
International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

221

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E27620610521
DOI:10.35940/ijeat.E2762.0610521
Journal Website: www.ijeat.org

Abstract: To minimise development costs and enhance

dependability, modern embedded system development is increasingly
emphasising on software modularity and reuse. Microcontrollers are
extensively employed in embedded applications that have a very
specific and specialised job to complete. The embedded applications
are always resource constraint which requires efficient utilization of
available resources. A Real Time Operating System (RTOS) is
frequently used in this context to plan task execution as well as enable
intertask communication and synchronisation. This paper provides
the survey of different RTOS available in market and their
applications. Several open source RTOS such as Free RTOS,
VxWorks, SmallRTOS and TinyOS are compared with respect to the
scheduling algorithms used.

Keywords: RTOS, Scheduler, Event Objects

I. INTRODUCTION

An RTOS (Real-Time Operating System) is a piece of

software that allows users to easily swap between jobs,
creating the impression that numerous programmes are
running at the same time on a single processing core.
Response time to external events is the parameter that
differentiates an operating system such as Windows or Unix
and the RTOS used in embedded systems. Usually, OS's have
a non-deterministic, soft real-time response, where there are
no guarantees as to when each assignment will be completed,
but they will try to remain responsive to the user. An RTOS
varies in that it usually provides a hard real-time response,
providing a swift, highly deterministic response to external
events to serve as a real-time application that processes data
as it comes in, often without buffer delay.

The components of an RTOS is shown in fig 1.
The Scheduler: The scheduler component of RTOS

determines the order in which the tasks are executed. The
parameters considered for scheduling is decided by the
scheduling algorithm used.

Symmetric Multiprocessing (SMP): Also known as
multitasking, it is the number of concurrent tasks that can be
handled by an RTOS for processing.

Manuscript received on June 04, 2021.
Revised Manuscript received on June 11, 2021.
Manuscript published on June 30, 2021.
* Correspondence Author

Santhosh M S*, Student, Department of Computer Science and
Engineering, Rashtreeya Vidyalaya College of Engineering, Bengaluru
(Karnataka), India. Email: anushal.scn19@rvce.edu.in

Dr. Nagaraja G S, Professor & Associate Dean, Department of
Computer Science and Engineering, Rashtreeya Vidyalaya College of
Engineering, Bengaluru (Karnataka), India. Email: nagarajags@rvce.edu.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Function Library: It is an interface using which the kernel
interacts with the application code. The application sends
requests to and receives response from kernel using the
function library.

Memory Management: this element takes care of memory
allocation for all the process.

Fast dispatch latency: It is the time interval between
suspending the current task and execution of next task from
the ready queue, also known as context switch time.

Fig 1 : Components of an RTOS

In today's embedded system applications, the idea of RTOS

is critical, as it is responsible for everything from task
scheduling to supporting high-level languages like C and
Python.

It aims to improve efficiency, support idle processing and
priority based scheduling. The factors that need to be
considered while selecting RTOS are performance,
middleware, embedded system usage, maximum consumption,
task shifting, responsiveness and available system resources.

II. LITERATURE REVIEW

Paper [1] explains the basic parts of an RTOS and different
scheduling algorithms present in an RTOS such as
co-operative scheduling, round robin scheduling and
preemptive scheduling It also describes the development of
SmallRTOS, used mainly for PIC 18 series microcontrollers.

 SmallRTOS is developed using C programming language
and is based on round robin scheduling algorithm, where
every task created is given the same amount of execution time
called quantum.

A Survey on Different Real Time Operating
Systems

Santhosh M S, Nagaraja G S

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.E2762.0610521&domain=www.ijeat.org

A Survey on Different Real Time Operating Systems

222

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E27620610521
DOI:10.35940/ijeat.E2762.0610521
Journal Website: www.ijeat.org

SmallRTOS is simple, effective and can be used in real
time applications which requires smaller memory. of the
journal. There are two email address. It is compulsory to send
paper in both email address.

Paper [2] describes the design of a coprocessor for dual
core systems which performs conflict-free task scheduling.
The study provides a solution based on two algorithms: the
priority-based FIFO method, which is appropriate for
non-real-time activities, and the Earliest Deadline First (EDF)
approach, which has been shown to always discover an
optimal ordering of difficult real-time jobs. Even though the
mentioned algorithms uses different parameters for
scheduling, the proposed RTOS can handle both types of
tasks efficiently. The suggested coprocessor is designed to
work with dual-core CPUs, allowing real-time embedded
systems to perform better.

The use of FreeRTOS, an open source RTOS extensively
utilised for low-cost applications, is explained in Paper [3].
The FreeRTOS operating system was chosen for the project
because it offers a reasonable balance of API richness,
execution-time overheads, and memory consumption. This
work evaluates the basic performance of RTOS by
considering various parameters such as context switching,
semaphore synchronization overheads and jitter induced by
low priority tasks. According to the results of the tests,
synchronisation primitives have a tiny fixed overhead. A
minor amount of jitter time was also discovered for the
highest priority job, demonstrating that priority inversion is
dependent on the operating system's internal implementation.

