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Abstract: With an increase in the number of internet users, the 

number of cyber-attacks happening in organizations is increasing 
day by day. Most of the cyber-attacks involve the use of malicious 
software known as malware to steal personal information, gain 
unauthorized access to the computer systems and carry out 
malicious activities which can cause huge financial losses to the 
organizations. Viruses, worms, rootkits, adware or anything that 
performs malicious activities is classified as malware. Detecting 
malware is a major challenge faced by the anti-malware industry 
as the signature-based malware detection methods may not 
provide accurate detection of malware. In this paper, an artificial 
neural network approach for malware detection is presented to 
overcome the shortcomings of signature-based malware detection 
methods. The proposed method can be used as a base model for 
the malware detection process and can be further developed to 
enhance the functionality. 

Keywords : Malware, Artificial Neural Network, Machine 
learning, Network security, Malware Detection, Windows PE 

I. INTRODUCTION 

In recent years the use of the internet has grown 
exponentially. Various organizations and people’s daily tasks 

are heavily dependent on the internet. This allows hackers to 
develop malicious software known as malware which is used 
to perform malicious activities in organizations and people’s 

systems through the internet. Malware can be defined as 
anything which performs unauthorized and malicious 
activities. Malware can be further divided into various 
subcategories like Viruses, ransomware, worms, rootkits, 
downloaders, etc. on the basis of their behavior and 
functionality. According to reports, the global cost of damage 
caused by malware is expected to reach $6 trillion by the end 
of 2021 [9]. Traditional malware detection engines use 
signature-based detection for malware detection. In 
signature-based detection, the malware engine generates a 
signature of the malware which is compared to a set of 
pre-computed signatures [20]. This signature is a hash value 
of the malware image or unique value computed from the 
malware image [20]. So, whenever the file enters a network 
or a computer system, the anti-malware engine generates the 
unique value of the file entered and compares that unique 
value against its database. If the value matches any of the 
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entries in the database then the malware detection engine 
blocks the file and classifies it as malicious. The problem 
with this approach is that it can be easily bypassed, the 
change of a single byte in the malicious file or a change in the 
code of malicious file will change the unique value of the 
malware making it undetectable. Therefore, from the past 
few years, the anti-malware industry has started using 
behavioral analysis and machine learning approaches to 
detect malware [6]. The behavioral analysis method involves 
analyzing the system calls made by the malware [8], traffic 
generated by malware and requires the execution of a given 
model in a sandboxed circumstance and run-time practices 
are checked and logged. According to the current research, 
the machine learning approach requires a system to perform 
feature extraction and feature reduction. Features of malware 
can be extracted using two approaches (1) Static Analysis: In 
this type of technique, malware is analyzed without running 
the malware [6]. (2) Dynamic Analysis: In this type of 
technique, malware is executed in a sandbox environment 
and is analyzed [6]. This gives more information about the 
malware’s behavior during the run time. In [2] the paper a 

method is proposed to detect malware on the basis of API 
calls and their arguments. It proposes a multiple-gate CNN 
for faster malware detection. Once the features are selected, 
the machine learning approach builds a classification model. 
All the features extracted during the feature engineering stage 
are transformed into a feature vector which is given as an 
input to the machine learning model. Recently, researchers 
have started to use deep learning approaches also for malware 
detection [5]. Previous researches use a signature-based 
mechanism to detect malware which can easily be bypassed 
by the change of a bit in the code, while the current research 
in the field of malware detection uses behavior-based 
analysis and machine learning which lacks a low false 
positive rate and high accuracy. Many of them apply various 
other machine learning classifiers on PE header features 
other than the standard ANN approach. Hence this paper 
presents an Artificial Neural Network approach for malware 
detection. The three most popular types of neural networks in 
deep learning are ANN (Artificial Neural Network), RNN 
(Recurrent Neural Network) and CNN (Convolution Neural 
Network)[17]. ANN is known as the Feed-Forward Neural 
network because the inputs are processed only in the forward 
direction. ANNs have the capacity to learn weights that map 
any input to the output which makes it capable of learning 
any complex input data and finding the relation between the 
input and the output. RNN's on the other hand have a 
recurrent connection on the hidden state which turns it from 
an ANN to a RNN. RNN are good at capturing the sequential 
information present in the input data. This makes RNN 
suitable for NLP (Natural Language Processing) tasks where 
the data is sequential. CNN is mostly used in image and video 
processing.  
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The main features of CNNs are kernels. Kernels are used 
to extract the relevant features from the input using the 
convolution operation. In the case of malware, the data is 
non-linear, non-sequential. This makes the ANN to be the 
most suitable approach for the malware detection process.  
The rest of the paper is organized as follows. In section II it 
presents the background work and introduction to ANN 
(Artificial Neural Network) and section III presents the 
model and proposed architecture for the malware detection 
process. In section IV the experimental setup is shown which 
is used to perform the tests, section V presents the 
performance and results analysis. Finally, Section VI 
provides the conclusion to the paper and section VII contains 
the references used  

