
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

 1866

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D9019049420/2020©BEIESP
DOI: 10.35940/ijeat.D9019.049420
Journal Website: www.ijeat.org

Abstract:: The inconsistency is a major problem in security of

information in computer is two ways: data inconsistency and
application inconsistency. These two problems are raised due to
bad structure of design in programming and create security
breaches, vulnerable entries by exploiting application codes. So
we can discover these anomalies by design of anomaly detection
system (ADS) models at system programming (coding) levels with
the help of machine learning. The security vulnerabilities
(anomalies) are frequently occurred at potential code execution by
exploitation or manipulation of instructions. So, in this paper we
have specified various forms of extensions to our work to detect
wide range of anomalies at coding exploits and use of a machine
learning technique called Context Sensitive-Hidden Markov
Model (CS-HMM) will improve the overall performance of ADS
by discovering the correlations between control data instances. In
this paper we are going to use Linux OS tracing kits to collect the
necessary information such as control data instances (return
addresses) collected from system as part of artificial learning. The
results evaluated through practice on various programs developed
for work and also uses of some Linux commands for tracing,
finally compared performance of all those input datasets
generated live (artificially). After that, the CS-HMM is applying to
datasets to scrutinize the anomalies with similarity-search and
correlation of function control data of program and classification
process determines the anomalous outcomes.

Keywords: Anomaly, Anomaly detection, Hidden Markov

Model, Linux Tracing, Return address.

I. INTRODUCTION

The anomalies such as control flow anomalies and data
flow anomalies are commonly raised in execution of a
contaminated program contains some exploits or
manipulated coding lines. Present days we are observing that
chance of taking control of program by injecting different
malicious definitions and alteration of assembly codes are
helping towards attacker’s control. Hence we need to update
the program definitions and alert on programming leakages.
The most common attacks finding on memories by
corrupting the memory resisdents with help of knowing

Revised Manuscript Received on April 25, 2020.
* Correspondence Author

Jidiga Goverdhan Reddy*, Lecturer, Dept. of Technical Education
,Government of Telangana State and Research Scholar, JNTU University
Hyderabad, India, jgreddymtech@gmail.com

Sammulal Porika, Professor, Dept. computer engg, JNTUH
Nachupally, Jagitial, Affiliated to JNTU University, Hyderabad, TS State,
India, sammulalporika@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

address boundaries and chances to exploit the control
sequence of software applications running currently. But this
kind of problems are always to be lead for creation of
potential security breaches if not solve as early possible in the
unsafe memory based languages used in computer
environment. Such kind of error pro occurances are creating
overhead in the program development and also large
mainainance is necessary for industries producing large no.
of cyber security applications. The creation of anomalies by
executing a program in legitimate or non-legitimate, those are
executing in legitimate also doubtfull due to stealing of login
credentials, so this kind of entries perform some vulnerable
actions smashes the data and control parts. The attacker’s
vulnerable actions are very difficult to model in traditional
methods of anomaly detection systems (ADS). So that we
need to merge the concepts machine leaning to the system
coding exploits to model the anomalies. The machine
learning is very usefull to apply on data extracted at system
coding and execution context. The adorned features of
machine learning-HMM [4,5] are used in our work due to
much innovative presentations and outcomes derivations, but
not possible through system level exclusively. The extraction
of contrlo data is called return addresses (RA) in this paper,
these are helps us to pointing out single unit anomalies called
as point anomaly as collected. The source of extraction of
control data is system’s stack; it is very stand alone place to
gather abnormal points through observations.

 The memory segmentation units also corrupted by
different vulnerable programs due to infected code, shell
code bundle, other overflow attacks. The HMM based
platform is additive work to our existing work due to
improvement of performance [2]. As earlier mentioned that
the call-stack is raw material source for our concept, it is store
the all control pointers, running data instances of process
running currently. So that the sequence of control pointers
and list of occured data observations to be stored into some
predefined structures by using some advanced Linux tracing
tricks on memory segments. For quick data collection in
Linux environment, the backtrace (bt) is very easiest method
and also other tricks such as PTRACE, STRACE, LTRACE
and DTRACE methods are helpful to collect the data related
instances and control related instances.

