of Code (LOC) number is fed to the input of a
Requirement Model that lay out the NOC (number of classes)
to forming the base for the estimation of the efforts in the
proposed OOS. In addition, these NOCs are saved in
requirements for the data dictionary storage that will provide
as container for storing the requirement details for these
NOCs produced for the provided code.
4.1 Cohesion Extent Calculator: As input, it accepts LOC.
Using these LOC, a bipartite graph is formed. The functions
and attribute called from a class in an OOS are used to make
two nodes for the bipartite graph. A function of a class is
linked to an attribute. If the attribute of this class is accessing
this function, the degree of cohesion can be calculated as

In AVISAR, during the repetitive process of generating the
chromosome for the execution of the GA for an OOS, it
requires an iterative process for the selection of one or more
individual chromosomes. The execution of the test case
selection occurs as explained below.
Let TS1 given as below be a chromosomal gene with 15 Test
Cases that are chosen in a random order from the Initial
population, provides a given test suite (TS1) which is as
shown below.

The value of fitness function for the initial population of
original Test Suite is given as below,
fvTS = 6.3532.
The above value of fitness function for the initial population
has been calculated by addition of the weights of the whole
test cases that are being related to TS.
The value for the Fitness Functions of TS1, fvTS1 = 2.553.
The initial probability for the crossover (Cp) of test gene is
being chosen in a random manner and Cp = 0.4.
This value of the fitness function for a test gene is calculated
by addition of the weights of whole set of test cases that are
related to the chosen individual test genes during a genetic
operation. The commencing test suite during the inception
TS1, is as follows.

4.2 Complexity Calculator:

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

1212

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

4.3 In AVISAR, during the OOD, it accepts the Number
of Classes (NOC) as input to a OOSUT for
calculating the level of complexity. Complexity can
be calculated as when allocating weights to the OO
classes:

While calculating the effort estimation in AVISAR, our aim is
to keep the level of complexity for an OOSUT, as lower as
possible. The consecutive iterations for generation of test
suites in AVISAR are given as below. The reasonable
predictive numbers are generated for each test case gene of
TS1 are listed below in Table 1.1. where Mutation Probability
= 0.10.

Table 1.1 Arbitrary numbers generated during the
mutation with probability is 0.10 on TS1 for its each test
case
During the successive iterations for generating the test suites
using the GA, The Test Cases for the individual genes test sets
are being generated in a random fashion with the mutation
probability (Mp = 0.10) were being restored by a set of new
test genes from the native test suite (TS) that were not related
to the TS1. The crucial tests T11 and T14 are substituted by
new test cases from the initial population of the Test genes.
These test genes are to be chosen in a random manner. The
crucial tests T17 are being substituted with T16. These crucial
tests cases are chosen in a random order, as they would be the
next available new test genes from the actual lists of the
crucial test gene set TS. Let us consider TS2 is to be the new
test chromosomal gene that has been obtained as a result of
the mutation and crossover operation on the test genes
depending upon the value of their fitness function. The value
of the fitness function of IP, fvTS is 6.3532 and value of the
fitness function of TS2 which is given by fvTS2 is 2.4084.
After the first iteration in the test gene, the value of Cp is
obtained as result of 2.4084 divide by 6.3532, which is equal
to 0.3791, which is comparatively lesser than the value the
initial crossover probability that is equal to 0.4. So as a result
the crossover operation first iteration in the test gene is being
used as accepted convention and the new individual test gene
is accepted as contemplate for the next iteration.

In AVISAR, the efficacy of this test suite has been evaluated
and examines to present them separately by examining the
other different metrics like, (i) Test Suite Efficiency, (ii)
Complexity Calculation using APFD value, and (iii) Fault
Coverage. As a resultant, the freshly resultant chromosome,
TS2 is as shown below.

For the next successive alteration in the test chromosomal
genes, the chosen individual test gene is TS2, which was
generated as a resultant in the previous successive alteration
in the test chromosomal genes. Let probability for the
mutation of the successive alteration in the test chromosomal
genes is 0.10. The numbers generated randomly for each test
chromosomal genes test cases are being shown as a list in the
Table 1.2 given below.

Table 1.2 Arbitrary numbers generated during the
mutation with probability is 0.10 on TS2 for its each test
case
The Test cases T10 & T1 are being substituted with new test
cases in the test chromosomal genes from its existing
population by utilizing the random selection approach new
test cases in the test chromosomal genes. These test cases are
being substituted with T19 & T18, which would be available
next to from its actual population, TS. The new test
chromosomal genes are given as TS3, which will be attained
after substituting these test genes that will meet the
expectations of the convincing value of the fitness function.

