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Abstract: We compare the performance of multiple covariance
matrix estimators for the purpose of portfolio optimization. This
evaluation studies the ability of estimators like Sample Based
Estimator (SCE), Ledoit-Wolf Estimator (LWE), and Rotationally
Invariant Estimators (RIE) to estimate covariance matrix and
their competency in fulfilling the objectives of various portfolio
allocation strategies. In this paper, we have captured the
effectiveness of strategies such as Global Minimum Variance
(GMVP) and Mogt-Diversified Portfolio (MDP) to produce
optimal portfolios. Additionally, we also propose a new strategy
inspired from MDP: Most-Diversified Portfolio (MMDP), that
enables diversification upon minimizing risk. Empirical
evaluations show that by and large, MMDP furnishes the
maximum returns. LWE are relatively more robust than SCE and
RIE but RIE performs better under certain conditions.
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I INTRODUCTION

The covariance matrix is, arguably, the second most
important object in all of statistics. [1] It can be used to
anayze the movement of random variables like two stocks
or compute how the return of two assets move together.
Apart from that, it facilitates the application of Principal
Component Analysis for robust pattern recognition, which
further helps with Exploratory Data Analysis (EDA). When
one deals with very large random matrices (such as
covariance matrices), one expects the spectral measure of
the matrix under scrutiny to exhibit some universal
properties, which are independent of the specific realization
of the matrix itself. This property is at the core of Random
Matrix Theory (RMT), which provides a very precise
description of the convergence of the spectral measure for a
very large class of random matrices. [2] Estimating
covariance matrices is an important part of portfolio
selection, risk management, and asset pricing. [3] This paper
explores the use cases of covariance matrix estimation in
Portfolio Optimization (PO). Here, we consider the input
data matrix M consisting N observations and V variables. It
is composed of columns comprising returns , wherein every
vector (fori € [1,..,N])
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represents an asset, and each row represents an observed
daily return (vector length | | = O). Our objective isto come
forward with a viable allocation strategy defined by weight
vector g, where g = (gs.,..., gv)", g €[0.1] and T} _,{g} =
1, to ascertain the measure of capita alotment to a
particular asset. On the grounds of the aforementioned, we
evauate three covariance matrix estimators. Sample
Covariance Estimator (SCE), Ledoit-Wolf Estimator
(LWE), and Rotationally Invariant Estimators (RIES). The
sole concern of the research is to assess the ability of these
meatrix estimators to fulfil the goals of portfolio optimization
strategies.

II. HIGH-DIMENSIONAL COVARIANCE MATRIX
ESTIMATORS

This section emphasi zes the various covariance matrices that
we consider in this project to fulfil the requirements of
various portfolio alocation strategies. SCE happens to be
the most commonly used estimator, however, we also go
over LWE and RIEs in this section. Here, we apply these
three covariance matrix estimators to the following problem
definitions:

Definition 2.0.1. A data matrix M = [ry ,..., ] where M &
R™ |V is the number of assets, N is the number of
observations to be used for portfolio optimization, 7, =
[r7,...,7,], isthe vector containing observation v for each of
the V assets.

Definition 2.0.2. Based on the above definition, N and V
relate to each other as follows: N =V. So, q = %is not
sufficiently small, so N = O(V).

Furthermore, true variance between assets v and z can be
defined as follows:

Cov(v,2) = E [v"z] - E[v]"E|z], ... (€N}
and the true variance matrix of data matrix M as:
Y ==E [M™M] - E[M]"E[M], 2

Where Y€ R™, symmetric, and positive semi-definite. E
[ ] can be defined as the expectation of argument. Also, M
is composed of the entitiesz and v.
Definition 2.0.3. The above definition presents us with the
problem of finding an estimator that renders and estimate
2*of the true covariance matrix X,having minimal expected
mean-squared-error. In other words:

minimize E { ||2* — Z||7} ©)
To delve deeper into the above problem definition, we
explore the performance of SCE, LWE and RIE in the
following sections.

A. Sample Covariance Matrix Estimator
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When the dimension of the covariance matrix is large, the
estimation problem is generaly challenging. It is well-
known that the sample covariance based on the observed
data is singular when the dimension is larger than the
sample size. [4] One recurrent problem is that the traditional
estimator (that is, the sample covariance matrix) is ill-
conditioned and performs poorly when the number of
variablesis not small compared to the sample size. [5]

A sample covariance matrix Sis defined as follows:

S==.M™M - 777, (4)
where 7 :%Z,‘f:l r, ,7 € RV, and r,isthe row vector at row
vinM
B. Ledoit-Wolf Large-Dimensional Covariance Estimator

LWE builds on the idea that it is possible to minimize the
difference between a true variance matrix X and an estimate
2".The logic behind LWE to minimize the Mean Squared
Error (MSE) can be described as follows:

minimize E { || 2" — Z||7}

1,62

©)

Sv.EZ*=C11 +{2S (6)
where | isthe identity matrix, Sisthe sample matrix, and ¢/
and {2 are constants.

