
International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

68

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E25930610521
DOI:10.35940/ijeat.E2593.0610521
Journal Website: www.ijeat.org


Abstract: Android mobile devices are a prime target for a huge

number of cyber-criminals as they aim to create malware for
disrupting and damaging the servers, clients, or networks.
Android malware are in the form of malicious apps, that get
downloaded on mobile devices via the Play Store or third-party
app markets. Such malicious apps pose serious threats like system
damage, information leakage, financial loss to user, etc. Thus,
predicting which apps contain malicious behavior will help in
preventing malware attacks on mobile devices. Identifying
Android malware has become a major challenge because of the
ever-increasing number of permissions that applications ask for,
to enhance the experience of the users. And most of the times,
permissions and other features defined in normal and malicious
apps are generally the same. In this paper, we aim to detect
Android malware using machine learning, deep learning, and
natural language processing techniques. To delve into the
problem, we use the Android manifest files which provide us with
features like permissions which become the basis for detecting
Android malware. We have used the concept of information value
for ranking permissions. Further, we have proposed a
consensus-based blockchain framework for making more
concrete predictions as blockchain have high reliability and low
cost. The experimental results demonstrate that the proposed
model gives the detection accuracy of 95.44% with the Random
Forest classifier. This accuracy is achieved with top 45
permissions ranked according to Information Value.

Keywords: Blockchain, Intrusion Detection, Mobile Malware,
Mobile Network, Mobile Security.

I. INTRODUCTION

There are millions of Android users in the world and a

great subset fall prey to the malware present in applications
that they use in their day-to-day lives. Android, due to its
open-source nature has fallen prey to many malware attacks.
Malware detection is extremely sought for, considering the
increasing attacks on the open-source Android platform.
Citing the example of one such Android application,
CamScanner, one of the most used Android applications

Manuscript received on May 07, 2021.
Revised Manuscript received on May 15, 2021.
Manuscript published on June 30, 2021.
* Corresponding Author

Siddhant Gupta*, Discipline of Mathematics and Computing, Delhi
Technological University, Delhi, India, Email:
siddhant1999gupta@gmail.com

Siddharth Sethi, Discipline of Mathematics and Computing, Delhi
Technological University, Delhi, India, Email: sid.sethi31@gmail.com

Srishti Chaudhary, Discipline of Mathematics and Computing, Delhi
Technological University, Delhi, India, Email: srishtic27@gmail.com

Anshul Arora, Discipline of Mathematics and Computing, Delhi
Technological University, Delhi, India, Email: anshul15arora@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

globally, was alleged by a team of Kaspersky researchers to
possess malicious traits in several of its modules and libraries
[1]. Android malware pose serious threats such as system
damage, leakage of information stored on the device,
financial loss to the users, etc. According to Kaspersky [2],
more than 5 million malicious applications were detected on
the Android platform. Hence, keeping these threats in mind,
in this paper, we attempt to present a machine learning-based
framework in the Blockchain environment to detect malicious
behavior in such Android applications.

Contributions: The main contributions of this work are
summarized below:
1. We ranked the permissions using the concept of

information value and weight of evidence to identify the
useful and distinguishing permissions that can
efficiently detect Android malware.

2. Thereafter, we converted the permissions obtained from
each application into a sentence by concatenating them
and separating them by spaces. TF-IDF was applied to
the above-formed sentences to convert them to numeric
values.

3. We further applied machine learning algorithms namely
Random Forest, Naive Bayes, and Extremely
Randomized Trees on the above-obtained numeric
values.

4. We also applied deep learning architecture using a word
embedding and LSTMS on the set of numeric
permissions.

5. Lastly, a blockchain architecture was developed based
on consensus to give better and accurate predictions to
the problem described before.

Organization: The remainder of the paper is structured as

follows. We discuss the related work in the field of Android
malware detection in Section II. The detailed methodology of
the proposed work is discussed in Section III. We review the
results obtained from the proposed model in Section IV and
conclude with future work directions in Section V.

II. RELATED WORK

 We discuss the related work in two subsections. First, we
review the blockchain-related works, i.e., the
applications/areas in which blockchain has been applied.
Next, we discuss the related works in the field of Android
malware detection. We discuss these related works in the
upcoming two subsections.

Siddhant Gupta, Siddharth Sethi, Srishti Chaudhary, Anshul Arora

Blockchain Based Detection of Android
Malware using Ranked Permissions

mailto:anshul15arora@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E2593.0610521&domain=www.ijeat.org

Blockchain Based Detection of Android Malware using Ranked Permissions

69

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E25930610521
DOI:10.35940/ijeat.E2593.0610521
Journal Website: www.ijeat.org

