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Abstract:: The inconsistency is a major problem in security of 

information in computer is two ways: data inconsistency and 
application inconsistency. These two problems are raised due to 
bad structure of design in programming and create security 
breaches, vulnerable entries by exploiting application codes. So 
we can discover these anomalies by design of anomaly detection 
system (ADS) models at system programming (coding) levels with 
the help of machine learning. The security vulnerabilities 
(anomalies) are frequently occurred at potential code execution by 
exploitation or manipulation of instructions. So, in this paper we 
have specified various forms of extensions to our work to detect 
wide range of anomalies at coding exploits and use of a machine 
learning technique called Context Sensitive-Hidden Markov 
Model (CS-HMM) will improve the overall performance of ADS 
by discovering the correlations between control data instances. In 
this paper we are going to use Linux OS tracing kits to collect the 
necessary information such as control data instances (return 
addresses) collected from system as part of artificial learning. The 
results evaluated through practice on various programs developed 
for work and also uses of some Linux commands for tracing, 
finally compared performance of all those input datasets 
generated live (artificially). After that, the CS-HMM is applying to 
datasets to scrutinize the anomalies with similarity-search and 
correlation of function control data of program and classification 
process determines the anomalous outcomes.  

 
Keywords: Anomaly, Anomaly detection, Hidden Markov 

Model, Linux Tracing, Return address.  

I. INTRODUCTION 

The anomalies such as control flow anomalies and data 
flow anomalies are commonly raised in execution of a 
contaminated program contains some exploits or 
manipulated coding lines. Present days we are observing that 
chance of taking control of program by injecting different 
malicious definitions and alteration of assembly codes are 
helping towards attacker’s control. Hence we need to update 
the program definitions and alert on programming leakages. 
The most common attacks finding on memories by 
corrupting the memory resisdents with help of knowing 
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address boundaries and chances to exploit the control 
sequence of software applications running currently. But this 
kind of problems are always to be lead for creation of 
potential security breaches if not solve as early possible in the 
unsafe memory based languages used in computer 
environment. Such kind of error pro occurances are creating 
overhead in the program development and also large 
mainainance is necessary for industries producing large no. 
of cyber security applications. The creation of anomalies by 
executing a program in legitimate or non-legitimate, those are 
executing in legitimate also doubtfull due to stealing of login 
credentials, so this kind of entries perform some vulnerable 
actions smashes the data and control parts. The attacker’s 
vulnerable actions are very difficult to model in traditional 
methods of anomaly detection systems (ADS). So that we 
need to merge the concepts machine leaning to the system 
coding exploits to model the anomalies. The machine 
learning is very usefull to apply on data extracted at system 
coding and execution context. The adorned features of 
machine learning-HMM [4,5] are used in our work due to 
much innovative presentations and outcomes derivations, but 
not possible through system level exclusively. The extraction 
of contrlo data is called return addresses (RA) in this paper, 
these are helps us to pointing out single unit anomalies called 
as point anomaly as collected. The source of extraction of 
control data is system’s stack; it is very stand alone place to 
gather abnormal points through observations.  

 The memory segmentation units also corrupted by 
different vulnerable programs due to infected code, shell 
code bundle, other overflow attacks.  The HMM based 
platform is additive work to our existing work due to 
improvement of performance [2]. As earlier mentioned that 
the call-stack is raw material source for our concept, it is store 
the all control pointers, running data instances of process 
running currently. So that the sequence of control pointers 
and list of occured data observations to be stored into some 
predefined structures by using some advanced Linux tracing 
tricks on memory segments.  For quick data collection in 
Linux environment, the  backtrace (bt) is very easiest method 
and also other tricks such as PTRACE, STRACE, LTRACE 
and DTRACE methods are helpful to collect the data related 
instances and control related instances.  

A. Anomaly Detection 

Anomaly detection is a generally an uninterrupted 
practice of identify the intrusive behavior of a system users or 
audit data or application data instances are generated during 
normal runs. Then the deviation element is consider as 
anomaly due to its unauthorized behavior showing with 
known and correct.    
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The Anomaly (Intrusion) detection [14] is main classified 
approach of intrusion detection systems possible to detect 
observations of bad behavior going to compromise the 
security of system compare to normal behavior shown 
correctly in previous attempts.  

