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Abstract: We compare the performance of multiple covariance 
matrix estimators for the purpose of portfolio optimization. This 
evaluation studies the ability of estimators like Sample Based 
Estimator (SCE), Ledoit-Wolf Estimator (LWE), and Rotationally 
Invariant Estimators (RIE) to estimate covariance matrix and 
their competency in fulfilling the objectives of various portfolio 
allocation strategies. In this paper, we have captured the 
effectiveness of strategies such as Global Minimum Variance 
(GMVP) and Most-Diversified Portfolio (MDP) to produce 
optimal portfolios. Additionally, we also propose a new strategy 
inspired from MDP: Most-Diversified Portfolio (MMDP), that 
enables diversification upon minimizing risk. Empirical 
evaluations show that by and large, MMDP furnishes the 
maximum returns. LWE are relatively more robust than SCE and 
RIE but RIE performs better under certain conditions. 
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I. INTRODUCTION 

The covariance matrix is, arguably, the second most 
important object in all of statistics. [1] It can be used to 
analyze the movement of random variables like two stocks 
or compute how the return of two assets move together. 
Apart from that, it facilitates the application of Principal 
Component Analysis for robust pattern recognition, which 
further helps with Exploratory Data Analysis (EDA). When 
one deals with very large random matrices (such as 
covariance matrices), one expects the spectral measure of 
the matrix under scrutiny to exhibit some universal 
properties, which are independent of the specific realization 
of the matrix itself. This property is at the core of Random 
Matrix Theory (RMT), which provides a very precise 
description of the convergence of the spectral measure for a 
very large class of random matrices. [2]  Estimating 
covariance matrices is an important part of portfolio 
selection, risk management, and asset pricing. [3] This paper 
explores the use cases of covariance matrix estimation in 
Portfolio Optimization (PO). Here, we consider the input 
data matrix M consisting N observations and V variables. It 
is composed of columns comprising returns , wherein every 
vector  (for i ∈  [1, ..., N] )  
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represents an asset, and each row represents an observed 
daily return (vector length |  | = O). Our objective is to come 
forward with a viable allocation strategy defined by weight 
vector g, where g = (  ,…,   )N,    ∈ [0,1] and        

   

1, to ascertain the measure of capital allotment to a 
particular asset. On the grounds of the aforementioned, we 
evaluate three covariance matrix estimators: Sample 
Covariance Estimator (SCE), Ledoit-Wolf Estimator 
(LWE), and Rotationally Invariant Estimators (RIEs). The 
sole concern of the research is to assess the ability of these 
matrix estimators to fulfil the goals of portfolio optimization 
strategies.   

II. HIGH-DIMENSIONAL COVARIANCE MATRIX 

ESTIMATORS  

This section emphasizes the various covariance matrices that 
we consider in this project to fulfil the requirements of 
various portfolio allocation strategies. SCE happens to be 
the most commonly used estimator, however, we also go 
over LWE and RIEs in this section. Here, we apply these 
three covariance matrix estimators to the following problem 
definitions: 

Definition 2.0.1. A data matrix M = [r1 ,..., rv] where M ∈  

ℝ
NxV , V is the number of assets, N is the number of 

observations to be used for portfolio optimization,    
           , is the vector containing observation v for each of 
the V assets. 
Definition 2.0.2. Based on the above definition, N and V 

relate to each other as follows: N  V. So, q = 
 

 
is not 

sufficiently small, so N = O(V). 
Furthermore, true variance between assets v and z can be 
defined as follows: 

Cov(v,z) =         -             ...  (1) 
and the true variance matrix of data matrix M as: 

  =         -             (2) 

Where  ∈ ℝTxT, symmetric, and positive semi-definite.   
  ᐧ ] can be defined as the expectation of argument. Also, M 
is composed of the entities z and v.  
Definition 2.0.3. The above definition presents us with the 
problem of finding an estimator that renders and estimate 
  of the true covariance matrix   having minimal expected 
mean-squared-error. In other words: 

minimize            
               (3) 

To delve deeper into the above problem definition, we 
explore the performance of SCE, LWE and RIE in the 
following sections. 