A. Blockchain Related Works

Cui et al. [3] proposed a blockchain-based multi-WSN
(Wireless Sensor Network) authentication scheme for
distributed IoT systems. Hasan et al. [4] proposed a
blockchain-based creation process of DTs(Digital Twins).
DT is a digital representation of a real-world physical
component product or equipment. The proposed model
aimed to guarantee secure and trusted traceability,
accessibility, and immutability of transactions, logs, and data
provenance. The authors in [5] constructed a novel secure
mutual authentication system that can be applied in smart
homes and other applications by integrating blockchain,
group signature, and message authentication code to provide
reliable auditing. The authors in [6] proposed
blockchain-based smart parking with fairness, reliability, and
privacy protection. The group signatures, bloom filters, and
vector-based encryption were leveraged to protect the users'
privacy. The authors in [7] proposed a new data governance
fashion that was built upon the blockchain-based
decentralized services computing paradigm. The core
principle was that data owners should be able to publish their
data as a set of services that can be deployed independently
from the application systems where the data were born. The
authors in [8] proposed a Peer-to-Peer (P2P) energy trading
scheme for a Virtual Power Plant (VPP) by using Smart
Contracts on the Ethereum Blockchain Platform. Jaiman et al.
[9] proposed a blockchain-based data-sharing consent model
for access control over individual health data. They used
smart contracts to dynamically represent the individual's
consent over health data and to enable data requesters to
search and access those data. The dynamic consent model
extended to two ontologies: the Data Use Ontology (DUO)
which modeled the individual consent of users and the
Automatable Discovery and Access Matrix (ADA-M), which
described queries from data requesters.

Guo et al. [10] proposed a blockchain-inspired event
recording system for autonomous vehicles. They designed the
mechanism of ―Proof-of-Event'‖ with a dynamic federation

consensus to achieve indisputable accident forensics by
providing trustable and variable event information. They
proposed a dynamic federation consensus scheme to verify
and confirm the new block of event data in an efficient way
without any central authority. The authors in [11] proposed a
new voting protocol based on the blockchain technology, a
new encryption mechanism to guarantee that nobody can
decrypt the votes, but everyone can verify the validity of the
votes as well as the outcome of the tallying process by using
the homomorphic property of the encryption. This ensures the
validity of the submitted votes in the counting process and at
the same time maintains confidentiality. The authors in [12]
proposed an Intelligent Transportation Systems(ITS)
oriented, seven-layer conceptual model for blockchain and
address the key research issues in B2ITS. Blockchain is
considered one of the secured and trusted architectures for
building newly developed parallel transportation management
systems. The authors in [13] proposed a comprehensive
concept, market design, and simulation of a local energy
market between 100 residential households with the approach
of a distributed information and communication technology
using private blockchain which underlines the distributed
nature of local markets. Turkanovic et al. [14] proposed a
global higher education credit platform named EduCTX

which is based on the concept of the European Credit Transfer
and Accumulation System(ECTS). Based on a globally
distributed peer-to-peer network, EduCTX processed,
managed, and controlled ECTX tokens, which represent
credits that students gain for completed courses, such as
ECTS. Higher Education Institutions(HEI‘s) were the peers

of the blockchain network. The authors in [15] proposed a
Blockchain-based digital content distribution system that has
a decentralized and peer-to-peer authentication mechanism
that can be considered as an ideal rights movement
mechanism.

B. Android Malware Detection

In this subsection, we discuss the works proposed in the
literature for Android malware detection. Broadly, detection
mechanisms for Android malware are divided into three
categories, namely, Static, Dynamic, and Hybrid, depending
upon the features used for detection. We discuss these
techniques next.

Static Detection

Static Techniques aim to detect malicious Android apps
without running the apps. Such techniques analyze static
components like permissions, intents, Java source code, etc.,
where the apps are not required to be executed on
smartphones. Several static-based detection works have been
reported in the literature. The authors in [16] calculated a
specific score of each permission in which the number of
malware samples containing that particular permission was
divided by the total number of malware present in the dataset.
This permission score was used to detect malicious
applications. Moonsamy et al. [17] analyzed the harmful
patterns of permissions defined within the malicious
applications. The authors in [18] used Information Gain and
T-Test to rank and further detected malware using machine
learning algorithms. Idrees et al. [19] detected malware by
identifying the significant intents as well as permissions that
are defined in malicious samples and normal applications.
The authors in [20] identified the similarity between malware
and non-malware applications by applying Hamming
Distance using the static features of permissions, intents, and
APIs. The authors in [21] applied a linear SVM algorithm on
the static features extracted from manifest files to detect the
malware applications. Similarly, authors in [22] have also
used various static features including manifest components,
and have applied machine learning algorithms for detection.
In [23], the authors ranked permissions and intents for
detecting malware. Sanz et al. proposed a model named
MAMA [24] which used various manifest file components
like hardware components and permissions for detecting
malware. Similarly, authors in [25] and [26] detected
malicious applications using various machine learning
algorithms on static features. Authors in [27] proposed
Apposcopy that used API calls to analyze the control flow and
data flow properties to detect malware. Wang et al.[28] used
string features such as permissions and intents along with API
calls and their function call graphs to detect malware in
Android applications. The authors in [47] analyzed
permissions in pairs for malware detection.

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

70

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E25930610521
DOI:10.35940/ijeat.E2593.0610521
Journal Website: www.ijeat.org

None of the above-discussed words have aimed to use the
Blockchain platform on the ranked permissions for effective
Android malware detection. In this work, novel from others,
we have applied the Blockchain model on ranked permissions
to detect Android malware.

