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Abstract: In this paper we introduced a variable time step 

method to obtain interface to moving boundary problem for Slab 
and Sphere. We present the basic difficulty, apart from the need to 
find the moving boundary, that there is no domain for the space 
variable. This difficulty is handled by the age old principles of 
basic mathematics. Naturally, giving symbolic names to the 
unknowns develop equations involving them and solve it using the 
conditions of the problem. High order accurate initial time step 
sizes for given space step size are obtained with the help of Green’s 

theorem. The Subsequent time steps are obtained by an iterative 
scheme. This variable time step method handles Dirichlet’s 
problem of freezing or melting of a Slab and spherical droplet. 

Keywords: interface, Finite difference method, 
Crank-Nicolson scheme, stefan problem, variable time step.  

I. INTRODUCTION 

If thin rod of a solid material is melted by suppling heat, at 
one end, melting takes and the interface keeps moving. 
When a spherical ball is frozen (or melted), the equation for 
the heat diffusion along a radial line is governed by [1].The 
spherical polar coordinates governing equations are reduced 
to 

                                        (1)                                                        

                                                                   (2)                  

                                                                 (3) 

                                                                          (4) 

                                                          (5) 
Diffusion coefficient is normalized to unity and diffusion of 
heat beyond  is assumed to be not taking place. Stefan 
number   is a constant depending on the density, specific 
heat and latent heat of the material. The basic methodology 
will be developed in section 2.In section 3, we derive two 
equations involving the two unknowns using Green’s 

theorem for the given problem and obtained  to start the 
solution procedure. Once we do this, we can find 

provided . This can be continued to solve the 
diffusion equation for  = 3, 4, 5…. . The number of points 
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along the line parallel to x-axis increases one by one for 
increasing n. In section 4, iterative procedure to find , for 

and the computational procedure as an algorithm is 
given in this section. Consideration of the convergence to 
find  is done in section 5 and an example is given in section 
6. The well known one phase problem of freezing (or 
melting) of a spherical droplet is given as an example. 
Stewartson and Waechter [10] obtained solution by 
asymptotic expansion of the variables and discussed the 
results qualitatively. Similar exercise was done by Soward 
[9]. Davis and Hill [1] is one of the few researchers, who gave 
quantitative details about the time taken for the interface to 
reach the centre.  Numerical Methods to obtain approximate 
solution relevant to our work, was first introduced by 
Douglas and Gallie [2]. Although no specific results were 
presentedfor a fixed space step, they used variable time step 
sizes to track the front. Gupta and Kumar [3] and Marshall [6] 
have subsequently improved the iterative procedure of [2] for 
finding the time step. Kutluay [5] obtained numerical 
solution of a specific problem with variable space grid; even 
these front tracking methods have made certain 
transformations of the original problem [11-12]. 

II. BASIC FRAME WORK OF COMPUTATIONAL 
METHODOLOGY 

For a fixed space step size, the time intervals needed for the 
interface can be fine. If  is the temperature 
at , ; gives a 
temperature on the interface. 

 
Fig. 1. Moving boundary with variable time step. 

Using theCrank-Nicolson scheme the diffusion equation 
becomes 

        (6)  

Sometimes we need the fully implicit scheme (for 
manipulations at a later stage) 
as 
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              (7) 

To enable us using this scheme, we need to know T at three 
points,(0,2), (1,2) and (2,2)(see figure1).Of these three;   
is given in the problem,   and    is not known. To 
know these starting ingredients, we need to find  and .  
This is a first order approximation in x and t. Apply the 
Green’s theorem in the region OPS in the first cell. In the 

process, we need the second degree polynomial to the 
interface passing through the points  and 

 as 

  (Newton divided difference 

polynomial) 

         (8) 

      (9) 

(10) 

We know that by Green’s Theorem  

 ,  

Where c is the boundary of R and  

 

Therefore  

Here, we approximated  by   ,  

  and 

 

