
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

 2418

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8025049420/2020©BEIESP
DOI: 10.35940/ijeat.D8025.049420
Journal Website: www.ijeat.org

Abstract: With an increase in the number of internet users, the

number of cyber-attacks happening in organizations is increasing
day by day. Most of the cyber-attacks involve the use of malicious
software known as malware to steal personal information, gain
unauthorized access to the computer systems and carry out
malicious activities which can cause huge financial losses to the
organizations. Viruses, worms, rootkits, adware or anything that
performs malicious activities is classified as malware. Detecting
malware is a major challenge faced by the anti-malware industry
as the signature-based malware detection methods may not
provide accurate detection of malware. In this paper, an artificial
neural network approach for malware detection is presented to
overcome the shortcomings of signature-based malware detection
methods. The proposed method can be used as a base model for
the malware detection process and can be further developed to
enhance the functionality.

Keywords : Malware, Artificial Neural Network, Machine
learning, Network security, Malware Detection, Windows PE

I. INTRODUCTION

In recent years the use of the internet has grown
exponentially. Various organizations and people’s daily tasks

are heavily dependent on the internet. This allows hackers to
develop malicious software known as malware which is used
to perform malicious activities in organizations and people’s

systems through the internet. Malware can be defined as
anything which performs unauthorized and malicious
activities. Malware can be further divided into various
subcategories like Viruses, ransomware, worms, rootkits,
downloaders, etc. on the basis of their behavior and
functionality. According to reports, the global cost of damage
caused by malware is expected to reach $6 trillion by the end
of 2021 [9]. Traditional malware detection engines use
signature-based detection for malware detection. In
signature-based detection, the malware engine generates a
signature of the malware which is compared to a set of
pre-computed signatures [20]. This signature is a hash value
of the malware image or unique value computed from the
malware image [20]. So, whenever the file enters a network
or a computer system, the anti-malware engine generates the
unique value of the file entered and compares that unique
value against its database. If the value matches any of the

Revised Manuscript Received on April 27, 2020.
* Correspondence Author

Vasu Sethia*, B.Tech,SRM Institute of Science and Technology,
Chennai, India. Email: vasu.sethia@gmail.com

Shivam Kataria, B.Tech,SRM Institute of Science and Technology,
Chennai,India.Email:shivamkataria2000@gmail.com

Jeyasekar A, Associate Professor, CSE,SRM Institute of Science and
Technology, Chennai,India.Email:jeyasekar.antony@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

entries in the database then the malware detection engine
blocks the file and classifies it as malicious. The problem
with this approach is that it can be easily bypassed, the
change of a single byte in the malicious file or a change in the
code of malicious file will change the unique value of the
malware making it undetectable. Therefore, from the past
few years, the anti-malware industry has started using
behavioral analysis and machine learning approaches to
detect malware [6]. The behavioral analysis method involves
analyzing the system calls made by the malware [8], traffic
generated by malware and requires the execution of a given
model in a sandboxed circumstance and run-time practices
are checked and logged. According to the current research,
the machine learning approach requires a system to perform
feature extraction and feature reduction. Features of malware
can be extracted using two approaches (1) Static Analysis: In
this type of technique, malware is analyzed without running
the malware [6]. (2) Dynamic Analysis: In this type of
technique, malware is executed in a sandbox environment
and is analyzed [6]. This gives more information about the
malware’s behavior during the run time. In [2] the paper a

method is proposed to detect malware on the basis of API
calls and their arguments. It proposes a multiple-gate CNN
for faster malware detection. Once the features are selected,
the machine learning approach builds a classification model.
All the features extracted during the feature engineering stage
are transformed into a feature vector which is given as an
input to the machine learning model. Recently, researchers
have started to use deep learning approaches also for malware
detection [5]. Previous researches use a signature-based
mechanism to detect malware which can easily be bypassed
by the change of a bit in the code, while the current research
in the field of malware detection uses behavior-based
analysis and machine learning which lacks a low false
positive rate and high accuracy. Many of them apply various
other machine learning classifiers on PE header features
other than the standard ANN approach. Hence this paper
presents an Artificial Neural Network approach for malware
detection. The three most popular types of neural networks in
deep learning are ANN (Artificial Neural Network), RNN
(Recurrent Neural Network) and CNN (Convolution Neural
Network)[17]. ANN is known as the Feed-Forward Neural
network because the inputs are processed only in the forward
direction. ANNs have the capacity to learn weights that map
any input to the output which makes it capable of learning
any complex input data and finding the relation between the
input and the output. RNN's on the other hand have a
recurrent connection on the hidden state which turns it from
an ANN to a RNN. RNN are good at capturing the sequential
information present in the input data. This makes RNN
suitable for NLP (Natural Language Processing) tasks where
the data is sequential. CNN is mostly used in image and video
processing.