II. BACKGROUND WORK 

The idea of artificial neural networks is derived from 
biological neural networks. A biological neural network 
consists of neurons, similarly, an artificial neural network 
consists of artificial neurons. It is composed of various layers 
connected to each other and each layer consists of various 
nodes connected to every other node in the next layer. The 
first layer is the input layer which takes the input in the form 
of a vector, followed by the hidden layers and at the end is the 
output. Each input has a weight and that weighted input is fed 
into a given node followed by an activation function. The 
output of the activation is fed as an input to the next layer. 
The activation function decides whether the neuron in the 
next layer should be activated or should not be activated on 
the basis of weighted input and bias. There are various types 
of activation functions like sigmoid [12],Relu [12],[13] etc 
.Inthis paper’s model, ReLu is used. Its value goes from 0 to 
infinity and is a nonlinear function. 

 

Fig 1.   Single-layer Neural Network (perceptron) 

The diagram (Fig 1) shows a single layer perceptron. The 
input values are denoted by x0, x1 … xn while the weights are 
represented by w1, w2 ... wn. These weights tell about the 
strength of the node and these weights are multiplied with the 
input values. The product of various input values and weights 
are then added and fed into the activation function to get the 
output value. This output value is then fed to the node in the 
next layer. The sum can be represented mathematically as, 

      
      0 0  1 1……………….  n n (1) 

Once the output value is produced then the difference 
between the actual value and the predicted value is calculated 
which is also known as the cost function. This cost function is 
then analyzed, based on this cost function weights and 
threshold are adjusted [18] which is sent back to the entire 
neural network again. This process keeps on happening until 
the minimum error cost function is reached. 
The main justification for using this ANN model is that it can 
learn and demonstrate non-direct and complex connections, 
which is extremely significant on the grounds of establishing 

a relationship between input and output which are non-linear 
and complex. Also, it is very responsive to noise and it is easy 
to maintain. In the process of malware detection, input 
variables are the features of malware [6] while the output 
variable tells whether the file is malicious or not. Unlike other 
machine learning techniques, the ANN doesn’t put any 

restriction on the input variables which allows the use of the 
maximum number of variables which aids in the malware 
detection process. After learning, ANN can infer the 
relationship on the unseen data and predict the output. In [3] 
the authors present a framework for malware detection which 
aims to get a low false-positive rate. It uses a simple 
multi-stage combination (cascade) of different versions of the 
perceptron algorithm and achieves the highest accuracy of 
96.25% on 5-fold cross-validation. It achieves a low 
false-positive rate but does not implement various other 
machine learning classifiers like SVM which may give better 
accuracy. In [15] the author uses naive Bayes, J48, k-nearest 
neighbor, multi-level perceptron, decision tree, and support 
vector machine for malware detection. The best performance 
is achieved by a J48 decision tree with a recall of 95.9%, a 
false positive-rate of 2.4%, a precision of 97.3%, and an 
accuracy of 96.8%. They use a behavior-based dataset which 
involves dynamic analysis of the malware. The main 
disadvantage is that it only contains 220 malware samples 
related to the Indonesian family. In [16] the author uses 
Chi-square, Information gain], Gain ratio, T-test and fisher 
score to select and rank important features of the malware 
and shows that the Fisher score can be used for feature 
selection. The benefit of this approach is that it helps in 
selecting the important features which can be used in 
malware detection but the author doesn’t consider other 

