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Review on 3D Mapping and Segmentation 

Akash Kuamr Ghanate, Aashish M, Santhosh M Patil, Sowmyarani C N, Ramakanth Kumar P  

Abstract: The deployment of a robot in a remote environment 
is a field of research that has huge applications. The robotic 
system must have the capability of sensing its surroundings and 
being aware of what it is around. We concluded two key tasks for 
this purpose, which are 3D mapping and segmentation. This 
paper shows a comprehensive review of the different 3D mapping 
and segmentation methods. Mapping techniques include those 
using RGB images, RGBD images and LIDAR. Segmentation 
techniques include PointNet, PointNet++, 3D semantic and 
instance segmentation and joint instance segmentation. We also 
describe two end-to-end approaches for mapping and 
segmentation. These methods are reviewed elaborately, 
comparisons are drawn between them, challenges are presented 
and future directions in addressing these challenges are pointed 
out.   

Keywords: 3D Mapping, JSNet, Segmentation, SLAM, Sfm, 
PointNet  

I. INTRODUCTION 

The robot in a remote environment has to be aware of its 

surroundings. It has to build a detailed 3D map of the 
environment and perform semantic 3D point cloud 
computing. We believe that this is important for the robot to 
get a high-level understanding of the surrounding objects 
and to make context-aware decisions. This has numerous 
applications in the field of remote healthcare, disaster relief, 
personal assistants and infrastructure mapping.  

To achieve robot interaction in a remote environment, the 
robot must be capable of sensing its surroundings, so that it 
can relay the information to another location. There is 
increasing interest in adding high-level knowledge to many 
robotics applications in recent years to make robots more 
capable, even ready to react to unexpected events. To this 
end, this paper deals with methods of building a 3D map 
based on the sensor data and performing semantic 
segmentation of the acquired point cloud. 
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3D mapping refers to creating a 3D environment model 
that depicts the shape and presence of real-world objects in 
the form of a point cloud. We deal with 3D mapping methods 
for 3 kinds of inputs, which are RGB images,  RGB-D 
images and the input from LIDAR.  

Methods using RGB mainly involve SfM (Structure from 
Motion) and SLAM (Simultaneous Localisation and 
Mapping) and another method uses a semantically guided 
hierarchical SfM approach for 3D reconstruction. As for 
RGB-D input, we discuss Kinect Fusion as illustrated in [6] 
and another method which estimates camera pose directly 
from the SDF using the information it encodes in each voxel 
as described in [9]. The method with the LIDAR input 
constructs a 3D model by processing high-density LIDAR 
data points. We do not cover techniques of 3D mapping for 
dynamic environments or those environments which involve 
non-rigid or deformable objects.  

With the growth of Neural Networks, the segmentation 
and object detection in 2D images has made remarkable 
progress. This advancement in the identification and 
segmentation of 2D artefacts has encouraged the extension of 
research to the 3D environment. Older methods of predicting 
bounding boxes for 3D objects were performed with a single 
input RGB-D frame with handcrafted feature architecture and 
then extended the technique to work on learnt features. 
Further path requires the use of RGB frame data to increase 
the accuracy of classification of detected objects. But the 
proposed model does the combined learning between RGB 
and geometry for explicit spatial mapping. Frustum 
PointNet[2] uses an alternative approach, where 
identification is achieved by a 3D image and then projected 
back onto 3D, using which the final bounding boxes are 
optimized. Their SGPN[3] approach is based on PointNet++ 
variation on semantic segmentation. They propose 
segmentation of instances as a clustering problem through 
the implementation of a similarity matrix prediction similar 
to the concept inspired by panoptic segmentation on a 
semantically segmented point cloud. Although deep learning 
has been effectively utilized for RGB images, the feature 
learning capabilities of 3D point clouds with irregular data 
structures still pose a lot of challenges. PointNet[11] has 
recently become one of the first methods to specifically apply 
neural networks to point clouds. This uses mutual multi-layer 
perceptron and max-pooling to learn from unordered point 
sets profound features. PointNet, however, is having trouble 
catching local features. PointNet++[12] dealt with this 
downside with a hierarchical neural network. The max-
pooling operation is a crucial structure for both PointNet and 
its extended version PointNet++ to extract features from 
point cloud. But it only retains the best activation of feature 
maps on a local or global area, which can cause some useful 
detailed information to be lost for semantic segmentation 
tasks. While in 3D-SIS[13],  
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they specifically map all multi-view RGB inputs with 3D 
geometry to conclude end-to-end segmentation of the 3D 
instance together. To the best of our understanding, this is 
the first paper which reviews 3D mapping and segmentation,  

the two key initial tasks for a robot in a remote 
environment. 