4.4 OOD Estimator (OODE): In AVISAR, the OODE
provides a general estimate of the various characteristics of
OOD, such as inheritance depth encapsulation, visibility of
methods (Vm) and degree of polymorphism for the OO
classes. This OODE component in a SUT takes its NOC as
input. Further we will examine its various subcomponents as
given below:

Estimation of Efforts During Testing of OOP using The AVISAR Framework

1213

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

4.3.1 Visibility Calculator: The total no: of methods that
would be visible in the given classes in a OOSUT will be
calculated by this. Let us consider Tc be the complete no: of
classes in the OOSUT, Let us say Md(Ci) be the no: of
methods that are being asserted in a Class. If a class in
OOSUT accesses a method by calling the object of that class,
the predicate of class in OOSUT can be seen; otherwise, it
cannot be seen, so the Visibility for a Method in the OOSSUT
can be found as:

4.3.2 Encapsulation Measurement: The total number of
classes Tc obtained from the NOC, in OOSUT is provided are
feed as input to the Encapsulation Measurement component
for OOSUT, provides the AHF and MHF for measuring the
encapsulation for OOSUT, given as follows. The MHF and
AHF jointly decide the encapsulation measurement of a class
for OOSUT.

4.3.3 Inheritance Measurement: In an OOSUT the
inheritance in the OO classes can be obtained as two different
measures for examining the level of inheritance. The total
number of classes which is denoted by Tc, will be taken as
input for an OOSUT. It mathematically determines the
number of methods that can be referred within the
interconnected class in an OOSUT as Ma.

So the Method associated component Method Inheritance
Factor (MIF) would determine the Methods in OOSUT to be
inherited as given below:

For the Attribute Inheritance Factor (AIF), Attribute
associated component would determine the number of
attributes that can be approached in consortium with a OO
class in a OOSUT as Aa.

So the Attribute Inheritance Factor (AIF) will determine the
attributes that would be approachable to a Class I, that can be
derived genetically from a parental OO Class shown as:

4.3.4 Polymorphism Factor: The "polymorphism factor"
(PF) in an OOSUT is to ascertain the size of the possibility to
apply the polymorphism. The implementing prospective for
the polymorphism factor in an OOSUT can be estimated as:

For calculating the Fitness value after the second successive
alteration of IP, we have obtain the value of fvTS is to be
equal to 6.3532.The fitness value of TS3 obtained during the
second successive alteration of fvTS3 is to be equal to 2.3608.
After the third successive alteration the Current value of the
factor Cp can be calculated by dividing the fitness value of
TS3 by value of fvTS which is found to be equal to 0.3716,
which is less than the previous value of Cp which was equal to
0.3791. so as a result both the mutation and crossover
operations that were accomplished, are fully approved as a
new chromosome which is given as below.

This chromosomal gene TS3 is contemplated for next
successive alteration. The probability for the new mutation
process is found to be equal to 0.60. The successive random
patterns of numbers are generated for the every test case of the
chromosomal gene TS3 as shown below.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

1214

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

Table 1.3 Arbitrary numbers generated during the

mutation with probability is 0.60 on TS3 for its each test
case

During the third crossover the chromosomal test genes that
tend to fail to meet the expected mutation probability were
substituted. So these test cases T18, T3, T5, T6, T7, T16 are
being substituted in accordance with the arbitrary test cases as
T20, T21, T22,T23,T24, T25.
Suppose the new chromosomal test genes is to be TS4, which
is a resultant of substitution of the chromosomal test genes.
The Fitness value of IP is given be the fitness value (fvTS)
which is found to be equal to 6.3532 and the fitness value
(fvTS4) of the chromosomal test gene TS4 is found to be
equal to 2.3283. After the third successive iteration, the value
of Cp is obtained by dividing fvTS by fvTS4 and their value is
found to be equal to 0.3665, which is less than the fitness
value of the TS3 which is 0.3716. Therefore, after the
successive genetic crossover and genetic mutation operations
that are being on the Chromosomal test gene TS3 & TS4 the
new resultant chromosome TS4, is shown as follows.

Let us further examine the Chromosomal test suite for the test
gene TS4 for the next successive alteration. Here the
probability of occurrence of the mutations on chromosomal
test gene is fixed at the value equal to 0.50. During this
successive alteration arbitrary numbers were generated during
the mutation on the chromosomal test gene TS4 for its each
test case.