The anomaly detection is incorporating the prior 
knowledge of intrusion occurrences can easy to handle the 
different variations of attacks compared to signature based 
ADS only model the attacks pre-trained and static in the 
nature. Hence to tracing of novel attacks is excellent than 
known, the dynamic nature of ADS is not compromise to 
handle the unpredictable behavior showing continuously to 
elevate the zero day attacks. The signature (misuse) based 
IDS showing poor results towards dynamic nature of 
applications, so that it may show high false positives. Hence 
in this paper the ADS are selected for identifying the 
anomalies in control data instances while running of infected 
programs. In this kind of work, exclusive occurrences of 
control data anomalies or sequence of control anomalies is 
depending on the program and coding exploits. The correct 
hypothesis of program is showing correct sequence of control 
flow is normal, otherwise treated as also anomaly.   There are 
so many traditional systems are developed previously such as  
expert systems, programs state modeling and  Petri nets , 
system call based , simple rule based and traditional string 
matching with use of signature based IDS.  

The ADS with mixing of system level control concepts 
with application level will be more accurate and maximum 
outcomes expected by well exploration of both machine 
learning and system data [10, 11]. We have presented novel 
ADS with machine learning HMM with good experimental 
analysis giving adorned discovering of point and continuous 
anomalies with different combinations. Now the ADS are 
only help us to work safe to showing anomalies by using 
machine learning approaches such as supervised, un-sup’d, 
semi-based models such a popular decision tree based, NN 
based, SVM, HMM, and other classification and clustering 
based can show well results on system’s raw control data. 

II. RELATED WORK: HMM IN ADS  

In our work, we use a Hidden Markov Model (HMM) to 
model the extracted data from Linux tracing tools and 
perform the anomaly detection on the control data table to 
shows the anomalies or deviated behavior. The HMM is very 
good machine learning based on two-way stochastic 
development with a finite no. of hidden states. There is a lot 
work done in anomaly detection by HMM in earlier decades. 
All the models are developed based on either control flow or 
data flow instances. The detailed work of system calls based 
HMM given in [10, 12, 16]. The HMM is applied on 
sequence of system calls given well showing of results 
comparison in [13]. The majority of work done through 
HMM on system call is to recognize the no .of system calls, 
length, structural inference, system call token or id search. 
The window boundary is included for system calls in [12] 
given robust procedure to model the data flow sequence 
tracing of system calls.  Also develop a HMM with 
pre-processing approach to remove unnecessary raw data of 
system call patterns to improve the overall performance [14]. 
Predefined state positions of system calls used with multiple 
HMMs and before taking a model of HMM deciding the 
anomalous pattern by training multiple HMMs [3].   

The HMM-based ADS [11] developed for knowing the 
anomalies by two level invisible states for relative probability 
for sequence form of system calls of sendmail dataset is tune 
working . Today we are phasing real time frauds in card 
transactions, similarly some models were developed by 
HMM to deviate the fraud transactions. The majority people 
working on internet attacks, so the HMM is very powerful in 
this case to categorizes the internet attacks which showing 
complex behavior [6].  The hamming distance separator is 
used in discrimination of system calls that showing 
abnormality to real one in some cases, but lack in 
performance compare to previous work.  

The system calls and function calls combination is giving 
good outcomes as result mentioned for anomalies on 
separation of forensic data [17].  The problem of hidden state 
to overcome by developing multiple HMMs among the 
combined results to be elevated for system calls dataset [15]. 
Many of HMM machine learning is applied in different 
datasets belongs to real-time applications such as image, 
DNA, RNA, pattern classification, medical, video 
surveillance special and many [7, 8, 9]. But in this work, we 
have utilized the strength of HMM context model process for 
showing the result of abnormal control data points in the 
normal execution of program executed either in legitimate or 
non-legitimate mode.  

The original CS-HMM developed with an idea of working 
for a modeling of occurrences of sequence symbols in the 
data with multiple types of emissions in the state model. He 
stated to model long range with proposing a dynamic 
programming concepts in state sequence [1]. 

III. WORKING MODEL 

 In this section, we are giving the proposed blue print of 
work by taking the mathematical modeling concept called 
“Hidden Markov Model”. The HMM are many types 
formulated previously in anomaly detection for different data 
related to scientific and computer applications. In the 
computer and network field, the anomaly detection is 
performed on system scope is very narrative about system 
calls, library calls…etc belongs to execution process of 
environment. The present concept showing in this based on 
HMM is applied at system’s control data to knowing the 
unknown data instances occurred. The proposed HMM is 
elaborated by giving basic concepts of HMM below.   

A. Proposed CS-HMM  

The proposed HMM is based on memory state, where the 
memory plays a role of processing emission sate from the 
state model. First the working model of our task is shown in 
Fig.1.    
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Fig. 1. Working model of our proposed system. 

From the Fig.1, the executed process of Linux program is 
designed exclusively for developing the HMM model. The 
process is a general program initially; later experimental 
work is carried out on Linux built-in processes. The control 
data instances are extracted from running process by taking 
some pre-defined tracing tools developed on Linux platform 
such PTRACE, Backtrace, STRACE. But in our work, we 
used these three types due to its individual extraction process 
to get more accurate control data. The control data instances 
are basically controlling the flow of program. In this 
individual and sequence of control data instances are part of 
work and these are inputs for the HMM model. 