The prime objective now isto find an optimal linear
combination of the SCM and the identity matrix that can
offer an optimum estimation for the covariance matrix. The
constants «, 8, and y can be defined as follows:

a2 + ﬂZ — .y2
where, a? = || — ul||7

pu=tr()NV,

B*=1IS - Z|Iz
Y= IS — w7
The M SE can be described as follows:

*_32 2
r=ul + sl @

8

a2B2
2

E 15" - 2l ==

C. Rotationally Invariant Estimators (RIES)

RIE can be classified among those estimators that are
optimal from a decision theoretic point of view and can deal
with the presence of outliers. More specifically, we shall
only consider RIEs that depend on the data we have which is
represented through the sample covariance matrix S. That
being said, these estimators own the following properties: it
shares the same eigenvectors than S and its eigenvalues are
functions of the sample ones. [6]

The de-biased estimation of the true correlation matrix M
can be described as follows:

ERIE:= Yo Sl C)
where estimate Zis close to true correlation matrix, u_kare
eigenvectors and

RIE— Ak >
kT l-qtazksi(zl

where, q=V/IN, z;= Ak-#, 2= —1,
andk € [1,T]

(10)
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It isimportant to point out that in order to reach an
estimation ZR'E which produces good results, we should
perform extensive preprocessing of data M.

[i. METHODOLOGY AND RESULTS

A. Data Retrieval

We retrieved data from Yahoo Finance which consisted of
assets related to American and European exchanges. We
selected the assets on a random basis and matched the date
values such that every asset i has a value for the same day t.
The following table is a representation of the original data
matrix M,q,,.
Each column represents a particular asset and the
rows are composed of the respective closing values.

We used the above values to convert them into daily return
values using the following logic:

Mraw(t+1,i] — Mraw(ti]
Mrawl(t.i]

Moy = (11)

M, 4 is composed of 4409 observations and 207 assets,
which implies:

4409x207
MTCLW E R

We proceed further by varying estimators and dimensions
like number of assets and data points considered while re-
computing the covariance matrix to assess the resultant
output of the strategies being used. We study the
observations pertinent to the past month containing 22
trading days [t-22, t] or last three months [t-66, 6]. In the
end, we also take the effects of the various assets into
account.

B. Global Minimum Variance Portfolio

The global minimum variance portfolio computed using the
sample covariance matrix is known to be negatively affected
by parameter uncertainty, an important component of model
risk. [7] We present the performance of various estimators
in fulfilling the goas of the Globa Minimum Variance
Portfolio [GMVP] strategy in this section. The objective of

F L MSFT S NVDA  ANSS VZ WMT  MRK EQVIV_HE

date

2000-11-02
15048508 11.346896 22.8218 17.588865 102844 29075 21.8678 34.0712 43.3611 0.963153
00:00:00:02:00
2000-11-03
14615457 10939939 22.1531 18.663744 109564 29075 21.5838 33.3256 427529 1.016662
00:00:00:02:00
2000-11-06 _
15265035 11.083570 225589 18.321737 11.8021 29375 21.0385 344650 437843 1177187
00:00:00:02:00
2000-11-07
14435014 11.330938 228835 19.298891 11.0040 28125 20.8038 344228 42.2665 1.23069%6
00:00:00:02:00
2000-11-08
14326763 11474570 225394 19.885189 106780 2.8750 20.8492 342892 44.1784 1.123679
00:00:00:02:00

this strategy is to optimize returns by minimizing the risk.
Thelogic behind this strategy is as follows:

minimize gv2g
ge r"
st.1l.g=1 (12)
g=0.
2 denotes the covariance matrix in the above equation for a
group of asset returns, and w is the measure of capital
allotted to a group of assets. For an unconstrained case, the
direct solutionis asfollows:

Published By:

Blue Eyes Intelligence Engineering
and Sciences Publication

© Copyright: All rightsreserved.

Exploring Innovation



OPEN 8ACCESS

11
1751

g= (13)

A visua depiction of the overall performance of the
estimators is presented through the images below.

Equity Progression
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The image above shows the total capital return of the
GMVP strategy, rebalanced monthly. Meaning that, the
portfolio was analyzed every 22 days on the grounds of a 6-
month lookback period and a covariance matrix was
computed which was finally reweighted based on the newly
achieved weights. It demonstrates how total asset returns
change with varying covariance matrix estimators and
number of assets V with observations N, and a given
optimization strategy.