Dynamic Detection

Solutions involving static detection mechanisms might not
be able to detect the malicious component primarily because
they do not execute the applications, and by not doing so,
while updating, these malicious components might be
downloaded. This called for the proposition of dynamic
solutions for detecting malware in Android by the researchers.
Some research works around the detection of malicious apps
which used Android OS-based features are as follows. In [29],
analysis of systems calls and API was done to identify
malicious Android apps. In [30], malware detection was done
by Shabtai et al. using dynamic features like the percentage of
Central Processing Unit usage, active processes, along with
the number of network traffic packets being communicated.
In [31], it was deduced that Java, JNI, or native code
execution initiated the potential source of unwanted malicious
behavior in the malware applications by observing system
calls of malicious Android apps. In [32], system calls of apps
were analyzed to differentiate benign from malware ones. In
[33], malicious apps were detected by Iqbal et al. by analyzing
several dynamic features such as memory consumption, CPU
usage, and system call events.

Now, we review the related works that have used Internet
traffic features for Android malware detection. In [34], the
existing traffic patterns present in benign apps were analyzed.
Further, to figure out deviations and variations from benign
traffic patterns in the malicious traffic patterns, the authors
used various machine learning classification techniques. In
[35], malware detection was done by Wang et. al by applying
Natural Language Processing techniques on the HyperText
Transfer Protocol (HTTP) headers. In [36], malicious activity
in the network traffic was detected by extracting
network-level features and applying multiple classifiers. In
[37], malware network traffic was detected by Igor et al. by
observing patterns of 14 features from the TCP / IP headers of
the malicious and normal files. The authors in [48] and [49]
analyzed several network traffic features for malware
detection in Android.

The dynamic features extraction, for example, system
calls and network traffic, is computationally complex and has
huge overheads as compared to static techniques, therefore, in
this paper, only a static detection model is presented.

Hybrid Detection

To combine the advantages of both static and dynamic
solutions, few hybrid solutions exist in the literature wherein
both static and dynamic features can be combined to propose
a hybrid detection model. In [38], the authors analyzed the
components of the manifest files such as permissions and
dynamic features of run-time Dalvik code loading for
malicious Android apps detection. In [39], machine learning
techniques were applied after extracting important features
like apps rating, dynamic API calls, permissions, number of
users who downloaded the app. In [40], the authors presented
the ‗AdDroid model‘ that detects malicious activities on a
device by analyzing Android actions such as uploading of a
file to a server, internet connections, installing packages on
the device, etc. In [41], Android malware was detected by

observing run-time-related events along with sensitive APIs
and permissions by Zhu et al. Apart from this, the authors in
[42] and [43] proposed two absolutely different hybrid
detection techniques by merging and combining the
permissions with network traffic features. On similar lines,
the authors in [44], [45], and [46] worked on malware
detection by analyzing the combination of static and dynamic
features.

Since hybrid detection involves both static as well as
dynamic features, they involve computational overheads too,
similar to dynamic mechanisms. Therefore, we have aimed to
propose a static detection in our model.

III. PROPOSED METHODOLOGY

In this section, we present the proposed approach for
detecting malicious Android apps. We obtained Android
APK files, extracted permissions from the
AndroidManifest.xml files, and used them as a distinguishing
feature to characterize and differentiate malware files from
non-malware files using machine learning and deep learning
techniques. Further, we have boiled down the problem to a
natural language processing task by creating sentences from
the extracted permissions for each file and concatenating
them which are further used to train the machine learning and
deep learning models. We obtained the non-malware files (in
APK format) from apkpure.com and malware files (also in
APK format) from Genome, Drebin, and Koodous. Then, we
ran a python script to extract permissions from the Android
manifest files which were used as a feature for building the
predictive model. We discuss this methodology in detail in the
upcoming sections.

A. Dataset Construction

From the applications in the APK format, we extracted the
Android manifest file using apktool which contains
information such as permissions the application wants from
the user, the intents of the applications, etc. Permissions are
certain accesses that the application asks the user to grant in
order to function. Some of them are as follows:·a). Access to
photos in the device, b) Access to use location services, c)
Access to use the browser, etc. Figure 1 summarizes one of
the instances of permissions present within the manifest file of
an app.

Fig. 1: A snippet of the Android manifest file from

which permissions were extracted.

Blockchain Based Detection of Android Malware using Ranked Permissions

71

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E25930610521
DOI:10.35940/ijeat.E2593.0610521
Journal Website: www.ijeat.org

Permissions extracted from the APK files, obtained as
described above, were used as a sole distinguishing feature
between the 2 classes (malware and non-malware). We had a
total of 477 permissions. For each file, from the various
permissions obtained, we constructed a sentence by
concatenating them and separating them by spaces. We have a
total of 2853 samples with a number of non-malware and
malware files being 1451(in blue) and 1402(in orange)
respectively as shown below. Thus, after doing this for each
file, we obtained a data frame of 2853 rows and 2 columns,
one for the permission sentences and the other for the labels (1
for malware and 0 otherwise). Figure 2 summarizes a data
frame showing a few rows.