statistical tests like F-score to rank the features. In [14] the 
author uses Windows API calls as its features with stacked 
autoencoders for malware detection and achieves an accuracy 
of 96.85%. This paper includes the dynamic property of the 
malware such as API calls which tells a lot about the 
malware’s behavior, although various other dynamic 

properties are not considered during the training. The model 
is tested against 2/3/4/5 hidden layers and obtains the best 
accuracy with 3 hidden layers and 100 neurons at each hidden 
layer. In [17] the author uses the Convolution Neural 
Network approach to classify the malware into different 
families and achieves an accuracy of 98%. In this approach, 
the malware binary was converted into a grayscale image. 
Malware belonging to the same malware families will have 
the same visual representation. Therefore, an image 
classification approach is proposed. The [14] approach 
classifies only 25 families while there are various other types 
of files that are not considered; hence this approach isn’t 

sufficient to detect the malware. 

III.            PROPOSED WORK 

The overview of the malware detection process using ANN is 
shown in Fig 2. The file to be detected is given into the 
feature extraction and encoding process where the features 
are extracted and encoded between the value of 0 to 1. Then 
the feature vector of the file to be detected is generated from 
the features extracted and fed into the trained ANN model to 
make the prediction.  
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Then the prediction made by the ANN model tells us whether 
the file is malicious or not based on the training of the ANN 
model. 

 
Fig 2. Malware detection process 

The artificial neural network approach with ReLu as the 
activation function [7] is used and the model is trained with 
different amounts of hidden layers containing either 70  or 80 
neurons in each layer with Adam optimization[19] technique. 
Adam optimization helps the model in optimizing the 
learning rate as the input of the model is sparse in some cases. 
This optimizer is easy to implement, is efficient, has low 
memory requirements, is invariant to the diagonal rescaling 
of the gradients, and is well suited for problems that are large 
in terms of data and/or parameters, to detect the malware with  

 
Fig 3. Proposed Model 

 
higher accuracy. Fig 3 shows the proposed model varying 
from 2,3,7 hidden layers. The input features are extracted 
from the portable executable (PE) file. Portable Executable 
[4] is the file format for the Windows operating system for 
executables, .NET Object, COM files, etc. It is a data 
structure that is used by the Windows loader to load the PE 
into the memory and this data structure defines various 
properties of the file. 
A PE file has different headers, each header has various 
properties like base address, address of the entry point, the 
size on disk, size in memory. Each of these properties has a 
certain value which is used in feature engineering. PE also 
has different sections [4] like code, data, etc. The code 
section contains the code of the PE while the data section 
consists of feature engineering. Each PE file has an IAT 
(Import Address Table) [10][11] which is in the. idata 
section which tells about all the APIs, system DLL it is 
importing. First, in the model 11 different properties are 
selected based on literature surveys. These properties are 
extracted from PE and each property is represented as 1 it is 
true and as 0 if it is false. Following properties are extracted 
from PE 

● Debug section 

● Export Symbol Table 
● Resource section 
● TLS [4] 
● NX bit 
● Import Symbol Table  
● Relocations Entries 
● Rich header 
● Load Configuration 
● Digital Signatures 

PE is parsed and if any of the above properties is found to be 
in the PE then it is represented as 1 else it is represented as 0. 
Based on the literature survey various DLLs, API used by the 
malware are selected and for each API being used by the PE 
one column of the relative library incremented, then 
normalized by the total amount of API being imported. Next, 
the Shanon entropy of the various sections present in the PE 
file is included. Finally, the entry point of the PE is included 
in the feature set. After taking the input features from the 
input vector the ANN feeds the input to the input layer where 
the activation function is used to transform the sum of the 
weighted input in the node into the activation of the node. 
There are many activation functions that can be used in a 
neural network like tanh, sigmoid, ReLU, etc. The tanh 
activation function returns a value between -1 to 1 (i.e. -1 < 
output < 1) , the sigmoid activation  function returns a value 
between 0 to 1  (i.e.  0 < output < 1 ) , and the ReLU 
activation function returns a value between 0 to infinity (i.e. 0 
< output < +∞) . This paper proposes to use ReLU (Rectified 

Linear Unit) in the model as it is computationally cheaper 
compared to sigmoid and tanh. It requires a simple max 
function which is trivial when compared to tanh and sigmoid 
which require the use of exponential calculation. ReLU is a 
nonlinear function but behaves like a linear function if the 
input is more than zero and returns a zero output if the input is 
less than or equal to zero which makes the ReLU easier to 
optimize. Therefore, in this paper, ReLu is used and the 
output of it is fed to the next layer in the neural network. The 
last layer (output layer) of the ANN then finally gives the 
output as 0 (clean) or 1 (malicious) based on the input it 
receives from the previous layer.  