A. Anomaly Detection

Anomaly detection is a generally an uninterrupted
practice of identify the intrusive behavior of a system users or
audit data or application data instances are generated during
normal runs. Then the deviation element is consider as
anomaly due to its unauthorized behavior showing with
known and correct.

Anomaly Detection in Control Data of
Programming Execution by Context Sensitive

Hidden Markov Model
Jidiga Goverdhan Reddy, Sammulal Porika

http://www.ijeat.org/
mailto:jgreddymtech@gmail.com
mailto:sammulalporika@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D9019.049420&domain=www.ijeat.org

Anomaly Detection in Control Data of Programming Execution by Context Sensitive Hidden Markov Model

 1867

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D9019049420/2020©BEIESP
DOI: 10.35940/ijeat.D9019.049420
Journal Website: www.ijeat.org

The Anomaly (Intrusion) detection [14] is main classified
approach of intrusion detection systems possible to detect
observations of bad behavior going to compromise the
security of system compare to normal behavior shown
correctly in previous attempts.

The anomaly detection is incorporating the prior
knowledge of intrusion occurrences can easy to handle the
different variations of attacks compared to signature based
ADS only model the attacks pre-trained and static in the
nature. Hence to tracing of novel attacks is excellent than
known, the dynamic nature of ADS is not compromise to
handle the unpredictable behavior showing continuously to
elevate the zero day attacks. The signature (misuse) based
IDS showing poor results towards dynamic nature of
applications, so that it may show high false positives. Hence
in this paper the ADS are selected for identifying the
anomalies in control data instances while running of infected
programs. In this kind of work, exclusive occurrences of
control data anomalies or sequence of control anomalies is
depending on the program and coding exploits. The correct
hypothesis of program is showing correct sequence of control
flow is normal, otherwise treated as also anomaly. There are
so many traditional systems are developed previously such as
expert systems, programs state modeling and Petri nets ,
system call based , simple rule based and traditional string
matching with use of signature based IDS.

The ADS with mixing of system level control concepts
with application level will be more accurate and maximum
outcomes expected by well exploration of both machine
learning and system data [10, 11]. We have presented novel
ADS with machine learning HMM with good experimental
analysis giving adorned discovering of point and continuous
anomalies with different combinations. Now the ADS are
only help us to work safe to showing anomalies by using
machine learning approaches such as supervised, un-sup’d,
semi-based models such a popular decision tree based, NN
based, SVM, HMM, and other classification and clustering
based can show well results on system’s raw control data.

II. RELATED WORK: HMM IN ADS

In our work, we use a Hidden Markov Model (HMM) to
model the extracted data from Linux tracing tools and
perform the anomaly detection on the control data table to
shows the anomalies or deviated behavior. The HMM is very
good machine learning based on two-way stochastic
development with a finite no. of hidden states. There is a lot
work done in anomaly detection by HMM in earlier decades.
All the models are developed based on either control flow or
data flow instances. The detailed work of system calls based
HMM given in [10, 12, 16]. The HMM is applied on
sequence of system calls given well showing of results
comparison in [13]. The majority of work done through
HMM on system call is to recognize the no .of system calls,
length, structural inference, system call token or id search.
The window boundary is included for system calls in [12]
given robust procedure to model the data flow sequence
tracing of system calls. Also develop a HMM with
pre-processing approach to remove unnecessary raw data of
system call patterns to improve the overall performance [14].
Predefined state positions of system calls used with multiple
HMMs and before taking a model of HMM deciding the
anomalous pattern by training multiple HMMs [3].

The HMM-based ADS [11] developed for knowing the
anomalies by two level invisible states for relative probability
for sequence form of system calls of sendmail dataset is tune
working . Today we are phasing real time frauds in card
transactions, similarly some models were developed by
HMM to deviate the fraud transactions. The majority people
working on internet attacks, so the HMM is very powerful in
this case to categorizes the internet attacks which showing
complex behavior [6]. The hamming distance separator is
used in discrimination of system calls that showing
abnormality to real one in some cases, but lack in
performance compare to previous work.

