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 
Abstract: Android mobile devices are a prime target for a huge 

number of cyber-criminals as they aim to create malware for 
disrupting and damaging the servers, clients, or networks. 
Android malware are in the form of malicious apps, that get 
downloaded on mobile devices via the Play Store or third-party 
app markets. Such malicious apps pose serious threats like system 
damage, information leakage, financial loss to user, etc. Thus, 
predicting which apps contain malicious behavior will help in 
preventing malware attacks on mobile devices. Identifying 
Android malware has become a major challenge because of the 
ever-increasing number of permissions that applications ask for, 
to enhance the experience of the users. And most of the times, 
permissions and other features defined in normal and malicious 
apps are generally the same. In this paper, we aim to detect 
Android malware using machine learning, deep learning, and 
natural language processing techniques. To delve into the 
problem, we use the Android manifest files which provide us with 
features like permissions which become the basis for detecting 
Android malware. We have used the concept of information value 
for ranking permissions. Further, we have proposed a 
consensus-based blockchain framework for making more 
concrete predictions as blockchain have high reliability and low 
cost. The experimental results demonstrate that the proposed 
model gives the detection accuracy of 95.44% with the Random 
Forest classifier. This accuracy is achieved with top 45 
permissions ranked according to Information Value. 

Keywords: Blockchain, Intrusion Detection, Mobile Malware, 
Mobile Network, Mobile Security.  

I. INTRODUCTION 

There are millions of Android users in the world and a 

great subset fall prey to the malware present in applications 
that they use in their day-to-day lives. Android, due to its 
open-source nature has fallen prey to many malware attacks. 
Malware detection is extremely sought for, considering the 
increasing attacks on the open-source Android platform. 
Citing the example of one such Android application, 
CamScanner, one of the most used Android applications 
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globally, was alleged by a team of Kaspersky researchers to 
possess malicious traits in several of its modules and libraries 
[1]. Android malware pose serious threats such as system 
damage, leakage of information stored on the device, 
financial loss to the users, etc. According to Kaspersky [2], 
more than 5 million malicious applications were detected on 
the Android platform. Hence, keeping these threats in mind, 
in this paper, we attempt to present a machine learning-based 
framework in the Blockchain environment to detect malicious 
behavior in such Android applications. 
 

Contributions: The main contributions of this work are 
summarized below: 
1. We ranked the permissions using the concept of 

information value and weight of evidence to identify the 
useful and distinguishing permissions that can 
efficiently detect Android malware. 

2. Thereafter, we converted the permissions obtained from 
each application into a sentence by concatenating them 
and separating them by spaces. TF-IDF was applied to 
the above-formed sentences to convert them to numeric 
values. 

3. We further applied machine learning algorithms namely 
Random Forest, Naive Bayes, and Extremely 
Randomized Trees on the above-obtained numeric 
values. 

4. We also applied deep learning architecture using a word 
embedding and LSTMS on the set of numeric 
permissions. 

5. Lastly, a blockchain architecture was developed based 
on consensus to give better and accurate predictions to 
the problem described before. 

 
Organization: The remainder of the paper is structured as 

follows. We discuss the related work in the field of Android 
malware detection in Section II. The detailed methodology of 
the proposed work is discussed in Section III. We review the 
results obtained from the proposed model in Section IV and 
conclude with future work directions in Section V. 

II.  RELATED WORK 

     We discuss the related work in two subsections. First, we 
review the blockchain-related works, i.e., the 
applications/areas in which blockchain has been applied. 
Next, we discuss the related works in the field of Android 
malware detection. We discuss these related works in the 
upcoming two subsections. 
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A. Blockchain Related Works 