The rest of the paper is organised as follows. Chapter 2 
summarises the various methods on 3D Mapping and 
Segmentation, Chapter 3 summaries the comparisons of 
different methods, their evaluations and the challenges 
involved. Chapter 4 speaks of the future scope of 3D 
Mapping, Segmentation and the end to end methods, 
Chapter 5 is the conclusion for the review conducted and 
Chapter 6 has all the references for this review paper. 

II. METHOD OVERVIEW 

A. 3D Mapping Methods 

1) Using RGB images 

There are several techniques for 3D mapping using RGB 
images using SfM (Structure from Motion). SfM is a 
photogrammetric imaging technique for estimating 3D 
models from 2D image sequences. Traditional methods 
which use SfM are limited by their computational 
efficiency. They also have the drawback that the 3D map 
cannot be constructed in real-time and it is difficult to obtain 
the real-scale tool. [8] uses a combination of SLAM 
(Simultaneous Localisation and Mapping) and SfM 
(Structure from Motion) to eliminate this drawback. The key 
idea is to use SfM to generate a local photo map with no 
real-scale followed by SLAM for  estimating the 3D 
locations among the local maps. SLAM generates a map that 
is globally consistent by calculating the real-scale. This kind 
of approach allows learning on the fly, online mapping as 
well. This is illustrated in Fig. 1. 

 
Fig 1.Local map generation using SfM and globally 

consistent mapping using SLAM in 3D photorealistic 
mapping with SfM and SLAM method  

The SfM consists of four procedures. They are two view 
triangulation, RANSAC refinement, image stitching and 
texture mapping. Each of the local maps undergoes these 
procedures. The local maps generated have their coordinates 
which do not contain the global information. When the local 
maps are being built, 3D SLAM procedures are integrated in 
such a way that the translation and rotation of the robot used 
is embedded into the two-view triangulation procedure. This 
is done for re-scaling each local map into a real one. 

 
Fig 2. Automatically generated 3D photorealistic map 

using SfM and SLAM 

The most recent method at the time of writing this paper is 
[7] which uses an approach which is a semantically guided 
one. This is the hierarchical SfM approach for indoor 3D 
reconstruction. This method integrates into one single 
pipeline- clustering of images, segmentation of objects, and 
reconstruction of the 3D point model. The approach performs 
SfM in an annotated hierarchical manner with which the 
cluttered images are classified independently followed by 
reconstruction along a hierarchical scene tree. This improves 
the efficiency of computation and also balances the error 
distribution.  

 

 
Fig 3. Annotated hierarchical SfM approach workflow 

The 3 steps involved in this approach are: 
● Extraction of Semantic Information and Classification of 

Images 
The Fisher vector encoding based on Bag of Visual 
Words (BOVW) and a popular classification algorithm,  
Support Vector Machine (SVM) is combined to 
acknowledge and classify the images to characterise the 
indoor scenes features for classification more robustly.  
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The BOVW algorithm groups or clusters features which are 
similar, as a visible word and then counts the number of 
times every work occurs within the image. This makes the 
feature vector needed to improve the semantic level. The 
result of this stage is a well-categorized image set , which 
represents the diverse indoor objects. 
● Object-Oriented Partial Scene Reconstruction 

With the well-classified images of the scene, the next 
step reconstructs the object models separately from the 
classified images by exploiting the SfM algorithm. This 
stage uses a framework consisting of object recognition, 
joint semantic annotation and reconstruction. 

● Point Cloud Registration and Optimization 
After obtaining the separate object models in the 
previous step, the separate point cloud models of the 
acquired indoor objects are merged using the RGPA 
algorithm into one complete indoor model. 

 
Fig 4. Reconstructed model of a meeting room using 

hierarchical SfM method 

2) Using RGB-D images 

[10] made it possible to reconstruct surfaces by 
integrating groups of aligned range images. The volumetric 
representation consists of a cumulative weighted signed 
distance function (SDF). Each image was scan-converted to 
a distance function and then combined with the data already 
acquired using an additive scheme. This paved the way for 
real-time 3D reconstruction using a stream of RGBD 
images.  