Malware Detection using ANN(Malviz.AI)

Vasu Sethia, Shivam Kataria, Jeyasekar A

https://www.openaccess.nl/en/open-publications
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D8025.049420&domain=www.ijeat.org

Malware Detection using ANN(Malviz.AI)

 2419

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8025049420/2020©BEIESP
DOI: 10.35940/ijeat.D8025.049420
Journal Website: www.ijeat.org

The main features of CNNs are kernels. Kernels are used
to extract the relevant features from the input using the
convolution operation. In the case of malware, the data is
non-linear, non-sequential. This makes the ANN to be the
most suitable approach for the malware detection process.
The rest of the paper is organized as follows. In section II it
presents the background work and introduction to ANN
(Artificial Neural Network) and section III presents the
model and proposed architecture for the malware detection
process. In section IV the experimental setup is shown which
is used to perform the tests, section V presents the
performance and results analysis. Finally, Section VI
provides the conclusion to the paper and section VII contains
the references used

II. BACKGROUND WORK

The idea of artificial neural networks is derived from
biological neural networks. A biological neural network
consists of neurons, similarly, an artificial neural network
consists of artificial neurons. It is composed of various layers
connected to each other and each layer consists of various
nodes connected to every other node in the next layer. The
first layer is the input layer which takes the input in the form
of a vector, followed by the hidden layers and at the end is the
output. Each input has a weight and that weighted input is fed
into a given node followed by an activation function. The
output of the activation is fed as an input to the next layer.
The activation function decides whether the neuron in the
next layer should be activated or should not be activated on
the basis of weighted input and bias. There are various types
of activation functions like sigmoid [12],Relu [12],[13] etc
.Inthis paper’s model, ReLu is used. Its value goes from 0 to
infinity and is a nonlinear function.

Fig 1. Single-layer Neural Network (perceptron)

The diagram (Fig 1) shows a single layer perceptron. The
input values are denoted by x0, x1 … xn while the weights are
represented by w1, w2 ... wn. These weights tell about the
strength of the node and these weights are multiplied with the
input values. The product of various input values and weights
are then added and fed into the activation function to get the
output value. This output value is then fed to the node in the
next layer. The sum can be represented mathematically as,

 0 0 1 1………………. n n (1)

Once the output value is produced then the difference
between the actual value and the predicted value is calculated
which is also known as the cost function. This cost function is
then analyzed, based on this cost function weights and
threshold are adjusted [18] which is sent back to the entire
neural network again. This process keeps on happening until
the minimum error cost function is reached.
The main justification for using this ANN model is that it can
learn and demonstrate non-direct and complex connections,
which is extremely significant on the grounds of establishing

a relationship between input and output which are non-linear
and complex. Also, it is very responsive to noise and it is easy
to maintain. In the process of malware detection, input
variables are the features of malware [6] while the output
variable tells whether the file is malicious or not. Unlike other
machine learning techniques, the ANN doesn’t put any

