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Abstract: Computer Technology is advancing day by day and with 

that it has led to the idea of Brain Computer interaction. Modern 
computers are advancing parallelly to our understanding of the 
human brain. This paper basically deals with the technology of BCI 
(Brain Computer Interface) that can capture brain signals and 
translate these signals into commands that will allow humans to 
control devices just by thinking. These devices can be robots, 
computers or virtual reality environment. The basis of BCI is a 
pathway connecting the brain and an external device. The aim is to 
assist, augment or repair human cognitive or sensory motor function. 
This paper also reflects light on the application areas that BCIs help 
in.  It contributes in medical research and neuronal rehabilitation. 
New companies are emerging that are developing game 
environments involving brain computer interface. 

Keywords: Actus Reus, Brain Computer Interface (BCI), 
Electrocortigraphy (ECoG), Electroencephalography (EEG), Mens 
Rea, Neuro prosthetic 

I. INTRODUCTION 

The ability to enhance our physical and mental ability no 
longer exists in the world of science fiction alone. BCIs are 
helping them come alive in our reality. Brain computer 
interfaces (BCI) help in controlling computers and other 
electronic devices with brain activity. It enables a direct 
communication pathway between brain and object that the 
user wishes to control. This technology has a considerable 
potential for restoration of motor behaviours for physically 
challenged people. People suffering from cerebral palsy, 
spinal cord injury, amyotrophic lateral sclerosis (ALS) and 
stroke will benefit greatly. Many issues prevail that preclude 
experimental BMIs being translated into clinical trials. Most 
BMIs have only been tested in experimental animals. More 
experiments need to be performed before BMIs are 
considered safe. Here, in this paper we account for the 
history of the field and its growth. 

II. HISTORY 

The history of BCI begins with the discovery of electrical 
activity of human brain by Hans Berger and development of 
electroencephalography (EEG). The human brain activity 
was recorded for the first time by Hans Berger in 1924 by an 
EEG. Oscillatory activities, such as alpha wave (8-13 Hz), 
also called as the Berger’s wave were identified by Berger 

after analyzation of the EEG traces. His first recording 
device involved inserting silver wires under the patient’s 

scalp. Later, they were replaced by silver foils. These silver 
foils were joined with the help of rubber bandages to the 
subject’s head.  
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These sensors were connected to the Lippmann capillary 
electrometer but gave disappointing results.  

However, Siemens double-coil recording galvanometer 
that could display very small electric voltages such as one 
ten thousandth of a volt, it gave successful results. The term 
“BCI” was coined by Jacques Vidal, who is known as the 

inventor of BCIs among the BCI community. His first BCI 
involved visually evoked potentials that allowed users to 
control cursor direction. In 1875 Richard Canton discovered 
the presence of electrical signals in animal brain. It inspires 
Berger. In 1998, researcher Philip Kennedy implanted the 
first BCI into a human. In 2001, John Donoghue and his 
team of researchers at the Brown University formed 
CyberKinetics, a public traded company with the aim of 
designing BrainGate, a BCI. Their first product was 
marketed as NeuroPort. It enabled researchers identify 
micro-seizure activity before patients suffering from 
epileptic seizures. In June, 2004, Matthew Nagle was 
implanted with a BCI, CyberKinetics BrainGate and became 
the first human to do so. 

III. TYPES OF USERS 

BMIs have been focused mainly on disabled patients such 
as brainstem lesions, amyotrophic lateral sclerosis (ALS) 
etc. These people have lost their muscle control. Current 
BMIs require long training periods and levies high cognitive 
load. The user is rendered unable to perform any other 
activity other than interact with the BMI. BMIs find their 
application by augmented reality users. 

IV. METHODOLOGY 

A. Non-invasive  

BMIs use either invasive or non-invasive technique for 
electrophysical recordings. Non-invasive BMIs utilize 
electroencephalograms in order to control computer cursers 
and other gadgets. This has proved to be helpful for 
paralyzed patients. It has its own pros and cons. Although, it 
doesn’t expose patients to brain surgery, its typical transfer 

rate is 5-25 bits/s. At such limited capacity, movements of 
leg or arm prosthetic is not possible but research indicates 
that they might be helpful in future for wheelchair control, 
computer operation, communication and cursor control. 
Experiments were conducted in the 1960s and 1970s that 
aimed at allowing human subjects achieve control their 
brain rhythms. According to Nowlis and Kamiya, human 
subjects could detect their alpha rhythms after training with 
EEG biofeedback. Later Sterman and colleagues arrived at 
the same conclusions with humans and cats using 
sensorimotor mu rhythm. BCI based on EEG decode the 
subject’s choice by measuring the united electrical activity 