A. Sample Covariance Matrix Estimator  
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When the dimension of the covariance matrix is large, the 
estimation problem is generally challenging. It is well-
known that the sample covariance based on the observed 
data is singular when the dimension is larger than the 
sample size. [4] One recurrent problem is that the traditional 
estimator (that is, the sample covariance matrix) is ill-
conditioned and performs poorly when the number of 
variables is not small compared to the sample size. [5] 
A sample covariance matrix S is defined as follows: 

S = 
 

 
                   (4) 

where    =
 

 
    

 
       ∈ ℝV , and   is the row vector at row 

v in M 

B. Ledoit-Wolf Large-Dimensional Covariance Estimator 

LWE builds on the idea that it is possible to minimize the 
difference between a true variance matrix   and an estimate 
   The logic behind LWE to minimize the Mean Squared 
Error (MSE) can be described as follows: 
 

minimize            
      (5) 

      
 

s.v.  =  I +  S     (6) 
where I is the identity matrix, S is the sample matrix, and    

and    are constants. 
The prime objective now is to find an optimal linear 
combination of the SCM and the identity matrix that can 
offer an optimum estimation for the covariance matrix. The 
constants  ,  , and   can be defined as follows: 

  
          

where,    =         
  

 
 = tr( )/V, 

 
  =       

  
   =        

  
The MSE can be described as follows: 

   =
  

  
   

  

  
        (7) 

            
   

    

  
     (8) 

C. Rotationally Invariant Estimators (RIEs)  

RIE can be classified among those estimators that are 
optimal from a decision theoretic point of view and can deal 
with the presence of outliers. More specifically, we shall 
only consider RIEs that depend on the data we have which is 
represented through the sample covariance matrix S.  That 
being said, these estimators own the following properties: it 
shares the same eigenvectors than S and its eigenvalues are 
functions of the sample ones. [6] 
The de-biased estimation of the true correlation matrix M 
can be described as follows: 

    :=        
  

        (9) 
where estimate  is close to true correlation matrix,    are 
eigenvectors and 

    
   = 

  

                
’     (10) 

where, q=V/N,   =   -
 

  
,         

and k ∈ [1, T] 

It is important to point out that in order to reach an 
estimation      which produces good results, we should 
perform extensive preprocessing of  data M. 

III. METHODOLOGY AND RESULTS 

A. Data Retrieval 

We retrieved data from Yahoo Finance which consisted of 
assets related to American and European exchanges. We 
selected the assets on a random basis and matched the date 
values such that every asset i has a value for the same day t. 
The following table is a representation of the original data 
matrix       

Each column represents a particular asset and the 
rows are composed of the respective closing values. 

We used the above values to convert them into daily return 
values using the following logic: 

 

      
                       

         
    (11) 

 
     is composed of  4409 observations and 207 assets, 
which implies: 

     ∈ ℝ4409x207 

We proceed further by varying estimators and dimensions 
like number of assets and data points considered while re-
computing the covariance matrix to assess the resultant 
output of the strategies being used. We study the 
observations pertinent to the past month containing 22 
trading days [t-22, t] or last three months [t-66, 6]. In the 
end, we also take the effects of the various assets into 
account.  

B. Global Minimum Variance Portfolio 

The global minimum variance portfolio computed using the 
sample covariance matrix is known to be negatively affected 
by parameter uncertainty, an important component of model 
risk. [7] We present the performance of various estimators 
in fulfilling the goals of the Global Minimum Variance 
Portfolio [GMVP] strategy in this section. The objective of 

this strategy is to optimize returns by minimizing the risk. 
The logic behind this strategy is as follows:  

 
minimize      

g∈ ℝN 
s.t. 1. g = 1     (12) 

g   0. 
 denotes the covariance matrix in the above equation for a 
group of asset returns, and w is the measure of capital 
allotted to a group of assets. For an unconstrained case, the 
direct solution is as follows: 
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g = 
    

    
      (13) 

 
A visual depiction of the overall performance of the 
estimators is presented through the images below.  
 

 
The image above shows the total capital return of the 
GMVP strategy, rebalanced monthly. Meaning that, the 
portfolio was analyzed every 22 days on the grounds of a 6-
month lookback period and a covariance matrix was 
computed which was finally reweighted based on the newly 
achieved weights. It demonstrates how total asset returns 
change with varying covariance matrix estimators and 
number of assets V with observations N, and a given 
optimization strategy.  
From the image, we can conclude that the estimators fulfil 
the goals of the strategy to produce an estimation that 
renders positive returns. 