restriction on the input variables which allows the use of the
maximum number of variables which aids in the malware
detection process. After learning, ANN can infer the
relationship on the unseen data and predict the output. In [3]
the authors present a framework for malware detection which
aims to get a low false-positive rate. It uses a simple
multi-stage combination (cascade) of different versions of the
perceptron algorithm and achieves the highest accuracy of
96.25% on 5-fold cross-validation. It achieves a low
false-positive rate but does not implement various other
machine learning classifiers like SVM which may give better
accuracy. In [15] the author uses naive Bayes, J48, k-nearest
neighbor, multi-level perceptron, decision tree, and support
vector machine for malware detection. The best performance
is achieved by a J48 decision tree with a recall of 95.9%, a
false positive-rate of 2.4%, a precision of 97.3%, and an
accuracy of 96.8%. They use a behavior-based dataset which
involves dynamic analysis of the malware. The main
disadvantage is that it only contains 220 malware samples
related to the Indonesian family. In [16] the author uses
Chi-square, Information gain], Gain ratio, T-test and fisher
score to select and rank important features of the malware
and shows that the Fisher score can be used for feature
selection. The benefit of this approach is that it helps in
selecting the important features which can be used in
malware detection but the author doesn’t consider other

statistical tests like F-score to rank the features. In [14] the
author uses Windows API calls as its features with stacked
autoencoders for malware detection and achieves an accuracy
of 96.85%. This paper includes the dynamic property of the
malware such as API calls which tells a lot about the
malware’s behavior, although various other dynamic

properties are not considered during the training. The model
is tested against 2/3/4/5 hidden layers and obtains the best
accuracy with 3 hidden layers and 100 neurons at each hidden
layer. In [17] the author uses the Convolution Neural
Network approach to classify the malware into different
families and achieves an accuracy of 98%. In this approach,
the malware binary was converted into a grayscale image.
Malware belonging to the same malware families will have
the same visual representation. Therefore, an image
classification approach is proposed. The [14] approach
classifies only 25 families while there are various other types
of files that are not considered; hence this approach isn’t

sufficient to detect the malware.

III. PROPOSED WORK

The overview of the malware detection process using ANN is
shown in Fig 2. The file to be detected is given into the
feature extraction and encoding process where the features
are extracted and encoded between the value of 0 to 1. Then
the feature vector of the file to be detected is generated from
the features extracted and fed into the trained ANN model to
make the prediction.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

 2420

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8025049420/2020©BEIESP
DOI: 10.35940/ijeat.D8025.049420
Journal Website: www.ijeat.org

Then the prediction made by the ANN model tells us whether
the file is malicious or not based on the training of the ANN
model.

Fig 2. Malware detection process

The artificial neural network approach with ReLu as the
activation function [7] is used and the model is trained with
different amounts of hidden layers containing either 70 or 80
neurons in each layer with Adam optimization[19] technique.
Adam optimization helps the model in optimizing the
learning rate as the input of the model is sparse in some cases.
This optimizer is easy to implement, is efficient, has low
memory requirements, is invariant to the diagonal rescaling
of the gradients, and is well suited for problems that are large
in terms of data and/or parameters, to detect the malware with

Fig 3. Proposed Model

higher accuracy. Fig 3 shows the proposed model varying
from 2,3,7 hidden layers. The input features are extracted
from the portable executable (PE) file. Portable Executable
[4] is the file format for the Windows operating system for
executables, .NET Object, COM files, etc. It is a data
structure that is used by the Windows loader to load the PE
into the memory and this data structure defines various
properties of the file.
A PE file has different headers, each header has various
properties like base address, address of the entry point, the
size on disk, size in memory. Each of these properties has a
certain value which is used in feature engineering. PE also
has different sections [4] like code, data, etc. The code
section contains the code of the PE while the data section
consists of feature engineering. Each PE file has an IAT
(Import Address Table) [10][11] which is in the. idata
section which tells about all the APIs, system DLL it is
importing. First, in the model 11 different properties are
selected based on literature surveys. These properties are
extracted from PE and each property is represented as 1 it is
true and as 0 if it is false. Following properties are extracted
from PE

● Debug section

● Export Symbol Table
● Resource section
● TLS [4]
● NX bit
● Import Symbol Table
● Relocations Entries
● Rich header
● Load Configuration
● Digital Signatures