The system calls and function calls combination is giving
good outcomes as result mentioned for anomalies on
separation of forensic data [17]. The problem of hidden state
to overcome by developing multiple HMMs among the
combined results to be elevated for system calls dataset [15].
Many of HMM machine learning is applied in different
datasets belongs to real-time applications such as image,
DNA, RNA, pattern classification, medical, video
surveillance special and many [7, 8, 9]. But in this work, we
have utilized the strength of HMM context model process for
showing the result of abnormal control data points in the
normal execution of program executed either in legitimate or
non-legitimate mode.

The original CS-HMM developed with an idea of working
for a modeling of occurrences of sequence symbols in the
data with multiple types of emissions in the state model. He
stated to model long range with proposing a dynamic
programming concepts in state sequence [1].

III. WORKING MODEL

 In this section, we are giving the proposed blue print of
work by taking the mathematical modeling concept called
“Hidden Markov Model”. The HMM are many types
formulated previously in anomaly detection for different data
related to scientific and computer applications. In the
computer and network field, the anomaly detection is
performed on system scope is very narrative about system
calls, library calls…etc belongs to execution process of
environment. The present concept showing in this based on
HMM is applied at system’s control data to knowing the
unknown data instances occurred. The proposed HMM is
elaborated by giving basic concepts of HMM below.

A. Proposed CS-HMM

The proposed HMM is based on memory state, where the
memory plays a role of processing emission sate from the
state model. First the working model of our task is shown in
Fig.1.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

 1868

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D9019049420/2020©BEIESP
DOI: 10.35940/ijeat.D9019.049420
Journal Website: www.ijeat.org

Fig. 1. Working model of our proposed system.

From the Fig.1, the executed process of Linux program is
designed exclusively for developing the HMM model. The
process is a general program initially; later experimental
work is carried out on Linux built-in processes. The control
data instances are extracted from running process by taking
some pre-defined tracing tools developed on Linux platform
such PTRACE, Backtrace, STRACE. But in our work, we
used these three types due to its individual extraction process
to get more accurate control data. The control data instances
are basically controlling the flow of program. In this
individual and sequence of control data instances are part of
work and these are inputs for the HMM model.

The control data instances are represented by C.
C={FC-RA, FCP}, where FC-RA is set of return addresses

are extracted for each function call made during process
running and FCP is a set of fabricated paths created between
two function calls. FC-RA = {R I, ,J} is set of return addresses
{R1, R2 ,R3 ……Rn belongs to process J. FCP = {{P I, ,J}N} is
set of function call paths {P12, P13, ….P21, P22, ….P31, P32,
…….. Pij} belongs to process N. where the P I, ,J is path
established during the calling in particular sequence of from
function I to function J . The P I,J is an arbitrary length of
sequence may not fixed and it is very for each path made in
the calling sequence where each P I, ,J is the set contains set of
intermediate return addresses occur between RI and RJ of P I, ,J
then P I, ,J = { RI , Ri+1, R2 ,….R3 …… R7 ,…..Rj-1 , RJ }.

The pre-processing is done on set of C by removing

unnecessary control instances occurred and repetition takes
place while normal runs of program. The C control data
instances are collected through various tracing tools, so that
consolidation of data is necessary to avoid false positives.

Let we take HMM model for our work is designed for

CS-HMM. The basic HMM (λ) is denoted as follows.

CS-HMM (λ) = (Q, V, A, B, π) (1)

Fig. 2. HMM Model for context-sensitive state (Q3) with

memory concept.
Where, Q is a group of states generally called hidden states

by default in all types of HMMs. The hidden states are
classified into single, double (pair), context (memory)-
sensitive emission states shown in Fig.2.