Many methods use SDFs. One such method is [6] which 
uses SDFs as a non-parametric representation to fuse partial 
depth scans. KinectFusion uses a low-cost depth camera for 
real-time mapping of arbitrary indoor scenes. The incoming 
RGBD stream is used to perform real-time dense SLAM 
which produces a consistent 3D scene in an incremental 
manner. Simultaneously, the camera’s pose is tracked using 

all of the depth data in each frame.  
The 4 components which make up this system are: 
● Surface measurement: The raw depth measurements are 

used to generate a dense vertex map and normal map 
pyramid. This is a pre-processing stage.  

● Surface reconstruction update: The surface 
measurement is fused into the scene model maintained 
with a truncated signed distance function (TSDF) 
representation, given the pose estimated by making use 
of the depth data from a new frame. This is a global 
scene fusion process. 

● Surface prediction: The loop between localisation and 
mapping is closed by tracking the live depth frame 
against the globally fused model. This is done by a 

rendering technique called raycasting. The SDF is ray-
casted into the estimated frame in order to provide a 
dense surface prediction.  

● Sensor pose estimation: This is the localisation part 
where the 6DOF pose of the camera is tracked using a 
multi-scale ICP algorithm.  

These 4 components are illustrated in Fig. 5 
 

 
Fig 5. Workflow of KinectFusion 

 
Another method makes use of the fact that the SDF 

already encodes the distance of each voxel to the surface. As 
a result, this method illustrated in [9] also uses dense depth 
images as input and SDF for geometric representation but 
does not use ICP to achieve real-time performance. The 
camera pose is optimised directly on the SDF by minimizing 
the error of depth images on the SDF. This allows the pose 
optimization to be carried out quickly. The camera poses are 
iteratively estimated and the RDG-G data is integrated in the 
voxel grid to get a detailed reconstruction of an indoor 
environment.  

3) Using LIDAR: 

LIDAR comprises high frequency which is very precise 
especially for short-distance measurement. LIDAR has an 
advantage over Radio Detection and Ranging (RADAR) and 
Sound Navigation and Ranging (SONAR) in speed, density 
and accuracy of data. LIDAR can also be used to prepare 
Digital Elevation Models (DEM) with a precision of 0.1 m. 

LIDAR is fixed on a servo motor which enables it to move 
in all the 3-dimensions, therefore, LIDAR calculates the 
distance from a stationary point. The servo motor of the  
LIDAR is programmed to move so that the elevation angle 
from the other motor will shift from 0-180 degree with a 5 
degree difference. After receiving all the values of LIDAR, 
the code is run to process and change the values to 3D points 
X, Y and Z [1]. 
The values received from LIDAR are 

 
the code converts the value into 3D points x, y, z using the 
formula: 
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Fig 6. Shows the real box picture[1]. 

 
3D Mapping is used in the areas of farming, optimisation 

of wind turbines and rescue. 3D- Mapping is very reliable 
and cost-effective using this method[1]. LIDAR is installed 
on a servo motor which makes a 3D map of the front 
hemisphere of the box. High-density LIDAR data points that 
plot high-resolution mapping of the 3D hemisphere are 
processed. The sharpness of the plots can be reduced further 
by interpolating the data points. 

 
Fig 7. shows the front-top view after filtration [1]. 

B. 3D Segmentation Methods 

1) PointNet 

 
Fig 8. PointNet Applications 

 
PointNet is a deep net architecture suitable for 3D 

consumption of unordered point sets without rendering or 
voxelization. It is a cohesive architecture that learns features 
from global as well as local points, providing a quick, 
powerful and active approach to various 3D detection tasks. 
PointNet takes point clouds directly as input and assigns 
class labels for the whole point cloud or per point segment 
or section labels for each input point. They train the network 
to perform 3D instance and semantic segmentation and 
semantic scene parsing tasks. They provide a detailed 

empirical and theoretical study of our method's stability and 
effectiveness. And illustrate the 3D simulated functions of 
the selected neurons on the net and establish intuitive 
explanations for their output. 

The key approach of the model is the use of a single 
symmetric function and max pooling, to deal with unordered 
input collection. Effectively the network learns a series of 
optimization functions that pick points of the point cloud that 
are important or insightful and encode the reason for the 
selection. The network's final completely connected layers 
aggregate these learned optimal values for the entire shape 
into the global descriptor or are used to predict per point 
labels. Our input format is simple to add to stiff or affine 
transformations, as each point is independently transformed. 
Further, they added a data-dependent spatial transformer 
network that tries to canonize the data before it is processed 
by the PointNet to further boost the performance. 