PE is parsed and if any of the above properties is found to be
in the PE then it is represented as 1 else it is represented as 0.
Based on the literature survey various DLLs, API used by the
malware are selected and for each API being used by the PE
one column of the relative library incremented, then
normalized by the total amount of API being imported. Next,
the Shanon entropy of the various sections present in the PE
file is included. Finally, the entry point of the PE is included
in the feature set. After taking the input features from the
input vector the ANN feeds the input to the input layer where
the activation function is used to transform the sum of the
weighted input in the node into the activation of the node.
There are many activation functions that can be used in a
neural network like tanh, sigmoid, ReLU, etc. The tanh
activation function returns a value between -1 to 1 (i.e. -1 <
output < 1) , the sigmoid activation function returns a value
between 0 to 1 (i.e. 0 < output < 1) , and the ReLU
activation function returns a value between 0 to infinity (i.e. 0
< output < +∞) . This paper proposes to use ReLU (Rectified

Linear Unit) in the model as it is computationally cheaper
compared to sigmoid and tanh. It requires a simple max
function which is trivial when compared to tanh and sigmoid
which require the use of exponential calculation. ReLU is a
nonlinear function but behaves like a linear function if the
input is more than zero and returns a zero output if the input is
less than or equal to zero which makes the ReLU easier to
optimize. Therefore, in this paper, ReLu is used and the
output of it is fed to the next layer in the neural network. The
last layer (output layer) of the ANN then finally gives the
output as 0 (clean) or 1 (malicious) based on the input it
receives from the previous layer.

IV. EXPERIMENTAL SETUP

The proposed malware detection system is developed using
python, and the ANN model is implemented using Keras
library. The data set used for training and testing are collected
from various websites like Virusshare, GitHub repository,
honeypot [6] Malware.lu, etc. on the cloud. This dataset
consists of 200,000 samples which are in the form of
Windows PE[4] file format. These samples are divided into
two parts: one contains 100,000 malicious samples and the
other contains 100,000 clean samples. 70% of the dataset is
used for training, 15% samples for validation and the rest of
the 15% of the samples are used for testing the accuracy of
the model. Using these samples, the proposed model is
trained and tested. The proposed ANN model is tested by
varying the number of layers and numbers neurons in a layer.
100 neurons in a layer are used [14] for malware detection but
in this paper, 70 and 80 neurons are used in a hidden layer.
Initially, the number of hidden layers is kept at 2 and is
gradually increased to 3 hidden layers and 7 hidden layers.
The dropout value is set as
30%.

https://www.openaccess.nl/en/open-publications

Malware Detection using ANN(Malviz.AI)

 2421

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8025049420/2020©BEIESP
DOI: 10.35940/ijeat.D8025.049420
Journal Website: www.ijeat.org

V. PERFORMANCE ANALYSIS

The proposed model is trained and tested by varying the
parameters such as the number of neurons and the number of
hidden layers. The variant models are referred to as given
below

● ANN-80-2H: Artificial Neural Network with 80
neurons and 2 hidden layers

● ANN-80-3H: Artificial Neural Network with 80
neurons and 3 hidden layers

● ANN-80-7H: Artificial Neural Network with 80
neurons and 7 hidden layers

● ANN-70-2H: Artificial Neural Network with 70
neurons and 2 hidden layers

● ANN-70-3H: Artificial Neural Network with 70
neurons and 3 hidden layers

● ANN-70-7H: Artificial Neural Network with 70
neurons and 7 hidden layers

These variant models are evaluated by measuring the
accuracy of prediction. The accuracy of prediction is
measured for training, validation and testing data set. The
accuracy of prediction is calculated as follows

Accuracy = Correct predictions / Total predictions

 = (2)

where TP denotes True Positive, which means that
observation is positive and it is predicted to be positive. FN
denotes False Negative which means that observation is
positive, but it is predicted negative. TN denotes True
Negative which means observation is negative, and it is
predicted to be negative. FP denotes False Positive which
means that observation is negative, but it is predicted
positive. Table 1 shows the accuracy of prediction for variant
models using the training dataset, validation dataset, and
testing dataset. It is observed from the result shown in Table 1
that there is a positive correlation between the number of
hidden layers, neurons in the model with the accuracy of the
model. Although all the variants of the ANN model had
similar accuracy ANN-80-7N performed best in the tests with
the test accuracy of 98.2%.

 TABLE 1: Accuracy of prediction for variant
models using training, validation and testing samples.