Q = { Q0 , Q1 , Q2 , Q3 , ……QN , Q memory } (2)

Where, Q0 and QN are basic starts showing start and end

process in the model. Q1 is double-(pair) emission state

connected to observation state includes memory V , Q1 is

null state to continue the model sequence, Q2 is a single

emission connected to observation sequence V, Q3 is a
context sensitive (memory based) state whose emission
symbols are determined by context of special state is memory

state Q memory . The both pair and context states are use the
memory portions of computer to store the emission sequence

by write and read instructions. Q memory is state for storing the

emission sequences processing during between Q1 , Q3. The

Q memory is a basically a queue selected for movement of
symbols and where as stack is used in [1].

The V is group of M unique observation symbols { V0 ,
V1 , V2 , ……VM } to form the observation sequence
emitted from basic hidden sates. The emission process from
hidden states can determine the observation sequence.

A is the Probability distribution at time t, for hidden state
transition is notated by Aij

 For example, P (Q i+1 =x | Q i = y) = t (x, y) (3)
 A=| aij| and Σ | aij|=1, for all j=1….N (4)
For CS-HMM, the probability is depending on the context

of symbols stored in memory or not. Then

 P (Q i+1 =x | Q i = y, Q memory) = t (x, y) (5)
 B is a probability distribution at time t, for state j for

observation symbols xi as:
B=| bj(k)| and Σ | bj(k)|=1, for all k=1….M (6)
The emission probability for CS-HMM is as follows: for

context (memory) state, the emission probability is
depending on memory status as follows

P (Vi = V | Q i = Q, Qmemory) = e (V/Q,Qmemory) (7)
Now, the initial probability for states is given by π=πi at

time interval t0, the HMM basic learning and detection is
determined by selecting the suitable algorithm.

http://www.ijeat.org/

Anomaly Detection in Control Data of Programming Execution by Context Sensitive Hidden Markov Model

 1869

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D9019049420/2020©BEIESP
DOI: 10.35940/ijeat.D9019.049420
Journal Website: www.ijeat.org

The criteria for evaluation is decided by either
forward/reverse recursive method to generate the sequence of
observations from model and Viterbi algorithm is used to
decoding the sequence of observations to determine the
anomalous behavior shown in the function call list and its
sequence, finally Baulm-Welch is used maximize the
probability of generating observation sequence by compute

the P(O/λ) efficiently for the model λ to decide the
occurrences of normal or anomaly by setting up fixed
threshold φ (T in Fig.1).

Lets now to realize the problem of building λ for function

calls comparison and its sequence comparison by distributing
the probability to state has exactly emit the suitable sequence
to be part of modeling the control execution of program.

IV. EXPERIMENTAL SETUP

A. Datasets

 The Datasets are basically live data collected from running
process of an artificial created program in C named as
passtest.c and Three Linux built-in command process. We
have two sets of datasets FCRA and FCP collected two times
during normal runs of program and same to be executed
while in attacking mode. The comparison of normal and
attacking mode datasets are inputs to HMM (λ).

B. HMM λ Computation and Defection Criteria

The generation of λ for HMM in this context of Detection
phase is as:

1. λ to be Computing: start with Q0 and continue the initial
probability with π and generate the observed symbols

by transitioning from Q0 to QN with the probability to
execution of HMM π.

2. Calculate the emission probability for pair of FCRA.

3. The P λ generate the pair{R i, R j}
4. Repeat step 2, 3 for generate the FCS and determine the

probability P λ to generate pair {FCSi, FCSj}.
5. To denote the probability of pair emitting with max π for

λ is P λ (R i, R j)= Σ P λ (π) , π ε λ (R i, R j)

6. Maximizes the P λ (π).
7. Compare with predefined Threshold φ

8. If P λ (π)> φ, normal otherwise detecting anomalous

observation.
9. For FCS, we have also a new criteria to decide the

anomalous or abnormal showing as follows:
10. Formulate the FCSs and attach the trained model to

FCS,
11. Find the µ (mean) and σ (S.D) based on the probability

of generated FCS over HMM λ with total no. of FCS.
12. Define the test sets to compare with training set with

calculation of evaluation parameter distance (Dist i) to
the HMM model λ centroid.