Fig 9. PointNet architecture. 
 
The network that performs classification takes input as n 

points, applies input and performs feature transformations, 
and then aggregates point features by max pooling. The 
performance is the score of classification for groups m. The 
segmentation network is an extension of the ranking network. 
It concatenates global and local characteristics per point 
scores and outputs. Mlp stands for multilayer perceptron, its 
layer sizes are the numbers in the frame. Batchnorm is 
employed with ReLU for all layers. Dropout layers in the 
classification system are used for the final mlp. 

2) PointNet++ 

 
 Fig 10. PointNet++ architecture. 

 
pointNet++ is a novel deep learning network which 

processes in a hierarchical fashion a set of points sampled in 
a metric space (2D points are used for this example in 
Euclidean space). PointNet++ overall concept is clear. We 
initially partition the set of points by the distance metric of 
the underlying space into overlapping local regions. As with 
CNNs, we extract local characteristics by capturing of fine 
geometric structures from small vicinities; these local 
characteristics are then grouped into larger units and 
processed to create higher-level 
characteristics.  
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This cycle is repeated until we get all point set apps. 

3) 3D-Semantic and Instance segmentation(3D-SIS) 

The provided architecture is the first attempt on using 
both 2D features from RGB images and 3D features from 
point cloud for end-to-end learning to perform 3D 
segmentation and detecting the object bounding boxes. 3D-
SIS is a fully convolutional model, allowing to effectively 
deduce prediction of huge 3D areas in a single shot. In 
contrast to other methods, they specifically map all multi-
view RGB inputs with 3D features to conclude end-to-end 
segmentation of the 3D instance together. 

 

 Fig 11. 3D-SIS network architecture. 
 
Model takes the input as the 3D Map and the 

corresponding RGB frames. Set of 2D convolutions are 
being applied on the RGB frames to extract the 2D features 
i.e, they use ENet architecture for 2D semantic segmentation 
and then they are back-projected into the voxel grid. On the 
other hand, 3D convolutions operate on the scanned 3D 
point cloud, where the features are jointly learned from both 
geometry and RGB data. These generated features are used 
to identify the class labels and their associated bounding 
boxes are generated by processing through a 3D- Region 
Proposal Network and prediction of done class labels is 
done using a 3D-Region of interest network with a set of 
pooling layers for each object. Further for each identified 
object and their corresponding characteristics from both 2D 
colour and 3D geometry are fed into a per-voxel instance 
mask prediction network where the training is performed in 
an end-to-end fashion. 

4) Joint Instance and semantic segmentation of 3D point 
clouds(JSNet) 

JSNet consists of a more efficient Point Cloud Feature 
Fusion(PCFF) module to produce more discriminative 
features and enhance point prediction accuracy.  They 
propose a novel model module that is joint instance and 
semantic segmentation(JISS) to facilitate mutual 
segmentation of instances and semantics. This module 
further increases the accuracy during the training phase with 
reasonable GPU memory usage. They have achieved good 
results on S3DIS dataset[14] along with the major 
improvements on the segmentation of the 3D instances. 
Additionally, ShapeNet dataset experiments suggest that 
JSNet can achieve adequate performance for the task of 
component segmentation.  

 

  
Fig 12. JSNet network 

 
The entire network consists of four main components 

including a common encoder, two parallel decoders, one 
point cloud feature fusion module for each decoder, the last 
element being a joint segmentation module. One aims to 
extract semantic features for each point for the two parallel 
divisions, while the other is a segmentation job. For example, 
we can directly use PointNet++ or PointConv as our 
backbone network by duplicating a decoder explicitly for the 
function encoder and two decoders as the two decoders have 
the same structure. however, for semantic segmentation, the 
PointNet++ can lose most of the detailed information thanks 
to max-pooling operation and even the PointConv uses 
expensive GPU memory during the training process. They 
are combining the PointNet++ and PointConv in this work to 
create a more efficient backbone network with reasonable 
memory costs. The backbone encoder is built by 
concatenating a PointNet++ set abstraction module and three 
PointConv encoding layers of apps. Likewise, the  

 
decoders are composed of PointConv's three profound 
decoding layers followed by a PointNet++ function 
propagation module. 