IV.     EXPERIMENTAL SETUP  

The proposed malware detection system is developed using 
python, and the ANN model is implemented using Keras 
library. The data set used for training and testing are collected 
from various websites like Virusshare, GitHub repository, 
honeypot [6] Malware.lu, etc.  on the cloud. This dataset 
consists of 200,000 samples which are in the form of 
Windows PE[4] file format. These samples are divided into 
two parts: one contains 100,000 malicious samples and the 
other contains 100,000 clean samples. 70% of the dataset is 
used for training, 15% samples for validation and the rest of 
the 15% of the samples are used for testing the accuracy of 
the model. Using these samples, the proposed model is 
trained and tested. The proposed ANN model is tested by 
varying the number of layers and numbers neurons in a layer. 
100 neurons in a layer are used [14] for malware detection but 
in this paper, 70 and 80 neurons are used in a hidden layer. 
Initially, the number of hidden layers is kept at 2 and is 
gradually increased to 3 hidden layers and 7 hidden layers. 
The dropout value is set as 
30%. 
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V.   PERFORMANCE ANALYSIS 

The proposed model is trained and tested by varying the 
parameters such as the number of neurons and the number of 
hidden layers. The variant models are referred to as given 
below  

● ANN-80-2H: Artificial Neural Network with 80 
neurons and 2 hidden layers 

● ANN-80-3H: Artificial Neural Network with 80 
neurons and 3 hidden layers 

● ANN-80-7H: Artificial Neural Network with 80 
neurons and 7 hidden layers 

● ANN-70-2H: Artificial Neural Network with 70 
neurons and 2 hidden layers 

● ANN-70-3H: Artificial Neural Network with 70 
neurons and 3 hidden layers 

● ANN-70-7H: Artificial Neural Network with 70 
neurons and 7 hidden layers 

These variant models are evaluated by measuring the 
accuracy of prediction. The accuracy of prediction is 
measured for training, validation and testing data set. The 
accuracy of prediction is calculated as follows 

Accuracy = Correct predictions / Total predictions  

                =                                    (2) 

where TP denotes True Positive, which means that 
observation is positive and it is predicted to be positive. FN 
denotes False Negative which means that observation is 
positive, but it is predicted negative. TN denotes True 
Negative which means observation is negative, and it is 
predicted to be negative. FP denotes False Positive which 
means that observation is negative, but it is predicted 
positive. Table 1 shows the accuracy of prediction for variant 
models using the training dataset, validation dataset, and 
testing dataset. It is observed from the result shown in Table 1 
that there is a positive correlation between the number of 
hidden layers, neurons in the model with the accuracy of the 
model. Although all the variants of the ANN model had 
similar accuracy ANN-80-7N performed best in the tests with 
the test accuracy of 98.2%. 

  TABLE 1: Accuracy of prediction for variant 
models using training, validation and testing samples.  

Model TR-ACC VAL-ACC TE-ACC 

ANN-70-2H 96.57% 96.35% 96.1% 

ANN-70-3H 97.6% 96.4% 96.24% 

ANN-70-7H 96.34% 96.21% 95.7% 

ANN-80-2H 97.1% 96.5% 96% 

ANN-80-3H 97.45% 97.3% 97.32% 

ANN-80-7H 98.3% 98.04% 98.2% 

 
Fig 3. Model Accuracy vs Epoch 

 
Fig 3 represents the accuracy rate over the test and train 
dataset graphically. It shows the training history of 
ANN-80-7N and it is evident that the model accuracy 
improved over time while decreasing the loss over epochs. 
From Fig 3, the loss value over the training data is 0.0820792 
while the loss value over the test data is 0.0685853. Loss is 
the total sum of errors made for every input of training or 
validation sets. It is used to determine how well the model is 
doing for the test or validation set. In the proposed ANN 
model, SoftMax [21] is used as the activation function for the 
output layer, to determine the loss of the model. 