Model TR-ACC VAL-ACC TE-ACC

ANN-70-2H 96.57% 96.35% 96.1%

ANN-70-3H 97.6% 96.4% 96.24%

ANN-70-7H 96.34% 96.21% 95.7%

ANN-80-2H 97.1% 96.5% 96%

ANN-80-3H 97.45% 97.3% 97.32%

ANN-80-7H 98.3% 98.04% 98.2%

Fig 3. Model Accuracy vs Epoch

Fig 3 represents the accuracy rate over the test and train
dataset graphically. It shows the training history of
ANN-80-7N and it is evident that the model accuracy
improved over time while decreasing the loss over epochs.
From Fig 3, the loss value over the training data is 0.0820792
while the loss value over the test data is 0.0685853. Loss is
the total sum of errors made for every input of training or
validation sets. It is used to determine how well the model is
doing for the test or validation set. In the proposed ANN
model, SoftMax [21] is used as the activation function for the
output layer, to determine the loss of the model.

Fig 4. ROC Curve

Fig 4 shows the ROC (Receiver Output Characteristics)
which determines with what accuracy the ANN-80N-7H
model is able to distinguish between the malicious and clean
sample. Sensitivity or True Positive Rate (TPR) is calculated
as the number of correct positive predictions (TP) divided by
the total number of positives (P). Sensitivity’s value varies

between 0 and 1, 1 being the best possible value for the
model.
TPR (True positive rate or sensitivity)
 = (3)
where TP represents true positive, FN represents False
Negative. The false-positive rate (FPR) is calculated as the
number of incorrect positive predictions divided by the total
number of negatives. The value of the false positive rate
ranges between 0 and 1, where 0 is considered the ideal
outcome. It is calculated as.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

 2422

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8025049420/2020©BEIESP
DOI: 10.35940/ijeat.D8025.049420
Journal Website: www.ijeat.org

FPR (False Positive Rate)
 = (4)
where FN denotes False Negative, TN denotes True Negative
and FP denotes False Positive.
Calculations of the TPR and FPR values in Fig 4 are:
TPR = (
FPR =
AUC (Area under the curve)-ROC curve is a performance
measurement that tells how effective the model is. ROC is a
probability curve and AUC tell about the degree or measure
of separability. It tells how effective the model is in
distinguishing between the clean and malicious. Higher the
AUC, better the model is at predicting 0s as 0s and 1s as 1s.
By analogy, the higher the AUC, the better the model is at
distinguishing between malware and clean samples. AUC
near to 1 is characteristic of a good model and Fig 4 shows
that AUC (Area under the curve) is 0.997 which tells how
effective the model is.
The given below shows the confusion matrix of test, training
and validation sets.

Table 2: Test confusion matrix

n=29995 Predicted: No Predicted: Yes

Actual: No 14700 (98.9%) 164 (1.1%)

Actual: Yes 541 (3.6%) 14590 (96.4%)

 Table 3: Training confusion matrix

 n=139979 Predicted: No Predicted: Yes

Actual: No 69346 (99%) 674 (1%)

Actual: Yes 2271 (3.2%) 67688 (96.8%)

Table 4: Validation confusion matrix

n=29995 Predicted: No Predicted: Yes

Actual: No 14879 (98.6%) 213 (1.4%)

Actual: Yes 554 (3.7%) 14349 (96.3%)

Initially, the number of hidden layers is kept at 2 and is
gradually increased to 3 hidden layers and 7 hidden layers for
each type i.e. 70 neuron variant and 80 neuron variants. After
increasing the hidden layers in the model, it is found that
accuracy increases until the 7th layer after that the value
of the accuracy starts dropping. Based on the tests and
literature survey [1][14] it can be concluded that as the
number of hidden layers is increased, the accuracy of the
model increases until a certain number of hidden layers,
after that it starts decreasing.