C. End to End Methods of Mapping and Segmentation 

1) 3D Semantic Mapping with Convolutional Neural 
Networks (CNN) 

To analyse an environment thoroughly and perform tasks 
as simple as fetching an object needs knowledge of both 
what the object is and where it is located. It would be useful 
to be able to fetch semantic information from a map by 
simply offering a database of written tasks about the 
semantics of a map that was earlier created. The geometric 
information from a SLAM (simultaneous localisation and 
Mapping) system ElasticFusion is combined with semantic 
segmentation using CNN[5].  

SLAM system is used to build the 3D map from the 
corresponding 2D frames. It helps to combine the CNN's 
predictions into a detailed segmented map as seen in Fig 13. 
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Fig 13. a detailed reconstruction of a video in the left 
[5] and semantically annotated map on the right. 

 
The map's structure also offers valuable knowledge that 

can be used to control the final predictions efficiently. The 
system accuracy is tested on the NYU v2 data and 
demonstrated that using the information from an unlabeled 
video, therefore the segmentation efficiency is bosted using 
only one frame. 

This suggests that not only does the SLAM provide an 
instantly usable semantic 3D map, it also suggests that most 
of the 2D individual frame semantic segmentation methods 
may be improved in efficiency if used with SLAM[5]. 
Through improvising on the dataset to complete room 
reconstruction, it was discovered that the device was 
especially well equipped for lengthier scans with a relatively 
larger range of viewpoints.  
SemanticFusion  is composed of three steps shown in fig 14:  

1. Real-time SLAM system ElasticFusion,  
2. Convolutional Neural Network 
3. Bayesian update scheme  

 
Fig 14. Map is constructed from images using SLAM. 
By Bayesian updates, these maps are merged into a 

detailed semantic map[5]. 
 

The SLAM method provides a widely compatible map of 
the merged surface elements, then CNN obtains a 2D image 
(RGBD) and produces a set of probabilities for each pixel 
class. Ultimately, a Bayesian update scheme for all surfel 
measure the class probability distribution and uses SLAM to 
refine those probabilities based on predictions by CNN's. 

 
 

2) 3D Reconstruction and Class Segmentation 

In this method, the simultaneous segmentation of images 
and 3D reconstruction is developed as a combined 
volumetric inference process over multiple labels, using 
class-specific smoothness assumptions to improve the 
efficiency of reconstruction. The method uses a parametric 
representation for the all smoothness priors, that results in a 
condensed representation for the priors and allows the 
underlying parameters to be modified simultaneously from 
training data.  

As a volumetric approach operating on a standard polygon 
mesh grid, this method shares the limitations with many 
other volumetric methods regarding spatial resolution.  

The method proposes to study the likelihoods of 
appearance and class-specific geometry priors in an initial 
step for surface orientations of the training data[6]. The 
priors are used to identify pairwise and individual potentials 
of segmentation framework, complementing that of a 
calculated evidence acquired from depth maps. Optimizing 
the label assignment in its volume, picture-based 
probabilities, machine stereo depth maps, and priors 
communicate with each other, resulting in improved detailed 
reconstruction and labelling. 

III. COMPARISONS AND EVALUATIONS 

The 3D photorealistic method which uses SfM and SLAM 
has the main advantage that it can run on the fly, that is, 
online. The execution time of the method was calculated to 
be 3.92 sec when it was run on 11 sets of data using an Intel 
i7 870 CPU. This execution time is just enough for real-time 
implementation. The main challenge is to speed-up this 
process to the microsecond level.  

The annotated hierarchical SfM method is computationally 
efficient compared to traditional incremental SfM methods 
which involve exhaustive pairwise image matching. The 
State  Key  Laboratory of Information Engineering in 
Surveying, Mapping and Remote Sensing (LIESMARS)  
building is used as the dataset. Three bag-of-words based 
SVM classification methods were run on this dataset and the 
results are shown in Table 1.  

Table 1: Results of the three classification methods 

 
 

The proposed method was also compared to the state of 
the art VisualSfm (VSFM) method. The results are shown in 
Table 2. 

 
Table 2. Comparison of hierarchical SfM to VSFM 
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The main challenge of the hierarchical SfM is that it 
cannot be used for real-time purposes. Also,this method 
makes it difficult to reclaim partially occluded models. 
With RGB-D images as input, KinectFusion method was run 
with different voxel resolutions as the sensor reconstructs in 
a volume of a 3-metre cube. The time taken is illustrated Fig 
15. 