Cui et al. [3] proposed a blockchain-based multi-WSN 
(Wireless Sensor Network) authentication scheme for 
distributed IoT systems. Hasan et al. [4] proposed a 
blockchain-based creation process of DTs( Digital Twins).  
DT is a digital representation of a real-world physical 
component product or equipment.  The proposed model 
aimed to guarantee secure and trusted traceability, 
accessibility, and immutability of transactions, logs, and data 
provenance. The authors in [5] constructed a novel secure 
mutual authentication system that can be applied in smart 
homes and other applications by integrating blockchain, 
group signature, and message authentication code to provide 
reliable auditing. The authors in [6] proposed 
blockchain-based smart parking with fairness, reliability, and 
privacy protection. The group signatures, bloom filters, and 
vector-based encryption were leveraged to protect the users' 
privacy. The authors in [7] proposed a new data governance 
fashion that was built upon the blockchain-based 
decentralized services computing paradigm. The core 
principle was that data owners should be able to publish their 
data as a set of services that can be deployed independently 
from the application systems where the data were born. The 
authors in [8] proposed a Peer-to-Peer (P2P) energy trading 
scheme for a Virtual Power Plant (VPP) by using Smart 
Contracts on the Ethereum Blockchain Platform. Jaiman et al. 
[9] proposed a blockchain-based data-sharing consent model 
for access control over individual health data. They used 
smart contracts to dynamically represent the individual's 
consent over health data and to enable data requesters to 
search and access those data. The dynamic consent model 
extended to two ontologies: the Data Use Ontology (DUO) 
which modeled the individual consent of users and the 
Automatable Discovery and Access Matrix (ADA-M), which 
described queries from data requesters.  

Guo et al.  [10] proposed a blockchain-inspired event 
recording system for autonomous vehicles. They designed the 
mechanism of ―Proof-of-Event'‖ with a dynamic federation 

consensus to achieve indisputable accident forensics by 
providing trustable and variable event information. They 
proposed a dynamic federation consensus scheme to verify 
and confirm the new block of event data in an efficient way 
without any central authority. The authors in [11] proposed a 
new voting protocol based on the blockchain technology, a 
new encryption mechanism to guarantee that nobody can 
decrypt the votes, but everyone can verify the validity of the 
votes as well as the outcome of the tallying process by using 
the homomorphic property of the encryption. This ensures the 
validity of the submitted votes in the counting process and at 
the same time maintains confidentiality. The authors in [12] 
proposed an Intelligent Transportation Systems(ITS) 
oriented, seven-layer conceptual model for blockchain and 
address the key research issues in B2ITS.  Blockchain is 
considered one of the secured and trusted architectures for 
building newly developed parallel transportation management 
systems. The authors in [13] proposed a comprehensive 
concept, market design, and simulation of a local energy 
market between 100 residential households with the approach 
of a distributed information and communication technology 
using private blockchain which underlines the distributed 
nature of local markets. Turkanovic et al. [14] proposed a 
global higher education credit platform named EduCTX 

which is based on the concept of the European Credit Transfer 
and Accumulation System(ECTS). Based on a globally 
distributed peer-to-peer network, EduCTX processed, 
managed, and controlled ECTX tokens, which represent 
credits that students gain for completed courses, such as 
ECTS. Higher Education Institutions(HEI‘s) were the peers 

of the blockchain network.  The authors in [15] proposed a 
Blockchain-based digital content distribution system that has 
a decentralized and peer-to-peer authentication mechanism 
that can be considered as an ideal rights movement 
mechanism. 

B. Android Malware Detection 

In this subsection, we discuss the works proposed in the 
literature for Android malware detection. Broadly, detection 
mechanisms for Android malware are divided into three 
categories, namely, Static, Dynamic, and Hybrid, depending 
upon the features used for detection. We discuss these 
techniques next. 