From the image, we can conclude that the estimators fulfil
the goas of the strategy to produce an estimation that
renders positive returns.

Return vs Test Name

The figure mentioned above is composed of the frequency
of return on equity for a GMVP strategy and a 6 months
look-back window on the y axis. We have chosen assets on
arandom basis from matrix M.

We caculate the returns by considering the capita
accumulated at the end of investment period with the initial
capital. LWE fetched the largest return with 200 assets and
the trends evidence that the number of assets is directly
proportional to returns.

These findings help in investigating which lookback period
can produce the minimum risk.

Optimum Statistics vs Test Name
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The above boxplot depicts how a change in the number of
lookback months produced variation in risk.

We choose 150 assets, LWE, and GMVP strategy in this
case. The reason behind selecting LWE and 150 assets is
that it worked well for the previous strategy on a random set
of assets. Most risk values achieved occupy the 25-75
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percentile margin and we have a smaller outlying risk for
the three months look-back.

C. Most Diversified Portfolio

Most Diversified Portfolio (MDP) is based on the premise
that volatility vector and covariance matrix description can
signify how diversified a portfolio is. This strategy helps in
producing maximum diversification in a portfolio. The
diversification ratio D(g)for a portfolio g is stated below:

g dlag(S)
D) ="7r5, (14)
Given that the diversification ratio cannot be computed as a
result of the constraints pertinent to GMVP strategy,
therefore this strategy attempts to maximize D(g)without
such constraints. The images which follow represent the
performance of covariance matrix estimators to fulfil the
objects of the MDP strategy.

Equity Progression
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The above Equity Progression plot having a 6 month look-
back period results from applying the MDP strategy. At
certain points, MDP outperforms GMVP but the returns turn
negative for various tests including SCE 150 assets and RIE
150 assets. Also, there are no congtraints to the MDP
strategy and the assets are selected on arandom basis which
implies that there is an additional risk associated with the
strategy upon combining with estimators. The results that
follow described the returns achieved in more details:

Return vs Test Name

Return value
w5 &
° s 3 3
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The Return vs Test Name graph shows that for 150 assets,
SCE and RIE render negative returns upon applying to the
MDP strategy. On the contrary, RIE provides returns 150
times more than the initial investment. Thus, MDP
outperforms GMVP in this case.

Optimum Statistics vs Test Name
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This boxplot demonstrates that a mgority of the
diversification ratios achieved occupy the same 25-75
percentile range.

In comparison, a different look-back window brings a
change in the ratio as outliers are higher for 12 months.
Thus, we conclude that the diversification ratio varies with a
change in the number of look-back months in the context of
MDP strategy.

D. Modified Maximum Diversification Portfolio Strategy

In this research, we propose a new strategy called Modified
Maximum Diversification Portfolio strategy (MMDP) to
evaluate covariance estimation methods, which is inspired
from the MDP strategy. MMDP follows MDP in terms of
maximizing the diversification ratio, however, with a
relatively lesser risk constraint. The aforementioned can be
described as follows:
maximize g~diag(S)
ge R
s.t.17.g=1 (15)
v=0

I
TSg < ——,¥c> —1,
9°29=73¢7¢

We conducted this experiment by assigning the value 0.50
to the constraint ¢ which determines the measure of
deviation from the optimum D(g) that a user is willing to
undergo. If this strategy cannot find a suitable optima to the
abovelogic, it resortsto an g = 1/V strategy. The results that
follow captures the performance of this strategy:
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The above Equity Progression plot demonstrates that the
MMDP strategy shows a positive trend in returns for a 6
month look-back period while producing an increasing
equity value.

A gt g e °

Return vs Test Name

Test Name

The above graph provides deeper insights into the overall
returns for MMDP drategy on a 6 month look-back
window. Interestingly, LWE provides the highest returns for
a 150 asset portfolio for this strategy. Apart from
outperforming MDP in providing higher returns, MMDP
also shows positive returns for al covariance matrix
estimators.
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Optimum Statistics vs Test Name
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The above boxplot demonstrates that the highest
diversification ratio is achieved at a look-back period of 3
months. It shows results similar to that of the MDP strategy,
by and large.

V. CONCLUSION AND FUTURE WORK

The prime objective of our project was to evaluate the
performance of various covariance estimators in fulfilling
the goals of portfolio optimization strategies. Our evaluation
suggests that LWE performs best in most cases and we
recommend using the same for covariance matrix
estimation. We aso proposed a new strategy - MMDP,
based on MDP, which produced excellent results in our
experiments. Our future work on this involves further
evaluation of MMDP and interpreting the returns when it is
paired with various covariance matrix estimators.
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