Table 1.4 Arbitrary numbers generated during the

mutation with probability is 0.50 on TS4 for its each test
case

During the fourth crossover the chromosomal test genes that
tend to fail to meet the expected mutation probability were
substituted. So these test cases T20, T2,T21, T22, T8, T19,
T25, T12, T13, T15 are being substituted in accordance with
the arbitrary test cases as T26, T27, T28,T29,T30, T31,T32,
T33, T34, T35.
Suppose the new chromosomal test genes is to be TS5, which
is a resultant of substitution of the chromosomal test genes.
The Fitness value of IP is given be the fitness value (fvTS5)
which is found to be equal to 6.3532 and the fitness value
(fvTS5) of the chromosomal test gene TS5 is found to be
equal to 2.9123. After the third successive iteration, the value
of Cp is obtained by dividing fvTS by fvTS5 and their value is
found to be equal to 0.4584, which is not less than the fitness
value of the TS3 which is 0.3716. Therefore, after the
successive genetic crossover and genetic mutation operations
that are being on the Chromosomal test gene TS3 & TS4 the
new resultant chromosome TS5, is shown as follows.

After the second stage crossover and further mutations on
genes using the genetic algorithms the resultant analysis of the
computed details and results attained for the AVISAR
framework are being encapsulated and being shown in Table
1.5. Further Table 1.6 provides Analysis of data and results
for the various test suites using the GA.

Estimation of Efforts During Testing of OOP using The AVISAR Framework

1215

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

Table 1.5 Summed up results produced by genetic GA for

OOP

V. EXPERIMENTAL SETUP

For effort estimation during the functioning AVISAR
framework we have used the following code block for
ensuring the max code coverage.
public GAMaxCodeCoverageCases
(File jF, List<String[]> ea, int mini, int maxi, int sos)
{ selectedJavaFile = jF;
 excelArray = ea;
 minIndex = mini;
 maxIndex = maxi;
 sizeOfSubset = sos; }
 public List<Integer> startGA()
{int i;
 IntegerChromosome ich IntegerGene ig; Integer
caseNumber;
 Genotype.of(BitChromosome.of(10,0.5));
final Factory<Genotype<IntegerGene>> gtf =
Genotype.of(IntegerChromosome.of(minIndex, maxIndex,
sizeOfSubset));
final Engine<IntegerGene, Integer>
engine=Engine.builder(GAMaxCodeCoverageCases::eval,gt
f).build();
final Genotype<IntegerGene> result =
engine.stream().limit(10).collect(EvolutionResult.toBestGen
otype());
System.out.println("Result : \n\t" + result);
System.out.println("Count of failed cases in Result are: " +
String.valueOf(eval(result)));
List<Integer> subsetCases = new ArrayList<Integer>();
 ich =
result.getChromosome().as(IntegerChromosome.class);
for(i=0; i<=(ich.length()-1); i++)
{ig = ich.getGene(i);
caseNumber = ig.intValue();
subsetCases.add(caseNumber); }
 return subsetCases; }

Fig. 5.1. To show the interface of the tool AVISAR for

implementation of the proposed work.

Fig. 5.2. To show the selection of any Object oriented

Source code to be tested using AVISAR

Fig. 5.3.To show the execution of test cases using Genetic

Algorithm

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

1216

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

Fig. 5.4. To show the immediate optimized result of test
cases using the GA.

Fig.5.5. To show the Test cases being designed for OOP

under Test.

VI. EXPERIMENTAL RESULTS

When implemented in Java, the proposed OO Testing
Framework AVISAR has provided better results for the small
chunks of OO codes. We show the results as follows.

6.1 To measure cohesion, we achieved the following graph
in Figure 6.1 when it was drawn between a set of functions
and attributes together with the arcs in the bipartite graph. It
showed impromptu results for smaller code, however as size
of the code enlarges, it increases to infinity.

6.2 To display the performance of Complexity Calculator
To measure the Complexity in Figure 6.2, we obtained the
following graph, plotted between Number of classes and
Number of methods in individual classes.

6.3 To show the overall performances of OOD estimator
To measure the object-oriented design estimator, we plot the
graph in Fig. 6.3 for the method visibility, Polymorphism,
Inheritance, and Encapsulation for estimation of effort for
smaller codes implemented using four modules in Java.

Fig. 6.1 Outturns for the Cohesion Estimator in AVISAR.

Fig 6.2 Outturns for the of Complexity Calculator in

AVISAR.

Fig. 6.3 Outturns for the of OOD estimator in AVISAR.

VII. CONCLUSIONS

Estimation of Efforts During Testing of OOP using The AVISAR Framework

1217

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8003049420/2020©BEIESP
DOI: 10.35940/ijeat.D8003.049420
Journal Website: www.ijeat.org

In this research paper, we have proposed methodology for the
evaluation of efforts putted in during the carrying out the trails
of OOP for the detection of faults, using the AVISAR
framework. During the evaluation of efforts using the
AVISAR Framework we have observed that the use of GA
has proven their worth to provide better results in terms of
reduced effort estimation while testing the OOP.