VI. CONCLUSION

This paper explained the traditional malware detection
techniques like signature based and behavior-based detection
and their shortcomings. The paper also highlighted the
conventional machine learning based detection methods.
This paper presents and compares different variants of ANN
(Artificial neural network) approach for the malware [6]

detection as the traditional detection techniques used by the
various anti-virus tend to fail. The Steps needed for
implementing the ANN model was explained. From the
performance analysis it was found that the ANN-80-7H
variant be formed the best with an accuracy of 98.2% and
AUC (Area under the curve) of 0.997 which is better when
compared to the model proposed by Babak Bashari Rad et
al.[22] in which the accuracy is 97.8% and a precision 97.6%.
Furthermore, the model can be improved by including more
features of the PE files in the dataset, dynamic features of the
PE files. The framework is not yet fully capable of replacing
the commercial antivirus but provides an ANN approach to
malware detection research. New samples can be added to the
dataset to improve the model for the detection of newer
malware.

 REFERENCES

1. Rathore, Hemant et al. “Malware Detection Using Machine Learning

and Deep Learning.” Lecture Notes in Computer Science (2018):

402–411. Crossref. Web.
2. Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: intelligent malware

detection system,” in KDD, P. Berkhin, R. Caruana, and X. Wu, Eds.

ACM, 2007, pp. 1043–1047.
3. Gavriluţ, Dragoş & Cimpoesu, Mihai & Anton, D. & Ciortuz, Liviu.

(2009). Malware detection using machine learning. 4. 735 - 741.
10.1109/IMCSIT.2009.5352759

4. Wang, Tzu-Yen & Wu, Chin-Hsiung & Hsieh, Chu-Cheng. (2009).
Detecting Unknown Malicious Executables Using Portable Executable
Headers. NCM 2009 - 5th International Joint Conference on INC, IMS,
and IDC. 278-284. 10.1109/NCM.2009.385.

5. Guo, Wei & Wang, Tenghai & Wei, Jizeng. (2018). Malware
Detection with Convolutional Neural Network Using Hardware
Events. 10.1007/978-981-10-7844-6_11.

6. V. Sethia and A. Jeyasekar, "Malware Capturing and Analysis using
Dionaea Honeypot," 2019 International Carnahan Conference on
Security Technology (ICCST), CHENNAI, India, 2019, pp. 1-4

7. B. Ding, H. Qian and J. Zhou, "Activation functions and their
characteristics in deep neural networks," 2018 Chinese Control And
Decision Conference (CCDC), Shenyang, 2018, pp. 1836-1841.doi:
10.1109/CCDC.2018.8407425

8. Galal, Hisham. (2015). Behavior-based features model for malware
detection. Journal of Computer Virology and Hacking Techniques.
10.1007/s11416-015-0244-0.

9. Steve Morgan” Cyber crime damages by $6 trillion by 2021”, October

16, 2017 [Online] Available:
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report
-2016/

10. Microsoft, Microsoft Portable Executable and Common Object File
Format Specification, 2008

11. M. Pietrek, “Peering Inside the PE: A Tour of the Win32 Portable

Executable File Format,” Microsoft Systems Journal, vol. 9, no. 3,

1994, pp. 15-34.
12. Ittiyavirah, Sibi & Jones, S. & Siddarth, P.. (2013). Analysis of

different activation functions using Backpropagation Neural Networks.
Journal of Theoretical and Applied Information Technology. 47.
1344-1348.

13. Hardy, William, Lingwei Chen, Shifu Hou, Yanfang Ye and Xin Li.
“DL 4 MD : A Deep Learning Framework for Intelligent Malware
Detection.” (2016).

14. Firdausi, Ivan & Lim, Charles & Erwin, Alva & Nugroho, Anto.
(2010). Analysis of Machine learning Techniques Used in
Behavior-Based Malware Detection. Advances in Computing, Control,
and Telecommunication Technologies, International Conference on.
201-203. 10.1109/ACT.2010.33

15. S. Shah, H. Jani, S. Shetty, and K. Bhowmick. Virus Detection using
Artificial Neural Networks. In International Journal of Computer
Applications, vol. 84(5), 2013

16. Nataraj, Lakshmanan & Karthikeyan, Shanmugavadivel & Jacob,
Grégoire & Manjunath, B.. (2011). Malware Images: Visualization and
Automatic Classification. 10.1145/2016904.2016908.

https://www.openaccess.nl/en/open-publications
https://www.researchgate.net/profile/Babak_Bashari_Rad
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/