Fig. 2: A snippet of the data frame showing a few rows.

B. Permissions Ranking With Information Value

Information Value, abbreviated as IV, is closely connected
with Weight of Evidence (WOE). This method evolved from
logistic regression to select variables for building the base
model and turned out to be very useful for the binary
classification of APK files under consideration. We used
information value as a metric to rank the most important
permissions that enabled us to distinguish between the two
classes, the malware files from the non - malware ones. The
following equation defines the concept of Information Value.

Non-malware files are represented by non-events and

malware files are represented by events. Variables whose IV
comes out to be more than 0.5 can be considered as those
variables which have a very strong impact on determining
which of the two classes a data point will belong to, and are
thus given higher priority during model development. Such
strong predictors can significantly enhance the accuracy of
the model and prove to be extremely useful.

C. Machine Learning Framework for Classification

TF - IDF stands for Term Frequency-Inverse Document
Frequency, a fairly popular statistical measure associated with
natural language processing that gives information about the
importance of a word in a corpus. The permissions' sentences
cannot be fed to machine learning algorithms as it is in the
form of strings. To convert the permissions feature to numeric

form, we encode them using the TF - IDF technique. For each
permission, we found its TF - IDF score.

Term Frequency

It is defined for a word taking into account its corresponding
document. Thus,

Inverse Document Frequency

It is defined for a word taking into account the entire corpus.
Thus,

Thus,

TF - IDF was chosen in our proposed model because of the
following reasons:

1. It gives more importance to rarer words in the corpus,
i.e., IDF will be high in this case.

2. It gives more importance if a word is frequent in a
particular document, i.e., TF will be high in this case.

After obtaining the encoded data, it was fed to the machine
learning models. As the data was fairly balanced, accuracy
was used as a metric to evaluate the performance of models.

D. Machine Learning Classifiers

In our model, we applied three machine learning classifiers
namely, Naïve Bayes, Random Forest, and Extremely
Randomized Trees. The following discussion gives details on
three classifiers.

Naïve Bayes: Naïve – Bayes is a probabilistic, supervised
machine learning algorithm that is used for classification
problems by applying the famous Bayes theorem. The
assumption is that every pair of features is conditionally
independent, and the value of the class variable is known.
This conditionally independent nature makes the
computations and consequently the entire algorithm a lot
simpler, but still capable of generating powerful results. It is
closely associated with Natural Language Processing in the
context of text classification in domains such as sentiment
analysis and spam detection and filtration. The Bayes theorem
determines the probability of the occurrence of an event under
the condition that another related event has already occurred
prior to the event under consideration and the probability of
the occurrence of the other event is known. The basic
governing formula is given below:

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

72

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E25930610521
DOI:10.35940/ijeat.E2593.0610521
Journal Website: www.ijeat.org

In a nutshell, we used the Maximum A Posteriori (MAP)
estimation to determine which class does the data point under
consideration most likely belongs to.

Random Forest: Random Forest is a very popular and
efficient ensemble model which uses Decision Trees as its
base model. Decision Trees are one of the most highly
interpretable algorithms as they seem to be just like nested
if-else statements and therefore are highly favorable while
solving machine learning problems. But Decision Trees of
reasonable depth are prone to overfitting which leads to bad
results on testing data. Also, they exhibit low bias and are
characterized as high variance models. Random forests are
good in preserving the low bias and reducing the high
variance, thus, making the final ensemble low bias and low
variance. Random forest achieves this by a technique called
Bagging (Bootstrap-Aggregation). In this, we construct
datasets that are subsets of the original dataset using bootstrap
sampling with replacement and train each decision tree of
reasonable depth with different subsets. We then aggregate
the result from all the decision trees by either majority voting
which is in the case of classification task or by taking the
mean of the predictions which is in case of regression. In our
hyperparameter tuning, we have used the number of iterators
or decision trees as 200 and we have allowed the trees to grow
to maximum depth. The random state was set to 5.

Extremely Randomized Trees The core idea behind this
variation of Random Forest is to further assist in reducing
variance by randomizing the process. In most cases, it works
better than random forest as it takes a step further from the
random forest. In a random forest, a decision tree tries to split
each value of a numerical feature by sorting the feature which
is considerably time-consuming. When working with extra
tree classifiers, we select the samples uniquely, without
replacement for the decision trees which is not the case in
random forests. Since extremely randomized trees do not split
at each value, but a subset of those values, they randomize the
process even further consequently, thus, reducing the variance
significantly. Unlike random forests, it does not take
substantial time to choose the best split. A random splitting
point is chosen which further helps in reducing the variance.
The catch here is that it may increase a slight bias at times.
The estimators used were 200 and the random state was set to
100.

E. Deep Learning Framework for Classification

The permission sentences were converted to sequences and
to make same length documents they were padded with zeros
using pre-padding. The max length was taken to be 13 which
was the length of the largest sequence, hence no truncation
was performed. Then, the above-obtained sequences were
passed through a word embedding layer to convert the
permissions to word vectors. The dimension of a vector
representing each permission was taken to be twelve and
pre-trained word vectors were not used, instead, the word
embedding layer weights were taken to be random and the
layer was set to trainable during model training.