Static Detection 

Static Techniques aim to detect malicious Android apps 
without running the apps. Such techniques analyze static 
components like permissions, intents, Java source code, etc., 
where the apps are not required to be executed on 
smartphones. Several static-based detection works have been 
reported in the literature.  The authors in [16] calculated a 
specific score of each permission in which the number of 
malware samples containing that particular permission was 
divided by the total number of malware present in the dataset. 
This permission score was used to detect malicious 
applications. Moonsamy et al. [17] analyzed the harmful 
patterns of permissions defined within the malicious 
applications. The authors in [18] used Information Gain and 
T-Test to rank and further detected malware using machine 
learning algorithms. Idrees et al. [19]  detected malware by 
identifying the significant intents as well as permissions that 
are defined in malicious samples and normal applications. 
The authors in [20] identified the similarity between malware 
and non-malware applications by applying Hamming 
Distance using the static features of permissions, intents, and 
APIs. The authors in [21] applied a linear SVM algorithm on 
the static features extracted from manifest files to detect the 
malware applications. Similarly, authors in [22] have also 
used various static features including manifest components, 
and have applied machine learning algorithms for detection.  
In [23], the authors ranked permissions and intents for 
detecting malware.  Sanz et al. proposed a model named 
MAMA [24] which used various manifest file components 
like hardware components and permissions for detecting 
malware. Similarly, authors in [25] and [26] detected 
malicious applications using various machine learning 
algorithms on static features. Authors in [27] proposed 
Apposcopy that used API calls to analyze the control flow and 
data flow properties to detect malware. Wang et al.[28] used 
string features such as permissions and intents along with API 
calls and their function call graphs to detect malware in 
Android applications. The authors in [47] analyzed 
permissions in pairs for malware detection. 
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None of the above-discussed words have aimed to use the 
Blockchain platform on the ranked permissions for effective 
Android malware detection. In this work, novel from others, 
we have applied the Blockchain model on ranked permissions 
to detect Android malware. 

Dynamic Detection 

Solutions involving static detection mechanisms might not 
be able to detect the malicious component primarily because 
they do not execute the applications, and by not doing so, 
while updating, these malicious components might be 
downloaded. This called for the proposition of dynamic 
solutions for detecting malware in Android by the researchers. 
Some research works around the detection of malicious apps 
which used Android OS-based features are as follows. In [29], 
analysis of systems calls and API was done to identify 
malicious Android apps. In [30], malware detection was done 
by Shabtai et al. using dynamic features like the percentage of 
Central Processing Unit usage, active processes, along with 
the number of network traffic packets being communicated. 
In [31], it was deduced that Java, JNI, or native code 
execution initiated the potential source of unwanted malicious 
behavior in the malware applications by observing system 
calls of malicious Android apps. In [32], system calls of apps 
were analyzed to differentiate benign from malware ones. In 
[33], malicious apps were detected by Iqbal et al. by analyzing 
several dynamic features such as memory consumption, CPU 
usage, and system call events. 

Now, we review the related works that have used Internet 
traffic features for Android malware detection. In [34], the 
existing traffic patterns present in benign apps were analyzed. 
Further, to figure out deviations and variations from benign 
traffic patterns in the malicious traffic patterns, the authors 
used various machine learning classification techniques. In 
[35], malware detection was done by Wang et. al by applying 
Natural Language Processing techniques on the HyperText 
Transfer Protocol (HTTP) headers. In [36], malicious activity 
in the network traffic was detected by extracting 
network-level features and applying multiple classifiers. In 
[37], malware network traffic was detected by Igor et al. by 
observing patterns of 14 features from the TCP / IP headers of 
the malicious and normal files. The authors in [48] and [49] 
analyzed several network traffic features for malware 
detection in Android. 

The dynamic features extraction, for example, system 
calls and network traffic, is computationally complex and has 
huge overheads as compared to static techniques, therefore, in 
this paper, only a static detection model is presented. 

Hybrid Detection 

To combine the advantages of both static and dynamic 
solutions, few hybrid solutions exist in the literature wherein 
both static and dynamic features can be combined to propose 
a hybrid detection model.  In [38], the authors analyzed the 
components of the manifest files such as permissions and 
dynamic features of run-time Dalvik code loading for 
malicious Android apps detection. In [39], machine learning 
techniques were applied after extracting important features 
like apps rating, dynamic API calls, permissions, number of 
users who downloaded the app. In [40], the authors presented 
the ‗AdDroid model‘ that detects malicious activities on a 
device by analyzing Android actions such as uploading of a 
file to a server, internet connections, installing packages on 
the device, etc. In [41], Android malware was detected by 

observing run-time-related events along with sensitive APIs 
and permissions by Zhu et al.   Apart from this, the authors in 
[42] and [43] proposed two absolutely different hybrid 
detection techniques by merging and combining the 
permissions with network traffic features. On similar lines, 
the authors in [44], [45], and [46] worked on malware 
detection by analyzing the combination of static and dynamic 
features.  