 
The figure mentioned above is composed of the frequency 
of return on equity for a GMVP strategy and a 6 months 
look-back window on the y axis. We have chosen assets on 
a random basis from matrix M. 
We calculate the returns by considering the capital 
accumulated at the end of investment period with the initial 
capital. LWE fetched the largest return with 200 assets and 
the trends evidence that the number of assets is directly 
proportional to returns. 
These findings help in investigating which lookback period 
can produce the minimum risk. 

 
The above boxplot depicts how a change in the number of 
lookback months produced variation in risk. 
We choose 150 assets, LWE, and GMVP strategy in this 
case. The reason behind selecting LWE and 150 assets is 
that it worked well for the previous strategy on a random set 
of assets. Most risk values achieved occupy the 25-75 

percentile margin and we have a smaller outlying risk for 
the three months look-back. 

C. Most Diversified Portfolio 

Most Diversified Portfolio (MDP) is based on the premise 
that volatility vector and covariance matrix description can 
signify how diversified a portfolio is. This strategy helps in 
producing maximum diversification in a portfolio. The 
diversification ratio D   for a portfolio   is stated below: 
 

D    = 
         

     
      (14) 

Given that the diversification ratio cannot be computed as a 
result of the constraints pertinent to GMVP strategy, 
therefore this strategy attempts to maximize D   without 
such constraints. The images which follow represent the 
performance of covariance matrix estimators to fulfil the 
objects of the MDP strategy. 

 
The above Equity Progression plot having a 6 month look-
back period results from applying the MDP strategy. At 
certain points, MDP outperforms GMVP but the returns turn 
negative for various tests including SCE 150 assets and RIE 
150 assets. Also, there are no constraints to the MDP 
strategy and the assets are selected on a random basis which 
implies that there is an additional risk associated with the 
strategy upon combining with estimators. The results that 
follow described the returns achieved in more details: 

 
The Return vs Test Name graph shows that for 150 assets, 
SCE and RIE render negative returns upon applying to the 
MDP strategy. On the contrary, RIE provides returns 150 
times more than the initial investment. Thus, MDP 
outperforms GMVP in this case.  
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This boxplot demonstrates that a majority of the 
diversification ratios achieved occupy the same 25-75 
percentile range.  
In comparison, a different look-back window brings a 
change in the ratio as outliers are higher for 12 months. 
Thus, we conclude that the diversification ratio varies with a 
change in the number of look-back months in the context of 
MDP strategy. 

D. Modified Maximum Diversification Portfolio Strategy  

In this research, we propose a new strategy called Modified 
Maximum Diversification Portfolio strategy (MMDP) to 
evaluate covariance estimation methods, which is inspired 
from the MDP strategy. MMDP follows MDP in terms of 
maximizing the diversification ratio, however, with a 
relatively lesser risk constraint. The aforementioned can be 
described as follows: 

maximize           

g∈ ℝN 

s. t.   . g =1     (15) 
v   0 

     
 

   
         

We conducted this experiment by assigning the value 0.50 
to the constraint c which determines the measure of 
deviation from the optimum D    that a user is willing to 
undergo. If this strategy cannot find a suitable optima to the 
above logic, it resorts to an g = 1/V strategy. The results that 
follow captures the performance of this strategy: 

 
The above Equity Progression plot demonstrates that the 
MMDP strategy shows a positive trend in returns for a 6 
month look-back period while producing an increasing 
equity value.   
 

 
The above graph provides deeper insights into the overall 
returns for MMDP strategy on a 6 month look-back 
window. Interestingly, LWE provides the highest returns for 
a 150 asset portfolio for this strategy. Apart from 
outperforming MDP in providing higher returns, MMDP 
also shows positive returns for all covariance matrix 
estimators.  

 
The above boxplot demonstrates that the highest 
diversification ratio is achieved at a look-back period of 3 
months. It shows results similar to that of the MDP strategy, 
by and large.  

IV. CONCLUSION AND FUTURE WORK   

The prime objective of our project was to evaluate the 
performance of various covariance estimators in fulfilling 
the goals of portfolio optimization strategies. Our evaluation 
suggests that LWE performs best in most cases and we 
recommend using the same for covariance matrix 
estimation. We also proposed a new strategy - MMDP, 
based on MDP, which produced excellent results in our 
experiments. Our future work on this involves further 
evaluation of MMDP and interpreting the returns when it is 
paired with various covariance matrix estimators. 
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