Fig. 3 : A flowchart illustrating the deep learning model

flow.

Figure 3 highlights the flowchart of deep learning model
flow. The first layer consists of the input layer followed by the
word embedding layer as described above. Then an LSTM
layer is used with the number of units (output dimension)
taken as 8 and return sequences set to true. LSTM performs
much better than the standard Elman RNN unit (simple RNN)
as it can learn long dependencies and prevent the vanishing
gradient problem. LSTM layer is followed by the global
max-pooling layer. Further, a dense layer of 500 neurons is
used with an activation function set to ReLU. To avoid
overfitting, a dropout layer is added with the fraction of
neurons in the previous layer to drop set to 0.4. The last layer
is the final dense layer with an activation function as sigmoid.

F. Implementation on Blockchain

A node initially takes the input file from the central server
which it receives from the user and then sends this file to the
peer-to-peer (P2P) local network which contains other nodes.
Each node will be given a unique predictive model to perform
the classification task. Each node having its machine learning
model tries to classify whether the current file is malignant or
benign. The network then comes to a consensus regarding
whether the file is malicious or not. This begins with each
node adding their predicted probabilities to the blockchain
as a transaction after hashing with its key. This is followed by
the node which broadcasts the file traversing the blockchain
and taking a weighted average of the predicted probabilities,
thus, obtaining the final verdict. The weights will be equal to
the accuracy score of the models of each node. A unique
predictive model will be given to any new incoming node in
the network by the central server. The accuracy score of a
node‘s model acts as a measure of the node's trust.

Using the blockchain ensures that the information or data
stored doesn't get tampered with. If the information regarding
a node is changed, then it will change the hash code for the
node. The previous node stores the hash code for the next
node so that the chain-like structure is maintained. If the
current node‘s hash code gets changed then it will not match

with the previous node and would be considered invalid. If a
modification is suggested by an unauthorized source to the
blockchain in a node, it will be dismissed instantly since the
hash of the block will vary as compared to the subsequent
ones. Thus, one cannot tamper with the results produced by
the modes.

Blockchain Based Detection of Android Malware using Ranked Permissions

73

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E25930610521
DOI:10.35940/ijeat.E2593.0610521
Journal Website: www.ijeat.org

IV. RESULTS AND DISCUSSION

In this section, we review the results obtained from the
proposed model. Firstly, we highpoint the top-ranked
permissions obtained from the Information Value. Table 1
summarizes the top 5 permissions ranked with the
Information Value. As can be seen from the table, ―Receive‖

permission is the top-ranked permission with a larger
information value. Top-ranked features help in improving the
detection accuracy of the proposed model.

Table 1: Top Ranked Permissions

Permission Name Information Value
Receive 2.202

C2D Message 1.689
Get Tasks 1.109

Use Credentials 0.848
Read Phone State 0.805

A. Detection Results With Machine Learning and Deep
Learning Algorithms

Now, we present the detection results of our proposed
approach. Table 2 summarizes the detection results when we
use the Naïve Bayes algorithm for detection. We have used a
different set of permissions at each iteration. As the table
summarizes, we get an accuracy of 62.12% when we use the
top 10 ranked permissions sorted with Information Value.
Similarly, other entries of the table can be understood. We
observe that we get the highest accuracy of 91.59% with the
set of top 45 ranked permissions. When we further increase
the number of permissions, the detection accuracy did not
increase. Hence, we can argue that we get the best accuracy of
91.59% with the Naïve Bayes classifier.

Table 2: Detection Results with Naïve Bayes
Number of Permissions
Ranked According to IV

Detection Accuracy (in %)

10 62.12
15 71.20
20 76.14
25 81.00
30 84.10
35 87.57
40 89.24
45 91.59

Table 3 summarizes the results when we use the Random

Forest classifier for detecting malicious Android apps. Again,
we review the results with the different number of top-ranked
permissions. We observe that we get the highest accuracy of
95.44% on top 45 ranked permissions. Similar to the Naïve
Bayes classifier, we get the highest accuracy with the top 45
ranked permissions and the accuracy does not increase further
when we increase the number of permissions.

Table 3: Detection Results with Random Forest

Number of Permissions
Ranked According to IV

Detection Accuracy (in %)

10 70.27
15 75.87
20 82.14
25 86.02
30 89.14
35 91.21
40 93.87
45 95.44

Table 4 highlights the detection results when we use
Extremely Randomized Trees for Android malware detection.
Similar to previous results, we get the highest accuracy of
95.09% with top 45 ranked permissions. Again, the accuracy
did not increase when we include more permissions in the
analysis.

Table 4: Detection Results with Extremely Randomized

Trees
Number of Permissions
Ranked According to IV

Detection Accuracy (in %)

10 70.00
15 74.92
20 81.23
25 85.54
30 88.40
35 90.12
40 94.14
45 95.09

Table 5 highlights the detection results when we use LSTM

(Long Short Term Memory) algorithm for Android malware
detection. Similar to previous results, we get the highest
accuracy of 95.27% with top 45 ranked permissions. Again,
the accuracy did not increase when we include more
permissions in the analysis.