Malware Detection using ANN(Malviz.AI)

 2423

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8025049420/2020©BEIESP
DOI: 10.35940/ijeat.D8025.049420
Journal Website: www.ijeat.org

17. Köker, Raşit & Sari, Yavuz. (2003). Neural Network Based Automatic

Threshold Selection for an Industrial Vision System.
18. Kingma, Diederik P. and Jimmy Ba. “Adam: A Method for Stochastic

Optimization.” CoRR abs/1412.6980 (2014): n. pag.
19. G. Hu and D. Venugopal, "A Malware Signature Extraction and

Detection Method Applied to Mobile Networks," 2007 IEEE
International Performance, Computing, and Communications
Conference, New Orleans, LA, 2007, pp. 19-26.

20. Nwankpa, Chigozie & Ijomah, Winifred & Gachagan, Anthony &
Marshall, Stephen. (2018). Activation Functions: Comparison of trends
in Practice and Research for Deep Learning.

21. Bashari Rad, Babak & Shahpasand, Maryam & Nejad, Mohammad.
(2018). Malware classification and detection using artificial neural
network. Journal of Engineering Science and Technology. 13. 14-23

22. Sherstinsky, Alex. “Fundamentals of Recurrent Neural Network

(RNN) and Long Short-Term Memory (LSTM
23. vol. 2, Aug. 1987, pp. 740–741 [Dig. 9th Annu. Conf. Magnetics

Japan, 1982, p. 301].
24. M. Young, The Techincal Writers Handbook. Mill Valley, CA:

University Science, 1989.
25. (Basic Book/Monograph Online Sources) J. K. Author. (year, month,

day). Title (edition) [Type of medium]. Volume(issue). Available:
http://www.(URL)

26. J. Jones. (1991, May 10). Networks (2nd ed.) [Online]. Available:
http://www.atm.com

27. (Journal Online Sources style) K. Author. (year, month). Title. Journal
[Type of medium]. Volume(issue), paging if given. Available:
http://www.(URL)

AUTHORS PROFILE

Vasu Sethia is currently pursuing B. Tech in computer
science from the SRM Institute of Science and Technology
Chennai, India. He is in fourth year and his area of research
related to malware analysis and reverse engineering. He was
the lead of sector433 labs in SRM Institute of Science and

Technology Chennai, India and led a team of 5 members where the area of
research was related to cybersecurity and its application. He has been
selected thrice for Blackhat Arsenal to present his project. He is an active
member of NULL Chennai and he loves to play CTF online.

Shivam Kataria is a competitive coder pursuing a
B.Tech degree in computer science engineering from the
SRM Institute of Science and Technology Chennai, India.
He was born on 17th Jan 1998 in Delhi. His area of
interests are software development, problem solving,

competitive programming, web development and malware analysis. His
project Malviz: - Malware Visualization on graph network was selected for
BlackHat Asia arsenal 2020. He regularly participates in coding
competitions on hackerearth and codechef. He has secured 27th rank April
Circuits' 19 on HackerEarth Long programming Contest. He has also
participate in many hackathons and secured 2nd position in IET
Hackathon'19 ,SRM chapter.

Mr. A. Jeyasekar was born at Vickramasingapuram,
Tirunelveli, Tamilnadu, India on June 11, 1969. He received
his B.E. (Electronics and Communication Engineering) from
The Indian Engineering College affiliated to Madurai
Kamaraj University, Tamilnadu, India. He received his M.E.

(Computer Science and Engineering) from Karunya Institute of Technology
affiliated to Anna University, Tamilnadu, India in the year 2004. He got his
Ph.D. in the area of congestion avoidance algorithm in heterogeneous
wired-wireless network. He has filed a patent on preventing mechanisms for
stegosploit attack and published/presented 36 papers in
international/national journals and conferences. He was awarded as “Man
Engineer” for scientific research contribution for Year 2015 by IET. His area

of interest includes Networking, Network Security, Software Quality
Management. He is presently working as Associate Professor in the
department of Computer Science and Engineering, SRM Institute of Science
and Technology (formerly called as SRM University), Tamilnadu, India

http://www.(url)/
http://www.atm.com/
http://www.(url)/