Table 1.6 Analysis of data and results for the various test

suites using the GA.

REFERENCES

1. Harumi W., Hiroki T. , Wenxin Wu , Motoshi Saeki; “ A Technique for

Analyzing and Testing Object-Oriented Software Using Colored Petri
Nets”; IEEE International Conference;1998;Pg.No:182-190.

2. Aynur Abdurazik, Jeff Offutt;” Using Coupling-based Weights for the
Class Integration and Test Order Problem” published by Oxford

University Press, The British Computer Society, 2006.
3. A.S. Parrish, R.B. Borie, and D.W. Cordes, “Automated Flow Graph

Based Testing of Object Oriented Software Modules," Journal of
Systems and Software, 23, 1993, pp. 95-109.

4. Jaroenpiboonkit, J. , Suwannasart, T. ;” Finding a Test Order using

Object-Oriented Slicing Technique” IEEESoftware Engineering

Conference, 2007. APSEC 2007. 14th Asia-Pacific Pg. no: 49-56.
5. R.K. DOONG, P.G. Frankl; “The ASTOOT Approach to Testing

Object Oriented Programs”; ACM Transactions on Software

Engineering and Methodology, Vol. 3,1994, pages 101-130.
6. Wayne Liu And , Wayne Liu , Paul Dasiewicz;”The Event-Flow

Technique for Selecting Test Cases for Object-Oriented
Programs”;IEEE conference proceedings 1997.

7. D.L. Parnas and Y. Wang, “Simulating the behavior of software

modules by trace rewriting systems”, IEEE Trans. Software Eng. 20

(10) (1993) Pg.No: 750-759.
8. Ilinca C, Andreas L., Manuel O., Bertrand M.;” ARTOO: Adaptive

Random Testing for Object-oriented Software”; published in ICSE’08,

May 10–18, 2008, Leipzig, Germany.
9. Yabo Wang, D. L. Parnas;” Simulating the Behavior of Software

Modules by Trace Rewriting”;IEEE transactions of software

engineering;October1994(Vol.20,No.10) Pg. no.750-759.
10. H.Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen., “In black and white:

an integrated approach to class-level testing of object-oriented

programs.” ACM Transactions on Software Engineering and

Methodology, 7(3):250–295, 1998.
11. W.K.Chan,T.Y.Chen,T.H.Tse;” An Overview of Integration Testing

Techniques for Object-Oriented Programs”; Proceedings of the 2nd

ACIS Annual International Conference on Computer and Information
Science (ICIS 2002), International Association for Computer and
Information Science, Mt. Pleasant, Michigan (2002).

12. Zhe Li, Hamilton M., T.;” An Approach to Integration Testing of

Object Oriented Programs”; IEEE transactions, Quality Software,

2007. QSIC '07. Seventh International Conference, Oct. 2007; Pg. No:
268 – 273.

13. Alisa Irvine, A. Jefferson Offutt;” The Effectiveness of Category

Partition Testing of Object-Oriented Software”; CiteseerX, 1995;
14. Tao Xie, David Notkin;” Automatically Identifying Special and

Common Unit Tests Based on Inferred Statistical Algebraic
Abstractions”; 2003.

15. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson;
“Eraser A dynamic data race detector for Multithreaded Programs”;

ACM transactions on computer systems, 1997.
16. Gerald H., André B., Jan B.; “A distributed real-time java system based

on csp”; CiteseerX, 2000.
17. Vats, P., “AVISAR - a three tier architectural framework for the testing

of Object Oriented Programs” pub. In Second IEEE International

Innovative Applications of Computational Intelligence on Power,
Energy and Controls with their Impact on Humanity (CIPECH), 2016.

AUTHORS PROFILE

Prof. Manju Mandot is a Professor and Director of Directorate of Jan
Shikshan and Extension, J.R.N. Rajasthan Vidyapith
(Deemed University). She has 27 years of teaching
experience. Her research interest includes image
processing, E- governance, women empowerment
with technology. She is esteemed member of
Computer Society of India

Mr. Prashant Vats is working in the field of CSE & IT as an Assistant

Professor from past 11 years. He has done Diploma in
Medical Electronics, B. tech. (IT), M. Tech. (IT) from
GGSIPU, New Delhi., MBA & M.A in Education
from IGNOU, New Delhi, PG Diploma in Cyber Laws
from Indian Law Institute, New Delhi. He is pursuing
Ph.D. in CSE from Banasthali Vidyapith, Rajasthan.
He is a member of IEEE.His research area includes

OO paradigm, Software Engineering, IOT, Cloud Computing, BigData. He
has published more than 32 research publications in various national &
international journals of repute.