 

 
Fig 15.  Real-time cumulative timing results of 

KinectFusion over a range of resolutions 
 

The challenge with KinectFusion is the reconstruction of 
large scale models such as the interior of a whole building. 
In such large models, another important challenge is to 
efficiently perform automatic relocalisation when the 
tracking has failed.  

 
The 3D reconstruction using signed-distance functions 

method does not use the ICP algorithm. An evaluation of 
benchmark data has shown that this method is more accurate 
and robust than the ICP algorithm used by KinectFusion. It 
also provides a similar accuracy at a much higher speed 
when compared to bundle adjustment methods such as 
RGB-D SLAM.  

Table 3. Semantic Segmentation results on ShapeNet 
dataset 

Method mIoU(mean 
intersection over union) 

PointNet[11] 83.7 

PointNet++[12] 84.9 

JSNet 85.8 

 
The experimental results show that fusing the 

characteristics of different layers(JSNet) could increase the 
precision of segmentation due to the richer features after 
fusion. As for the only instance fusion of semantic 
segmentation and only segmentation of semantic awareness 
instances, the results indicate that better instance predictions 
could allocate more accurate category labels to semantic 
branches, which could boost semantic efficiency. 

Table 4. Segmentation results on ScanNet  Dataset 

Method Avg(Mean average 
Precision) 

Mask R-CNN[15] 5.8 

SGPN[3] 14.3 

R-PoinNet 30.6 

3D-SIS[13] 36.2 

 
By comparing the above results 3D-SIS outperforms the 

previous(Mask R-CNN) or current state of art 
methods(PointNet) on ScanNetV2 3D semantic instance 
benchmark. With an IoU threshold of 0.25 over 23 groups 
have been tested by mean average accuracy. Therefore, joint 
colour-geometry function helps us to achieve more accurate 
performance in segmentation instances. 

IV. FUTURE SCOPE 

There is a lot of scope for improvement for 3D mapping 
methods. The joint solution using SfM and SLAM can focus 
on genuine real-time implementation using either parallel 
computing or system-on-chip technique. The method can 
also be extended to apply to an environment with non-plane 
geometric objects. The hierarchical SfM method can look at 
combining geometric and semantic priors to determine the 
dense point cloud and recover partially occluded models. 
Extension of the dataset size and employing improved, more 
robust feature extraction methods can lead to better model 
quality. KinectFusion can be extended for large scale models 
by using a sub-mapping framework. For 3D reconstruction 
using SDFs, colour information can be included for camera 
tracking and methods with more efficient representation of 
3D geometry can be explored. 3D Mapping with LIDAR to 
be mounted on a drone for military purposes, It can be used 
in self-driving vehicles to create a detailed map of the 
surroundings. Global System for Mobile Communications 
can use the method for the places inaccessible to humans, for 
example in case of an earthquake. 

As for semantic segmentation, the models provided above 
are just a starting point for obtaining 3D semantic 
segmentation from 3D point clouds of high quality, which is 
a common issue for RGB-D reconstructed models. The 
problem of semantic segmentation in the 3D environment is 
distant from being solved, and the semantic instance of 3D 
segmentation is in its infancy as well.There are also specific 
questions about the representation of the scene to realize 3D 
CNN models, and how to deal with mixed sparse-dense 
representations of data. We also look into the enormous 
possibility for integrating multi-modal characteristics in 3D 
reconstruction for generative assignments, such as scene 
completion and texturing. For the end to end methods, the 
improvement can be achieved with longer trajectories, which 
will result in better labelling. As with the volumetric 
approach operating on a standard polygon mesh grid, the 
system faces the limitations of spatial resolution, adaptive 
representation of this data may be a potential solution, for a 
finer segmentation there should be an increase in the number 
of object categories.  
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V. CONCLUSIONS 

The paper establishes the two key tasks for a robot in a 
remote environment to sense its surroundings and be aware 
of its environment, which are mapping in 3D and 
segmentation. We summarize the important methods for 
mapping and segmentation separately along with two end-
to-end methods which do the joint task of mapping and 
segmentation. The results of each method are displayed and 
comparisons are drawn. Each method’s evaluation is 

summarised and challenges involved are mentioned. The 
future directions to overcome these challenges are also 
suggested. 
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