Since hybrid detection involves both static as well as 
dynamic features, they involve computational overheads too, 
similar to dynamic mechanisms. Therefore, we have aimed to 
propose a static detection in our model. 

III. PROPOSED METHODOLOGY 

In this section, we present the proposed approach for 
detecting malicious Android apps. We obtained Android 
APK files, extracted permissions from the 
AndroidManifest.xml files, and used them as a distinguishing 
feature to characterize and differentiate malware files from 
non-malware files using machine learning and deep learning 
techniques. Further, we have boiled down the problem to a 
natural language processing task by creating sentences from 
the extracted permissions for each file and concatenating 
them which are further used to train the machine learning and 
deep learning models. We obtained the non-malware files (in 
APK format) from apkpure.com and malware files (also in 
APK format) from Genome, Drebin, and Koodous. Then, we 
ran a python script to extract permissions from the Android 
manifest files which were used as a feature for building the 
predictive model. We discuss this methodology in detail in the 
upcoming sections. 

A. Dataset Construction  

From the applications in the APK format, we extracted the 
Android manifest file using apktool which contains 
information such as permissions the application wants from 
the user, the intents of the applications, etc. Permissions are 
certain accesses that the application asks the user to grant in 
order to function. Some of them are as follows:·a). Access to 
photos in the device,  b) Access to use location services, c) 
Access to use the browser, etc. Figure 1 summarizes one of 
the instances of permissions present within the manifest file of 
an app. 

 
Fig. 1: A snippet of the Android manifest file from 

which permissions were extracted. 
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Permissions extracted from the APK files, obtained as 
described above, were used as a sole distinguishing feature 
between the 2 classes (malware and non-malware). We had a 
total of 477 permissions. For each file, from the various 
permissions obtained, we constructed a sentence by 
concatenating them and separating them by spaces. We have a 
total of 2853 samples with a number of non-malware and 
malware files being 1451(in blue) and 1402(in orange) 
respectively as shown below. Thus, after doing this for each 
file, we obtained a data frame of 2853 rows and 2 columns, 
one for the permission sentences and the other for the labels (1 
for malware and 0 otherwise). Figure 2 summarizes a data 
frame showing a few rows. 

 

 
Fig. 2:  A snippet of the data frame showing a few rows. 

B. Permissions Ranking With Information Value 

Information Value, abbreviated as IV, is closely connected 
with Weight of Evidence (WOE). This method evolved from 
logistic regression to select variables for building the base 
model and turned out to be very useful for the binary 
classification of APK files under consideration. We used 
information value as a metric to rank the most important 
permissions that enabled us to distinguish between the two 
classes, the malware files from the non - malware ones. The 
following equation defines the concept of Information Value. 

 
 
Non-malware files are represented by non-events and 

malware files are represented by events. Variables whose IV 
comes out to be more than 0.5 can be considered as those 
variables which have a very strong impact on determining 
which of the two classes a data point will belong to, and are 
thus given higher priority during model development. Such 
strong predictors can significantly enhance the accuracy of 
the model and prove to be extremely useful. 

C. Machine Learning Framework for Classification  

TF - IDF stands for Term Frequency-Inverse Document 
Frequency, a fairly popular statistical measure associated with 
natural language processing that gives information about the 
importance of a word in a corpus. The permissions' sentences 
cannot be fed to machine learning algorithms as it is in the 
form of strings. To convert the permissions feature to numeric 

form, we encode them using the TF - IDF technique. For each 
permission, we found its TF - IDF score. 