 
Fig 4. ROC Curve 

 
Fig 4 shows the ROC (Receiver Output Characteristics) 
which determines with what accuracy the ANN-80N-7H 
model is able to distinguish between the malicious and clean 
sample. Sensitivity or True Positive Rate (TPR) is calculated 
as the number of correct positive predictions (TP) divided by 
the total number of positives (P). Sensitivity’s value varies 

between 0 and 1, 1 being the best possible value for the 
model. 
TPR (True positive rate or sensitivity) 
        =                     (3) 
where TP represents true positive, FN represents False 
Negative. The false-positive rate (FPR) is calculated as the 
number of incorrect positive predictions divided by the total 
number of negatives. The value of the false positive rate 
ranges between 0 and 1, where 0 is considered the ideal 
outcome. It is calculated as. 
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FPR (False Positive Rate)  
         =                     (4) 
where FN denotes False Negative, TN denotes True Negative 
and FP denotes False Positive. 
Calculations of the TPR and FPR values in Fig 4 are: 
TPR = (                             
FPR =                         
AUC (Area under the curve)-ROC curve is a performance 
measurement that tells how effective the model is. ROC is a 
probability curve and AUC tell about the degree or measure 
of separability. It tells how effective the model is in 
distinguishing between the clean and malicious. Higher the 
AUC, better the model is at predicting 0s as 0s and 1s as 1s. 
By analogy, the higher the AUC, the better the model is at 
distinguishing between malware and clean samples. AUC 
near to 1 is characteristic of a good model and Fig 4 shows 
that AUC (Area under the curve) is 0.997 which tells how 
effective the model is. 
The given below shows the confusion matrix of test, training 
and validation sets. 
                           

Table 2: Test confusion matrix 

n=29995 Predicted: No Predicted: Yes 

Actual: No 14700 (98.9%) 164 (1.1%) 

Actual: Yes 541 (3.6%) 14590 (96.4%) 

 
    Table 3: Training confusion matrix  

 n=139979 Predicted: No Predicted: Yes 

Actual: No 69346 (99%) 674 (1%) 

Actual: Yes 2271 (3.2%) 67688 (96.8%) 

     
Table 4: Validation confusion matrix 

n=29995 Predicted: No Predicted: Yes 

Actual: No 14879 (98.6%) 213 (1.4%) 

Actual: Yes 554 (3.7%) 14349 (96.3%) 

 
Initially, the number of hidden layers is kept at 2 and is 
gradually increased to 3 hidden layers and 7 hidden layers for 
each type i.e. 70 neuron variant and 80 neuron variants. After 
increasing the hidden layers in the model, it is found that 
accuracy increases until the 7th layer after that the value 
of the accuracy starts dropping. Based on the tests and 
literature survey [1][14] it can be concluded that as the 
number of hidden layers is increased, the accuracy of the 
model increases until a certain number of hidden layers, 
after that it starts decreasing. 

VI. CONCLUSION 

This paper explained the traditional malware detection 
techniques like signature based and behavior-based detection 
and their shortcomings. The paper also highlighted the 
conventional machine learning based detection methods. 
This paper presents and compares different variants of ANN 
(Artificial neural network) approach for the malware [6] 

detection as the traditional detection techniques used by the 
various anti-virus tend to fail. The Steps needed for 
implementing the ANN model was explained. From the 
performance analysis it was found that the ANN-80-7H 
variant  be formed the best with an accuracy of 98.2% and 
AUC (Area under the curve) of 0.997 which is better when  
compared to the model proposed by Babak Bashari Rad et 
al.[22] in which the accuracy is 97.8% and a precision 97.6%.  
Furthermore, the model can be improved by including more 
features of the PE files in the dataset, dynamic features of the 
PE files. The framework is not yet fully capable of replacing 
the commercial antivirus but provides an ANN approach to 
malware detection research. New samples can be added to the 
dataset to improve the model for the detection of newer 
malware. 
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