Thus      

Now  

 

Thus   

By the green’s theorem  

 

 

We thus have one relation involving two unknowns and 
as 

(11) 

To derive another equation involving and , we have from 
Stefan’s condition at (2, 2) gives 

                               (12) 

At (1, 2), from (7)                                         (13) 

Using the equation (13) in (12) we get 
Thus 

  (14) 

We can solve (11) and (14) to find  and  using the 
relation (13). 
We have (n+1) unknowns 

… ,  with n equations coming 
from the Crank-Nicholson scheme. Much needed another 
equation comes from the Stefan condition at (n+1, n+1) as 

 

This can be written as: 

                             (15) 

With   in the system (7), we have  

 

On simplifying to (In fact, we cannot use Crank- Nicolson 
scheme at (n, n+1) since the point outside the domain occurs 
in the difference equation) 

Thus                                        (16) 

This, when substituted in (16), we get 

                                        (17) 

Using (17) in (16) we get                    (18) 

Considering (17) as a quadratic in , the positive root can 
be obtained as: 

(19) 

Choosing an initial approximation for ; calculate  
using (18). Solve the finite difference equations for  = 1, 2… 

1 with  as a boundary condition. From the resultant 
value for , obtain  from the relation (19). 
Calculate  using (18) and solve the difference 
equations as earlier. Repeat the process until the desired 
degree of accuracy occurs. 

III. CONVERGENCE 

If is chosen on the manifold given by equation (15) for 
every iteration, convergence of the solution of the method is 
assured by Koneru and Lalli [4]. But to reduce the 
computational effort, we have solved the system by Thomas 
algorithm. We have to make sure that , after each such 
solution, has to be chosen satisfying (15), equivalently (17) 
and (18). Thus we calculate using (19) satisfying (17) 
and obtain  from (18) with this  and use it as a 
boundary condition. After choosing  to start the iteration 
process, some value of exists and lies on the manifold. Any 
starting value for  works, as this implies any starting 
values for and 

satisfying (17) and (18); 
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 and that means (15). We have to first calculate  and solve 
for ,T1. 

IV. EXAMPLES 

We obtained the numerical solution using the algorithm of 
section 2.Time for the interface to reach the centre with 
varying step sizes and for several values of the Stefan 
constant (β) are presented in the table 1. Results from Davis 

and Hill [1] with first three terms of the expansions are given 
in the last column. These obtained present results are 
compared well with ref. [1]. 
Table 1.Time taken for the interface to reach the centre 
for   

 
The interface for the one phase sphere problem has been 
presented graphically with β =1, 10,50 in figure 2.The impact 
of Stefan number   is clearly seen from the graphs drawn. 

 

Fig 2.  

It may be noted that even if the freezing process on the 
surface is time dependent, our algorithm works well without 
any difficulty. Indeed, this statement applies to all the 
problems considered by us. The computational method to 
obtain an approximate solution to the classical two-phase 
Stefan problem with quadratic polynomial approximation to 
the front has been discussed in [8].  
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In the recent research work, aim is to introduce a new Computational method 
to obtain approximate solution to one phase Stefan problems. Several 
methods exist, but each of them is mostly specific problem oriented and is 
not general enough to be applicable to a wide range of problems. The work 
developed a front tracking finite difference method with variable time step. 
This variable time step method was suggested earlier; but without a 
well-defined complete methodology. For a fixed space step, first two time 
steps are obtained using collocation and/or Green’s theorem of vector 
calculus. Subsequent step sizes are obtained by an iterative process with 
assured convergence. For a non-thermal diffusion, Stefan condition is of 
implicit nature. For such class of two point boundary value problems, 
method of bisection is efficient to obtain their solutions. The methods are 
illustrated by presenting three examples one of which is much discussed 
oxygen diffusion problem, which is published. The procedure is general 
enough to be applicable to a broad class of moving boundary problems. 
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