For FreeRTOS-based Embedded systems, the paper [4]
evaluates several scheduling strategies. Dynamic priority
real-time scheduling (DPS), such as Earliest-Deadline First
(EDF), is one of the algorithms under consideration for
review. It provides high levels of system schedulability. The
overheads associated with two alternative EDF
implementations are compared to Rate Monotonic Scheduling,
a fixed priority scheme. The two EDF implementations differ
in how priority queues are built, with one based on min-heap
(EDF-H) and the other on multiple linked lists (EDF-L).For
various sorts of task sets and system loads, runtime overheads
and schedulability are taken into account. Experiments
consistently show that EDF-L outperforms EDF-H in all
experimental scenarios.

TinyOS is an embedded based operating system for low
power wireless devices, such as those used in wireless sensor
networks, as detailed in paper [5]. Tiny OS has limitations in
terms of CPU scheduling has less memory which makes it
suitable for WSN applications. Because of the First Come
First Serve (FCFS) scheduling technique of TinyOS, its
performance is hindered. This work analyses the scheduling
mechanism used in TinyOS and discusses its disadvantages. It
then suggests an enhanced design for the priority-based soft
real-time task scheduling method as a result of the study.
Experiments on sensor nodes reveal that the novel strategy
can increase the communication performance of wireless
sensor networks significantly.

The implementation of a least slack time first dynamic
scheduling approach to serve a number of real-time
applications on a single processor is presented in papers [6]
and [7]. The suggested method implementation covers a

variety of real-time applications and can be customised for a
variety of tasks, including periodic, aperiodic, and sporadic
jobs. The designed scheduler makes use of mutex and
semaphore objects to support synchronization between the
tasks and sharing of resources. The hardware used for
implementing the algorithm is ARM Cortex M4 based
processor. The simulation is tested and results are verified,
which meets the desired requirements of a robust scheduler.

The quantitative and qualitative results of the analysis of
real-time operating systems are presented in Paper [8].
Windows CE, VxWorks, Linux, QNX Neutrino and
RTAI-Linux, which are widely used in industrial and
academic environments, are among the systems examined for
analysis. The response time, worst case response times for
latency and latency jitter are the metrics used in the
evaluations.

Table 1 shows the experimental results for different RTOS
which considers the measured value for response time,
interrupt latency and latency jitter in micro seconds.

Table1 : Worst times measured during experiment (in

Micro seconds)

Win
CE

Neutrin
o

mC/OS
II

Linu
x

RTAI VxWorks

Response
Time

20 20 1.92 13.89 5 3.85

Latency 99 35.2 3.2 98 11.4 13.4

Latency
Jitter

88.8 32 2.32 77.6 7.01 10.4

III. CONCLUSION

There are already several ports available for popular Real
Time Operating Systems such as FreeRTOS. But the actual
Real Time OS behavior shall not be emulated because in most
of the available ports, the different tasks are mapped to the
threads offered by the specific platform (either Windows
Threads or Posix Threads for Linux and MAC).

Most of the Real Time Operating Systems considered for
survey implements busy waiting solution. Use of busy waiting
solutions in embedded systems leads to increase in power
consumption and more CPU utilization. One way to
effeciently utilize the CPU and available resources is to use
the windows event objects for synchronization.

REFERENCES

1. Sonia Zouaoui, Lotfi Boussaid and Abdellatif Mtibaa, “SmallRTOS:

Microcontroller-based embedded multitasking”, International

Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia,
2017

2. Lukáš Kohútka and Viera Stopjaková, “Task scheduler for dual-core
real-time systems”, MIXDES - 23rd International Conference Mixed
Design of Integrated Circuits and Systems, 2016

3. Ivan Cibrario Bertolotti and Gilda Ghafour Zadeh Kashani, “On the

performance of open-source RTOS synchronization primitives”,

IEEE 1st International Forum on Research and Technologies for
Society and Industry Leveraging a better tomorrow (RTSI), 2015

International Journal of Engineering and Advanced Technology (IJEAT)
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021

223

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.E27620610521
DOI:10.35940/ijeat.E2762.0610521
Journal Website: www.ijeat.org

4. Gessé Oliveira and George Lima, “Evaluation of Scheduling
Algorithms for Embedded FreeRTOS-based Systems”, Brazilian

Symposium on Computing Systems Engineering (SBESC), 2020
5. Anita Patil and Rajashree V. Biradar, “Scheduling techniques for

TinyOS: A review”, International Conference on Computation
System and Information Technology for Sustainable Solutions
(CSITSS), 2016

6. Rakesh Belagali, Sushant Kulkarni, Vinayak Hegde and Geetishree
Mishra, “Implementation and validation of dynamic scheduler based

on LST on FreeRTOS”, International Conference on Electrical,
Electronics, Communication, Computer and Optimization
Techniques (ICEECCOT), 2016

7. Yan Zhao, Qianping Wang, Wei Wang, Dong Jiang and Yiwen Liu,
“Research on the Priority-Based Soft Real-Time Task Scheduling in
TinyOS”, International Conference on Information Technology and
Computer Science, 2019

8. Prasanna Hambarde, Rachit Varma and Shivani Jha, “The Survey of

Real Time Operating System: RTOS”, International Conference on

Electronic Systems, Signal Processing and Computing Technologies,
2014

AUTHORS PROFILE

Santhosh M S, is a MTech student at Department of
Computer Science and Engineering, Rashtreeya
Vidyalaya college of Engineering, Bengaluru,
Karnataka. anushal.scn19@rvce.edu.in

 Dr. Nagaraja G S, is working as professor and
Associate Dean at Department of Computer Science
and Engineering, Rashtreeya Vidyalaya College of
Engineering, Bengaluru, Karnataka, India.
nagarajags@rvce.edu.in