13. Compare with predefined Threshold φ

14. If P λ (π) [FCS] > φ, normal otherwise detecting
anomalous observation.

Table- I: Experimental output analysis of datasets in
Linux

C. Results and Discussions

The experimental work is carried out on three datasets
which provides the basic return addresses of function calls
made in the program. One program is basic C program
written with N number of functions created dummy and made
a call entry in the stack to extract return addresses into
dataset-1. The others are basic Linux built-in commands
programs ls, ps and bash. The table-I showing full details of
no. of return addresses along with performance
measurements DR and FPR through execution of training
phase in legitimate mode and detection phase in
non-legitimate mode (attacking mode).

The above work can carry out by CS-HMM code written
for simulation of procedure adapted. The function codes
written separately for each state shown in fig.2 HMM. In
training of HMM, Q1 is the state emitting the pair of function
calls and compute the probability difference between FCRA i
and FCRA j along with observation symbol {0} by default
showing as normal instance initially with 0.5 emission
probability. The same pair of function call’s return addresses
is moving to state called Q memory (Queue) and stored in FIFO
order for further processing. The Q memory (Queue) state fixed
with N length of call values stored.Q2 is the state used for
emission of single symbols whenever required for
comparison at context sensitive state Q3.

The CS-HMM model development for our task is basically
contains two components, one is dealing with FCRA and
other one is FCS. In this paper, we have given maximum
outcomes of FCRA given. The Table. II is showing the
results of all datasets after evaluation by using anomaly
detection confusion matrix parameters.
Table- II: the Performance parameters of Experimental

work on datasets by various HMMs (per 100%)

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April 2020

 1870

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D9019049420/2020©BEIESP
DOI: 10.35940/ijeat.D9019.049420
Journal Website: www.ijeat.org

Fig. 3. ROC Curves for Dataset-1 (FCRA) , an output of

passtest.c created for simulation.

Fig. 4. ROC Curves for Dataset-2 (PS) command in

Linux.
The Table-II results are outcome of FCRA only, but not for

FCS. The CS-HMM is giving maximum performance then
traditional HMMs in all aspects. The ROC curves given in the
Fig.3 and Fig.4 respectively for dataset-1 generated from
artificial created program to simulate the FCRA and its
sequence model through CS-HMM. From Fig.3, if we
observe that maximum DR and low FPR are notified for
CS-HMM than normal HMM and Semi-HMM. Almost
100% DR is possible in my observations due to small no. of
RAs and it is a clear dataset.

The Fig.4 showing the ROC results of dataset-2 (PS), the
FCRAs are generated by using STRACE tracing tool. This
set is bigger than first one, but showing good AUC. For this
FPR is high for when using HMM. The CS-HMM results for
remaining datasets of FCRAs and FCSs for all datasets also
analyzed and got similar kind of results shown in Table.II and
ROC for those not shown in this paper.

V. CONCLUSION

The CS-HMM is good for control data instances as proved
in our paper. The results are depending on generation of no.
of FCRA and its sequence of appearance to user and input for

HMM model is variant in little bit. The pair of function calls
return addresses are basically compared between training and
detection phase in our concepts. There are thousands of calls
made in Linux processes belongs to some commands, but for
our experimental work, we took some clear data which is
generated by different tracing tools such as STRACE,
PTRACE, BACKTRACE. Finally prepared small sets of
Linux datasets only consider in the work.

REFERENCES

1. Yoon B.J, P P Vydyanathan “ Context-sensitive HMMs for Long Range
Dependencies in Symbol Sequences”, IEEE Transactions on Signal

processing, vol.54, no.11, pp. 4169-4184, 2006
2. Cho B.S. and Park, 'Efficient anomaly detection by modeling privilege

flows using HMM, Computers and Security, 22(1), pp. 45-55, 2003.
3. Hoang, X D., Hu, 1. and Bertok, P., 'A multilayer model for anomaly

intrusion detection using program sequences of system calls', The 11th
IEEE International Conference on Networks, pp. 531-536 (2003).