Table 5: Detection Results with LSTM Algorithm

Number of Permissions
Ranked According to IV

Detection Accuracy (in %)

10 70.94
15 76.57
20 82.14
25 86.13
30 88.90
35 91.31
40 94.90
45 95.27

Summary: If we compare Tables 2, 3, 4, and 5, we observe

that the Random Forest classifier gives the highest accuracy
of 95.44% as compared to other classifiers. All the classifiers
give their best results with top 45 ranked permissions. Further
increasing the number of permissions did not improve the
detection accuracy. Hence, we can argue that ranking the
permissions with the concept of Information Value is useful in
effectively detecting Android malware.

B. False Results Analysis

We observe that few normal samples downloaded from
Play Store were detected as malicious by the proposed model,
hence leading to false positives. The reason lies in the fact that
these apps were related to blocking the phone calls / SMS on
the device. Numerous apps exist in the Play Store that aim to
block incoming phone calls / SMS when installed on the
mobile device. Because this functionality matches with the
behavior of malicious apps, hence, these samples are falsely
detected as malware. On the other hand, few malware samples
like AnserverBot, Geinimi, Plankton, etc., get detected as
normal, hence, leading to false negatives.

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

74

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E25930610521
DOI:10.35940/ijeat.E2593.0610521
Journal Website: www.ijeat.org

Some of these malicious samples contained a very less
number of permissions, i.e., only 1 or 2 permissions within
their manifest file.

 Hence, it becomes difficult to detect such malicious
samples with a low number of permissions. Moreover, few
malware samples are stealthier in the way that they download
malicious components at update time. Permissions-based
static techniques cannot detect such stealthier samples.
Samples such as BaseBridge download malicious
components at update time, hence, are undetected by the
permissions-based approach. Keeping these challenges in
mind, in our future work, we will target to incorporate
dynamic features as well for analysis like system calls and
network traffic. We will also look to implement our approach
on recent and stealthier Android malware samples.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a static model to detect
Android malware based upon permissions analysis in the
blockchain environment. There are numerous permissions in
Android, hence, we aimed to rank the permissions based upon
the Information Value. Such ranking helps in eliminating the
irrelevant permissions for improving the detection accuracy.
Further, we applied the machine learning and deep learning
algorithms on the top-ranked permissions. The experimental
results demonstrated that the proposed model was able to
achieve an accuracy of 95.44% with top 45 ranked
permissions. In our future work, we will aim to include more
static and dynamic features for analysis, such as other
manifest file components, system calls, and network traffic,
CPU and memory usage, etc.

REFERENCES

1. Malicious Android app had more than 100 million downloads in
Google Play. Available Online.
https://www.kaspersky.co.in/blog/camscanner-malicious-android-ap
p/16595/

2. Mobile malware evolution 2020, Available Online.
https://securelist.com/mobile-malware-evolution-2020/101029/

3. Z. Cui et al., "A Hybrid BlockChain-Based Identity Authentication
Scheme for Multi-WSN," in IEEE Transactions on Services
Computing, vol. 13, no. 2, pp. 241-251, 2020.

4. Hasan et al. , ―A Blockchain-Based Approach for the Creation of
Digital Twins‖, IEEE Access, vol. 8, pp. 34113-34126, 2020.

5. C. Lin, D. He, N. Kumar, X. Huang, P. Vijayakumar and K. R. Choo,
"HomeChain: A Blockchain-Based Secure Mutual Authentication
System for Smart Homes," IEEE Internet of Things Journal, vol. 7,
no. 2, pp. 818-829, 2020.

6. C. Zhang et al., "BSFP: Blockchain-Enabled Smart Parking With
Fairness, Reliability and Privacy Protection," IEEE Transactions on
Vehicular Technology, vol. 69, no. 6, pp. 6578-6591, 2020.

7. X. Liu, S. X. Sun and G. Huang, "Decentralized Services Computing
Paradigm for Blockchain-Based Data Governance: Programmability,
Interoperability, and Intelligence," IEEE Transactions on Services
Computing, vol. 13, no. 2, pp. 343-355, 2020.

8. S. Seven, G. Yao, A. Soran, A. Onen, and S.M. Muyeen ―Peer-to-Peer
Energy Trading in Virtual Power Plant Based on Blockchain Smart
Contracts‖ IEEE Access, vol. 8, pp. 175713-175726, 2020.

9. V. Jaiman, and V. Urovi, ―A Consent Model for Blockchain-Based
Health Data Sharing Platforms‖ , IEEE Access, vol. 8, pp.

143734-143745, 2020.
10. H. Guo, W. Li, M. Nejad and C. C. Shen, ―Proof-of-Event Recording

System for Autonomous Vehicles: A Blockchain-Based Solution‖,

IEEE Access, vol. 8, pp. 182776-182786, 2020.
11. X. Yang, X. Yi, S. Nepal, A. Kelarev and F. Han, ―Blockchain voting:

Publicly verifiable online voting protocol without trusted tallying
authorities‖, Future Generation Computer System, vol. 112, pp.