The control data instances are represented by C. 
C={FC-RA, FCP}, where FC-RA is set of return addresses 

are extracted for each function call made during process 
running and FCP is a set of  fabricated paths created between 
two function calls. FC-RA = {R I, ,J} is set of return addresses 
{R1, R2 ,R3 ……Rn belongs to process J.   FCP = {{P I, ,J}N} is 
set of function call paths {P12, P13, ….P21, P22, ….P31, P32, 
…….. Pij} belongs to process N. where the P I, ,J is path 
established during the calling in particular sequence of from 
function I to function J . The P I,J is an arbitrary length of 
sequence may not fixed and it is very for each path made in 
the calling sequence where each P I, ,J is the set contains set of 
intermediate return addresses occur between RI and RJ of P I, ,J 
then P I, ,J = { RI , Ri+1, R2 ,….R3 ……  R7 ,…..Rj-1 , RJ }. 

 
The pre-processing is done on set of C by removing 

unnecessary control instances occurred and repetition takes 
place while normal runs of program. The C control data 
instances are collected through various tracing tools, so that 
consolidation of data is necessary to avoid false positives. 

Let we take HMM model for our work is designed for 

CS-HMM. The basic HMM (λ) is denoted as follows. 
 

CS-HMM (λ) = (Q, V, A, B, π)                (1)  

 

 
Fig. 2. HMM Model for context-sensitive state (Q3) with 

memory concept. 
Where, Q is a group of states generally called hidden states 

by default in all types of HMMs. The hidden states are 
classified into single, double (pair), context (memory)- 
sensitive emission states shown in Fig.2. 

 

Q = { Q0 , Q1 , Q2 , Q3 , ……QN , Q memory }   (2) 
 

Where, Q0  and QN  are basic starts showing start and end 

process in the model. Q1 is double-(pair) emission state 

connected to observation state includes memory V , Q1   is 

null state to continue the model sequence, Q2  is a single 

emission connected to observation sequence V, Q3 is a 
context sensitive (memory based) state whose emission 
symbols are determined by context of special state is memory 

state Q memory   . The both pair and context states are use the 
memory portions of computer to store the emission sequence 

by write and read instructions.  Q memory is state for storing the 

emission sequences processing during between Q1 , Q3.   The 

Q memory is a basically a queue selected for movement of 
symbols and where as stack is used in [1].       

 

The V is group of M unique observation symbols { V0 , 
V1 , V2 , ……VM } to form the observation sequence 
emitted from basic hidden sates. The emission process from 
hidden states can determine the observation sequence.  

A is the Probability distribution at time t, for hidden state 
transition is notated by Aij 

 For example, P (Q i+1 =x | Q i = y) = t (x, y)               (3) 
    A=| aij|   and Σ | aij|=1, for all j=1….N                       (4) 
For CS-HMM, the probability is depending on the context 

of symbols stored in memory or not. Then  

    P (Q i+1 =x | Q i = y, Q memory) = t (x, y)                   (5)  
 B is a probability distribution at time t, for state j for 

observation symbols xi as: 
B=| bj(k)|   and Σ | bj(k)|=1, for all k=1….M                 (6) 
The emission probability for CS-HMM is as follows: for 

context (memory) state, the emission probability is 
depending on memory status as follows  

P ( Vi = V | Q i = Q, Qmemory) = e (V/Q,Qmemory)          (7) 
Now, the initial probability for states is given by π=πi  at 

time interval t0, the HMM basic learning and detection is 
determined by selecting the suitable algorithm.  
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The criteria for evaluation is decided by either 
forward/reverse recursive method to generate the sequence of 
observations from model and Viterbi algorithm is used to 
decoding the sequence of observations to determine the 
anomalous behavior shown in the function call list and its 
sequence, finally Baulm-Welch is used maximize the 
probability of generating observation sequence by compute 

the P(O/λ) efficiently for the model  λ to decide the 
occurrences of normal or anomaly by setting up fixed 
threshold φ (T in Fig.1).  

Lets now to realize the problem of building λ for function 

calls comparison and its sequence comparison by distributing 
the probability to state has exactly emit the suitable sequence 
to be part of modeling the control execution of program.  

IV. EXPERIMENTAL SETUP 

A. Datasets 

 The Datasets are basically live data collected from running 
process of an artificial created program in C named as 
passtest.c and Three Linux built-in command process. We 
have two sets of datasets FCRA and FCP collected two times 
during normal runs of program and same to be executed 
while in attacking mode. The comparison of normal and 
attacking mode datasets are inputs to HMM (λ). 