Term Frequency 

It is defined for a word taking into account its corresponding 
document. Thus, 

 

Inverse Document Frequency 

It is defined for a word taking into account the entire corpus. 
Thus,  

 

Thus, 
 

TF - IDF was chosen in our proposed model because of the 
following reasons:  

1. It gives more importance to rarer words in the corpus, 
i.e., IDF will be high in this case. 

2. It gives more importance if a word is frequent in a 
particular document, i.e., TF will be high in this case.  

 
After obtaining the encoded data, it was fed to the machine 
learning models. As the data was fairly balanced, accuracy 
was used as a metric to evaluate the performance of models. 
 

D. Machine Learning Classifiers  

In our model, we applied three machine learning classifiers 
namely, Naïve Bayes, Random Forest, and Extremely 
Randomized Trees. The following discussion gives details on 
three classifiers. 

Naïve Bayes: Naïve – Bayes is a probabilistic, supervised 
machine learning algorithm that is used for classification 
problems by applying the famous Bayes theorem. The 
assumption is that every pair of features is conditionally 
independent, and the value of the class variable is known. 
This conditionally independent nature makes the 
computations and consequently the entire algorithm a lot 
simpler, but still capable of generating powerful results.  It is 
closely associated with Natural Language Processing in the 
context of text classification in domains such as sentiment 
analysis and spam detection and filtration. The Bayes theorem 
determines the probability of the occurrence of an event under 
the condition that another related event has already occurred 
prior to the event under consideration and the probability of 
the occurrence of the other event is known. The basic 
governing formula is given below: 
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In a nutshell, we used the Maximum A Posteriori (MAP) 
estimation to determine which class does the data point under 
consideration most likely belongs to. 

Random Forest: Random Forest is a very popular and 
efficient ensemble model which uses Decision Trees as its 
base model. Decision Trees are one of the most highly 
interpretable algorithms as they seem to be just like nested 
if-else statements and therefore are highly favorable while 
solving machine learning problems. But Decision Trees of 
reasonable depth are prone to overfitting which leads to bad 
results on testing data. Also, they exhibit low bias and are 
characterized as high variance models. Random forests are 
good in preserving the low bias and reducing the high 
variance, thus, making the final ensemble low bias and low 
variance. Random forest achieves this by a technique called 
Bagging (Bootstrap-Aggregation). In this, we construct 
datasets that are subsets of the original dataset using bootstrap 
sampling with replacement and train each decision tree of 
reasonable depth with different subsets. We then aggregate 
the result from all the decision trees by either majority voting 
which is in the case of classification task or by taking the 
mean of the predictions which is in case of regression.  In our 
hyperparameter tuning, we have used the number of iterators 
or decision trees as 200 and we have allowed the trees to grow 
to maximum depth. The random state was set to 5. 

Extremely Randomized Trees The core idea behind this 
variation of Random Forest is to further assist in reducing 
variance by randomizing the process. In most cases, it works 
better than random forest as it takes a step further from the 
random forest. In a random forest, a decision tree tries to split 
each value of a numerical feature by sorting the feature which 
is considerably time-consuming. When working with extra 
tree classifiers, we select the samples uniquely, without 
replacement for the decision trees which is not the case in 
random forests. Since extremely randomized trees do not split 
at each value, but a subset of those values, they randomize the 
process even further consequently, thus, reducing the variance 
significantly. Unlike random forests, it does not take 
substantial time to choose the best split. A random splitting 
point is chosen which further helps in reducing the variance. 
The catch here is that it may increase a slight bias at times. 
The estimators used were 200 and the random state was set to 
100. 

E. Deep Learning Framework for Classification  

The permission sentences were converted to sequences and 
to make same length documents they were padded with zeros 
using pre-padding. The max length was taken to be 13 which 
was the length of the largest sequence, hence no truncation 
was performed. Then, the above-obtained sequences were 
passed through a word embedding layer to convert the 
permissions to word vectors. The dimension of a vector 
representing each permission was taken to be twelve and 
pre-trained word vectors were not used, instead, the word 
embedding layer weights were taken to be random and the 
layer was set to trainable during model training. 