4. Lane, T. HMMs for Human/Computer Interface Modeling, In
Computer Journal of Internet Technology and Secured Transactions
(JITST), Volume 2, Issues 1/2/3/4, 2013

5. Rabiner, L.R. (1989) 'A tutorial on HMM and selected applications in
speech recognition', in proceedings of the IEEE, 77(2), pp. 257 -286.

6. Ourston, D., Matzner, S., Stump, W. and Hopkins, B. (2002)
'Application of HMMs to Detecting Multi-stage Network Attacks',
36th Hawaii ICSS Proceedings, 9, pp. 334-344.

7. S. Cho and S. Han. ‘Two sophisticated techniques to improve
HMM-based intrusion detection systems’. 6th International
Symposium on Recent Advances in Intrusion Detection -RAID 2003.

8. I. M. Meyer and R. Durbin. ‘Comparative ab initio prediction of gene
structures using pair HMMs’. Oxford University Press, 2002.

9. L. Pachter, M. Alexandersson, and S. Cawley. ‘Applications of
generalized pair HMMs to alignment and gene finding problems’.
Computational Biology, 9(2), 2002.

10. C. Warrender, S. Forrest, and B. Pearlmutter. ‘Detecting intrusions
using system calls: alternative data models’. In Proceedings of the
IEEE Symposium on Security and Privacy, 1999.

11. Du, Y., Wang, H., and Pang, Y. A ‘HMMs-based anomaly intrusion
detection method’. In Intelligent Control and Automation, 5th World
Congress vol. 5, IEEE, pp. 4348–4351, 2004.

12. Eskin, E., Lee, W., and Stolfo, S. J. ‘Modeling system calls for
intrusion detection with dynamic window sizes’. In DARPA
Conference- II, 2001. DISCEX’01. vol. 1, IEEE, pp. 165–175.

13. Forrest, S., Hofmeyr, S. A., Somayaji, A., and Longstaff, T. A. ‘A

sense of self for Unix processes’. In Security and Privacy, 1996. IEEE
Symposium Proceedings, pp. 120–128., 1996.

14. Hu, J., Yu, X., Qiu, D., and Chen, H.-H. ‘A simple and efficient hidden
markov model scheme for host-based anomaly intrusion detection’.
Network, IEEE 23, 1 (2009), 42–47.

15. Khreich, W., Granger, E., Sabourin, R., and Miri, A. ‘Combining
HMMs for improved anomaly detection’. ICC’09. IEEE International
Conference on (2009), IEEE, pp. 1–6.

16. Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. 2008. ‘The
evolution of system-call monitoring’. In Annual Computer Security
Applications Conference, 2008 (ACSAC’08). IEEE, 418–430.

17. Sean Peisert, M. Keith. Analysis of computer intrusions using
sequences of function calls. IEEE Trans. Dependable Secure
Computing. 4(2):137–150, 2007.

AUTHORS PROFILE

 Jidiga Goverdhan Reddy, Presently working as a
Senior Lecturer in Department of Technical
Education, Hyderabad, Government of Telangana
State. Also a Research Scholar at JNT University and
presently pursuing Ph.D as External at JNTU,
Hyderabad, India. I did my B.Tech and M.Tech in
Computer Science and Engineering from JNTU
University, Hyderabad.

http://www.ijeat.org/

Anomaly Detection in Control Data of Programming Execution by Context Sensitive Hidden Markov Model

 1871

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D9019049420/2020©BEIESP
DOI: 10.35940/ijeat.D9019.049420
Journal Website: www.ijeat.org

 Sammulal Porika, Professor, Presently working
at CSE Dept, JNTUH College of Engineering,,
Karimnagar affiliated to JNTU Hyderabad,
Telangana State India. He did his Ph.D from OU
Hyderabad, Telangana State,
sammulalporika@gmail.com

http://www.ijeat.org/