B. HMM λ Computation and Defection Criteria 

The generation of λ for HMM in this context of Detection 
phase is as: 

1. λ to be Computing: start with Q0 and continue the initial 
probability with π and generate the observed symbols 

by transitioning from Q0 to QN with the probability to 
execution of HMM π. 

2.  Calculate the emission probability for pair of FCRA. 

3. The P λ generate the pair{R i, R j} 
4. Repeat step 2, 3 for generate the FCS and determine the 

probability P λ to generate pair {FCSi, FCSj}.  
5. To denote the probability of pair emitting with max π for 

λ is  P λ (R i, R j )= Σ P λ ( π ) ,  π ε λ (R i, R j) 

6.  Maximizes the P λ (π). 
7. Compare with predefined Threshold φ 

8. If P λ (π)> φ, normal otherwise detecting anomalous 

observation. 
9. For FCS, we have also a new criteria to decide the 

anomalous or abnormal showing as follows: 
10. Formulate the FCSs and attach the trained model to 

FCS, 
11. Find the µ (mean) and σ (S.D) based on the probability 

of generated FCS over HMM λ with total no. of FCS. 
12. Define the test sets to compare with training set with 

calculation of evaluation parameter distance (Dist i) to 
the HMM model λ centroid.  

13. Compare with predefined Threshold φ 

14. If P λ (π) [FCS] > φ, normal otherwise detecting 
anomalous observation.  

Table- I: Experimental output analysis of datasets in 
Linux  

 

C. Results and Discussions 

The experimental work is carried out on three datasets 
which provides the basic return addresses of function calls 
made in the program. One program is basic C program 
written with N number of functions created dummy and made 
a call entry in the stack to extract return addresses into 
dataset-1. The others are basic Linux built-in commands 
programs ls, ps and bash. The table-I showing full details of 
no. of return addresses along with performance 
measurements DR and FPR through execution of training 
phase in legitimate mode and detection phase in 
non-legitimate mode (attacking mode).  

The above work can carry out by CS-HMM code written 
for simulation of procedure adapted. The function codes 
written separately for each state shown in fig.2 HMM. In 
training of HMM, Q1 is the state emitting the pair of function 
calls and compute the probability difference between FCRA i 
and FCRA j along with observation symbol {0} by default 
showing as normal instance initially with 0.5 emission 
probability.  The same pair of function call’s return addresses 
is moving to state called Q memory (Queue) and stored in FIFO 
order for further processing. The  Q memory (Queue) state fixed 
with N length of call values stored.Q2 is the state used for 
emission of single symbols whenever required for 
comparison at context sensitive state Q3.  

The CS-HMM model development for our task is basically 
contains two components, one is dealing with FCRA and 
other one is FCS. In this paper, we have given maximum 
outcomes of FCRA given. The Table. II is showing the 
results of all datasets after evaluation by using anomaly 
detection confusion matrix parameters.  
Table- II: the Performance parameters of Experimental 

work on datasets by various HMMs (per 100%)  
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Fig. 3. ROC Curves for Dataset-1 (FCRA) , an output of 

passtest.c created for simulation. 

 
Fig. 4. ROC Curves for Dataset-2 (PS) command in 

Linux. 
The Table-II results are outcome of FCRA only, but not for 

FCS. The CS-HMM is giving maximum performance then 
traditional HMMs in all aspects. The ROC curves given in the 
Fig.3 and Fig.4 respectively for dataset-1 generated from 
artificial created program to simulate the FCRA and its 
sequence model through CS-HMM. From Fig.3, if we 
observe that maximum DR and low FPR are notified for 
CS-HMM than normal HMM and Semi-HMM. Almost 
100% DR is possible in my observations due to small no. of 
RAs and it is a clear dataset. 

The Fig.4 showing the ROC results of dataset-2 (PS), the 
FCRAs are generated by using STRACE tracing tool. This 
set is bigger than first one, but showing good AUC. For this 
FPR is high for when using HMM. The CS-HMM results for 
remaining datasets of FCRAs and FCSs for all datasets also 
analyzed and got similar kind of results shown in Table.II and 
ROC for those not shown in this paper. 

V. CONCLUSION 

The CS-HMM is good for control data instances as proved 
in our paper. The results are depending on generation of no. 
of FCRA and its sequence of appearance to user and input for 

HMM model is variant in little bit. The pair of function calls 
return addresses are basically compared between training and 
detection phase in our concepts. There are thousands of calls 
made in Linux processes belongs to some commands, but for 
our experimental work, we took some clear data which is 
generated by different tracing tools such as STRACE, 
PTRACE, BACKTRACE. Finally prepared small sets of 
Linux datasets only consider in the work.  
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