 
 

 
Fig. 3 : A flowchart illustrating the deep learning model 

flow. 
 

Figure 3 highlights the flowchart of deep learning model 
flow. The first layer consists of the input layer followed by the 
word embedding layer as described above. Then an LSTM 
layer is used with the number of units (output dimension) 
taken as 8 and return sequences set to true. LSTM performs 
much better than the standard Elman RNN unit (simple RNN) 
as it can learn long dependencies and prevent the vanishing 
gradient problem. LSTM layer is followed by the global 
max-pooling layer. Further, a dense layer of 500 neurons is 
used with an activation function set to ReLU. To avoid 
overfitting, a dropout layer is added with the fraction of 
neurons in the previous layer to drop set to 0.4. The last layer 
is the final dense layer with an activation function as sigmoid. 

F. Implementation on Blockchain   

A node initially takes the input file from the central server 
which it receives from the user and then sends this file to the 
peer-to-peer (P2P) local network which contains other nodes. 
Each node will be given a unique predictive model to perform 
the classification task. Each node having its machine learning 
model tries to classify whether the current file is malignant or 
benign. The network then comes to a consensus regarding 
whether the file is malicious or not. This begins with each 
node  adding their predicted probabilities to the blockchain 
as a transaction after hashing with its key. This is followed by 
the node which broadcasts the file traversing the blockchain 
and taking a weighted average of the predicted probabilities, 
thus, obtaining the final verdict. The weights will be equal to 
the accuracy score of the models of each node. A unique 
predictive model will be given to any new incoming node in 
the network by the central server. The accuracy score of a 
node‘s model acts as a measure of the node's trust. 

Using the blockchain ensures that the information or data 
stored doesn't get tampered with. If the information regarding 
a node is changed, then it will change the hash code for the 
node. The previous node stores the hash code for the next 
node so that the chain-like structure is maintained. If the 
current node‘s hash code gets changed then it will not match 

with the previous node and would be considered invalid. If a 
modification is suggested by an unauthorized source to the 
blockchain in a node, it will be dismissed instantly since the 
hash of the block will vary as compared to the subsequent 
ones. Thus, one cannot tamper with the results produced by 
the modes. 
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IV. RESULTS AND DISCUSSION 

In this section, we review the results obtained from the 
proposed model. Firstly, we highpoint the top-ranked 
permissions obtained from the Information Value. Table 1 
summarizes the top 5 permissions ranked with the 
Information Value. As can be seen from the table, ―Receive‖ 

permission is the top-ranked permission with a larger 
information value. Top-ranked features help in improving the 
detection accuracy of the proposed model. 

 
Table 1: Top Ranked Permissions 

Permission Name Information Value 
Receive 2.202 

C2D Message 1.689 
Get Tasks 1.109 

Use Credentials 0.848 
Read Phone State 0.805 

A. Detection Results With Machine Learning and Deep 
Learning Algorithms   

Now, we present the detection results of our proposed 
approach. Table 2 summarizes the detection results when we 
use the Naïve Bayes algorithm for detection. We have used a 
different set of permissions at each iteration.  As the table 
summarizes, we get an accuracy of 62.12% when we use the 
top 10 ranked permissions sorted with Information Value. 
Similarly, other entries of the table can be understood. We 
observe that we get the highest accuracy of 91.59% with the 
set of top 45 ranked permissions. When we further increase 
the number of permissions, the detection accuracy did not 
increase. Hence, we can argue that we get the best accuracy of 
91.59% with the Naïve Bayes classifier. 

 
Table 2: Detection Results with Naïve Bayes 
Number of Permissions 
Ranked According to IV 

Detection Accuracy (in %) 

10 62.12 
15 71.20 
20 76.14 
25 81.00 
30 84.10 
35 87.57 
40 89.24 
45 91.59 

 
Table 3 summarizes the results when we use the Random 

Forest classifier for detecting malicious Android apps. Again, 
we review the results with the different number of top-ranked 
permissions. We observe that we get the highest accuracy of 
95.44% on top 45 ranked permissions. Similar to the Naïve 
Bayes classifier, we get the highest accuracy with the top 45 
ranked permissions and the accuracy does not increase further 
when we increase the number of permissions. 