859-874, 2020.

12. Y. Yuan and F. Wang, "Towards blockchain-based intelligent
transportation systems," in IEEE 19th International Conference on
Intelligent Transportation Systems, pp. 2663-2668, Brazil, 2016.

13. E. Mengelkamp, B. Notheisen, C. Beer, D. Dauer and C. Weinhardt,
―A blockchain-based smart grid: towards sustainable local energy
markets‖, Computer Science-Research and Development, vol. 33, pp.
207-214, 2018.

14. M. Turkanovic, M. Holbl, K. Kosic, M. Hericko, and A. Kamisalic,
―EduCTX: A Blockchain-Based Higher Education Credit Platform‖,

IEEE Access, vol. 6, pp. 5112-5127, 2018.
15. J. Kishigami, S. Fujimura, H. Watanabe, A. Nakadaira and A.

Akutsu, "The Blockchain-Based Digital Content Distribution
System," IEEE Fifth International Conference on Big Data and Cloud
Computing, pp. 187-190, China, 2015.

16. K. Talha, D. Alper, and C. Aydin, ‖APK Auditor: Permission-based
Android malware detection system‖, Digital Investigation, vol. 13,
pp. 1- 14, 2015.

17. V. Moonsamy, J. Rong, and S. Liu, ‖Mining permission patterns for

contrasting clean and malicious android applications‖, Future

Generation Computer Systems, vol. 36, pp. 122-132, 2014.
18. W. Wang et al., ‖Exploring Permission-Induced Risk in Android

Applications for Malicious Application Detection‖, IEEE

Transactions on Information Forensics and Security, vol. 9, pp.
1869-1882, 2014.

19. F. Idrees, and M. Rajarajan, ‖Investigating the Android Intents and

Permissions for Malware detection‖, 7th International Workshop on
Selected Topics in Mobile and Wireless Computing, 2014.

20. R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian,
and M. Conti, "Similarity-based Android malware detection using
Hamming distance of static binary features", Future Generation
Computer Systems, vol. 105, pp. 230-247, 2020.

21. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
‖DREBIN: Effective and Explainable Detection of Android Malware

in Your Pocket‖,NDSS,2014.
22. H. Fereidooni, M. Conti, D. Yao and A. Sperduti, "ANASTASIA:

Android mAlware detection using STatic analySIs of Applications,"
8th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), Larnaca, 2016.

23. K. Khariwal, J. Singh and A. Arora, "IPDroid: Android Malware
Detection using Intents and Permissions," 4th World Conference on
Smart Trends in Systems, Security and Sustainability (WorldS4),
London, United Kingdom, pp. 197-202, 2020.

24. B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P.
Bringas, and G. Lvarez, ‖MAMA: manifest analysis for malware

detection in android‖, Cybernetics and Systems, vol. 44, pp. 469-488,
2013.

25. S. Feldman, D. Stadther and B. Wang, "Manilyzer: Automated
Android Malware Detection through Manifest Analysis," IEEE 11th
International Conference on Mobile Ad Hoc and Sensor Systems,
Philadelphia, PA, pp. 767-772, 2014.

26. M. Kumaran and W. Li, "Lightweight malware detection based on
machine learning algorithms and the android manifest file," IEEE
MIT Undergraduate Research Technology Conference (URTC),
Cambridge, MA, pp. 1-3, 2016.

27. Y. Feng, S. Anand, I. Dillig, and A. Aiken, ‖Apposcopy: Semantics

based detection of android malware through static analysis‖, 22nd

ACM SIGSOFT Symposium on Foundations of Software
Engineering, 2014.

28. W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu and X. Zhang,
"DroidEnsemble: Detecting Android Malicious Applications With
Ensemble of String and Structural Static Features," IEEE Access, vol.
6, pp. 31798-31807, 2018.

29. V.M. Afonso et al., ‖Identifying Android malware using dynamically
obtained features‖, Journal of Computer Virology and Hacking

Techniques, vol. 11, pp.9-17,2015.
30. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,

‖Andromaly: a behavioral malware detection framework for android

devices‖, Journal
of Intelligent Information Systems, vol. 38, pp. 161-190, 2012.

31. A. Reina, A. Fattori, and L. Cavallaro, ‖A System Call-Centric
Analysis and Stimulation Technique to Automatically Reconstruct
Android Malware Behaviors‖, 6th European Workshop on System

Security, 2013.

https://www.kaspersky.co.in/blog/camscanner-malicious-android-app/16595/
https://www.kaspersky.co.in/blog/camscanner-malicious-android-app/16595/
https://securelist.com/mobile-malware-evolution-2020/101029/

Blockchain Based Detection of Android Malware using Ranked Permissions

75

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E25930610521
DOI:10.35940/ijeat.E2593.0610521
Journal Website: www.ijeat.org

32. M. Jaiswal, Y. Malik and F. Jaafar, "Android gaming malware
detection using system call analysis," 6th International Symposium on
Digital Forensic and Security (ISDFS), Antalya, pp. 1-5, 2018.