 
Table 3: Detection Results with Random Forest 

Number of Permissions 
Ranked According to IV 

Detection Accuracy (in %) 

10 70.27 
15 75.87 
20 82.14 
25 86.02 
30 89.14 
35 91.21 
40 93.87 
45 95.44 

 

Table 4 highlights the detection results when we use 
Extremely Randomized Trees for Android malware detection. 
Similar to previous results, we get the highest accuracy of 
95.09% with top 45 ranked permissions. Again, the accuracy 
did not increase when we include more permissions in the 
analysis.   

 
Table 4: Detection Results with Extremely Randomized 

Trees  
Number of Permissions 
Ranked According to IV 

Detection Accuracy (in %) 

10 70.00 
15 74.92 
20 81.23 
25 85.54 
30 88.40 
35 90.12 
40 94.14 
45 95.09 

 
Table 5 highlights the detection results when we use LSTM 

(Long Short Term Memory) algorithm for Android malware 
detection. Similar to previous results, we get the highest 
accuracy of 95.27% with top 45 ranked permissions. Again, 
the accuracy did not increase when we include more 
permissions in the analysis.   

 
Table 5: Detection Results with LSTM Algorithm  

Number of Permissions 
Ranked According to IV 

Detection Accuracy (in %) 

10 70.94 
15 76.57 
20 82.14 
25 86.13 
30 88.90 
35 91.31 
40 94.90 
45 95.27 

 
Summary: If we compare Tables 2, 3, 4, and 5, we observe 

that the Random Forest classifier gives the highest accuracy 
of 95.44% as compared to other classifiers. All the classifiers 
give their best results with top 45 ranked permissions. Further 
increasing the number of permissions did not improve the 
detection accuracy. Hence, we can argue that ranking the 
permissions with the concept of Information Value is useful in 
effectively detecting Android malware. 

B. False Results Analysis   

We observe that few normal samples downloaded from 
Play Store were detected as malicious by the proposed model, 
hence leading to false positives. The reason lies in the fact that 
these apps were related to blocking the phone calls / SMS on 
the device. Numerous apps exist in the Play Store that aim to 
block incoming phone calls / SMS when installed on the 
mobile device. Because this functionality matches with the 
behavior of malicious apps, hence, these samples are falsely 
detected as malware. On the other hand, few malware samples 
like AnserverBot, Geinimi, Plankton, etc., get detected as 
normal, hence, leading to false negatives.  
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Some of these malicious samples contained a very less 
number of permissions, i.e., only 1 or 2 permissions within 
their manifest file. 

 Hence, it becomes difficult to detect such malicious 
samples with a low number of permissions. Moreover, few 
malware samples are stealthier in the way that they download 
malicious components at update time. Permissions-based 
static techniques cannot detect such stealthier samples. 
Samples such as BaseBridge download malicious 
components at update time, hence, are undetected by the 
permissions-based approach. Keeping these challenges in 
mind, in our future work, we will target to incorporate 
dynamic features as well for analysis like system calls and 
network traffic. We will also look to implement our approach 
on recent and stealthier Android malware samples. 

V. CONCLUSIONS AND FUTURE WORK  

In this paper, we have proposed a static model to detect 
Android malware based upon permissions analysis in the  
blockchain environment. There are numerous permissions in 
Android, hence, we aimed to rank the permissions based upon 
the Information Value. Such ranking helps in eliminating the 
irrelevant permissions for improving the detection accuracy. 
Further, we applied the machine learning and deep learning 
algorithms on the top-ranked permissions. The experimental 
results demonstrated that the proposed model was able to 
achieve an accuracy of 95.44% with top 45 ranked 
permissions. In our future work, we will aim to include more 
static and dynamic features for analysis, such as other 
manifest file components, system calls, and network traffic, 
CPU and memory usage, etc.  
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