33. S. Iqbal and M. Zulkernine, "SpyDroid: A Framework for Employing
Multiple Real-Time Malware Detectors on Android," 13th
International Conference on Malicious and Unwanted Software
(MALWARE), Nantucket, MA, USA, pp. 1-8, 2018.

34. A. Shabtai et al., ‖Mobile malware detection through analysis of

deviations in application network behavior‖, Computers & Security,

vol. 43, pp. 1-18, 2014.
35. S. Wang, et al., ‖Detecting Android Malware Leveraging Text

Semantics of Network Flows‖, IEEE Transactions On Information

Forensics And Security, vol. 13, pp. 1096-1109, 2018.
36. J. Feng, L. Shen, Z. Chen, Y. Wang and H. Li, "A Two-Layer Deep

Learning Method for Android Malware Detection Using Network
Traffic," IEEE Access, vol. 8, pp. 125786-125796, 2020.

37. I. J. Sanz, M. A. Lopez, E. K. Viegas and V. R. Sanches, "A
Lightweight Network-based Android Malware Detection System,"
IFIP Networking Conference (Networking), Paris, France, pp.
695-703, 2020.

38. M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, ‖Riskranker:

scalable and accurate zero-day android malware detection‖, 10th

ACM Mobisys, 2012.
39. A. Mahindru, A. Sangal, "MLDroid—framework for Android

malware detection using machine learning techniques", Neural
Computing & Applications, 2020.

40. A. Mehtab et al., "AdDroid: Rule-Based Machine Learning
Framework for Android Malware Analysis", Mobile Networks and
Applications, vol. 25, pp. 180–192, 2020.

41. H. Zhu et al., "HEMD: a highly efficient random forest-based
malware detection framework for Android," Neural Computing &
Applications, vol. 30, pp. 3353–3361, 2018.

42. A. Arora, and S. Peddoju, ‖NTPDroid: A Hybrid Android Malware
Detector Using Network Traffic and System Permissions‖, 17th IEEE

TrustCom, 2018.
43. A. Arora, S. Peddoju, V. Chauhan, and A. Chaudhary, ‖Hybrid

Android Malware Detection by Combining Supervised and
Unsupervised Learning‖, 24th ACM MobiCom, 2018.

44. S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song and H. Yu,
"SAMADroid: A Novel 3-Level Hybrid Malware Detection Model for
Android Operating System," IEEE Access, vol. 6, pp. 4321-4339,
2018.

45. Q. Fang, X. Yang and C. Ji, "A Hybrid Detection Method for Android
Malware," IEEE 3rd Information Technology, Networking, Electronic
and Automation Control Conference (ITNEC), Chengdu, China, pp.
2127- 2132, 2019.

46. L. Taheri, A. F. A. Kadir and A. H. Lashkari, "Extensible Android
Malware Detection and Family Classification Using Network-Flows
and API-Calls," International Carnahan Conference on Security
Technology (ICCST), Chennai, India, pp. 1-8, 2019.

47. A. Arora, S.K. Peddoju, and Mauro Conti, ―PermPair: Android

Malware Detection using Permission Pairs‖, IEEE Transactions on

Information Forensics and Security, vol. 15, pp. 1968-1982, 2020.
48. A. Arora, and S.K. Peddoju, ―Minimizing Network Traffic Features

for Android Mobile Malware Detection‖, 18th ACM International
Conference on Distributed Computing and Networking, Hyderabad,
India, 2017.

49. A. Arora, S. Garg, and S.K. Peddoju, ―Malware detection using

network traffic analysis in android based mobile devices‖, 8th IEEE
Next Generation Mobile Apps Services and Technologies, Oxford
UK, 2014.

AUTHORS PROFILE

Siddhant Gupta, is a final year student pursuing
B.Tech in mathematics and computing at Delhi
Technological University . he has keen interest in
problem solving and machine learning specially in
fields of natural language processing and computer
vision. he has previously interned with KPMG and
Snapdeal and will be joining Amazon as software

development engineer post his graduation.

Siddharth Sethi, is a final year student pursuing
B.Tech in Mathematics and Computing at Delhi
Technological University. He has keen interest in
machine learning and has enthusiastically participated

in making the project. He is currently placed in Accenture as an Application
Analyst.

Srishti Chaudhary, is a final year student at Delhi
Technological University pursuing B. Tech in
Mathematics and Computing. She has keen interest in
problem solving and Machine Learning and has shown
great dedication towards this project. She has interned
with HMEL and Algo8 prior to finally getting placed at

Microsoft as a Software Engineer.

Anshul Arora, is currently working as Assistant
Professor in Discipline of Mathematics and
Computing, Delhi Technological University Delhi,
India. He has pursued Masters and Ph.D. from
Department of Computer Science and Engineering,
Indian Institute of Technology Roorkee, India. His
areas of research include Mobile Security, Mobile

Malware Detection, Network Traffic Analysis, and Blockchain.