of huge neuron population. Resolution is lost while the 
signals conduct through skin, 
brain tissue and bone. 
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Despite the obstacles, EEG based methods detect brain 
activity corresponding with gaze angle, visual stimuli, 
cognitive states and voluntary intentions. One of the 
divisions of BCIs use Visual evoked potentials, which takes 
place whenever the subject views any element on the 
computer monitor. Slow cortical potentials that are recorded 
in various cortical regions and faster beta and mu rhythms 
that were recorded over sensorimotor cortex were utilized in 
BCI depictions for driving computer cursors. 

Some BCIs depend on the subjects’ potential to gain 

control of the activity of their brain utilizing biofeedback. 
Some make use of classifier algorithms that can identify 
EEG patterns connected to specific voluntary goal. Another 
strategy for EEG based BCIs is using virtual reality systems 
for providing realistic feedback for BCI training. 

BCIs that utilize mu and beta rhythms were tested on 
paralyzed people. According to a study, a tetraplegic patient 
learnt to grab articles from his paralyzed hand. The BCI 
could detect beta waves in the patient’s sensorimotor cortex, 
also activating an operational electrical stimulation device. 
P-300based BCIs when experimented on tetraplegic 
patients, it was observed that the patients could achieve 
some control over the device. 

Functional magnetic resonance imaging(fMRI) has been 
exploited as a new technique to operate BCIs. Although they 
suffer temporal delays, they sample deep brain structure’s 

activity and have good spatial resolution. Myoelectric 
systems that utilize voluntary activations of unaffected 
muscles in subjects who are partially paralyzed and 
amputee, utilize these signals for controlling exoskeletons 
and limb prostheses. They can be seen as an alternative to 
non-invasive BCIs. 

Although no clear breakthrough has been reported in 
literature, they have been helpful in enhancing life of 
patients. One such example would be BCI for spelling. But 
if the aim is to achieve movement   allowing multiple 
degrees of freedom, the task requires to record high 
resolution signals from brain. This can be achieved by 
invasive approaches. 

Non-invasive BCIs have been used on patients of 
paralysis to achieve brain-control of upper and lower 
prosthetic extremity devices. Gert Pfutschellar and his 
colleagues at Graz University of Technology displayed BCI 
controlled electrical stimulation system for restoring upper 
extremity movements in tetraplegic patients. In 2012- 2013, 
researchers of University of California, Irvine showed for 
the first time even after a spinal cord injury BCI could 
restore brain- controlled walking.  

B. PARTIALLY INVASIVE 

They are implanted inside the skull but the rest of the 
device is outside the brain instead of being implanted in the 
grey matter. Their resolution signals are better than non-
invasive BCIs. Their cranium brain tissue is responsible for 
deforming and deflecting signals. Also, they pose a lower 
risk of a scar tissue being formed in the brain as compared 
to a fully invasive BCIs. 

They use Electrocorticography to measure the electrical 
activity of brain from beneath the skull.  Daniel Moran and 
Eric Leuthardt of Washington University, St Louis tested 
this technology on humans in 2004. The researchers 

concluded that this technology allows rapid control and 
requires minimal training and is considered to provide 
perfect trade-off between level of invasiveness and signal 
fidelity.  As compared to a scalp-recorded EEG, ECoG 
provides better signal- to noise ratio, higher spatial 
resolution, less training equipment and wider frequency 
range. Also, it poses low clinical risk and less technical 
difficulty. High control level with minimal training indicates 
its high potential to help people with motor disabilities. 

Another technology involves light reactive imaging BCI, 
but still exist in theoretical world. A laser would be 
implanted in the skull. This laser is supposed to be trained 
on a single neuron. A sensor would measure the neuron’s 

reflectance. The laser light pattern and wavelengths, the 
neuron reflects would change a little on its firing.  

C. Invasive 

These utilize recordings from activity of multiple neurons 
and ensembles of single brain cells. The origin of this 
technique are the experiments conducted by Fetz and 
colleagues in the 1960s and 1970s. The monkeys in these 
experiments achieved voluntary control of their cortical 
neurons, that were aided by biofeedback and thus could 
indicate firing rate of single neurons. A few years later, 
Edward Schmidt indicated that it is possible to extract 
voluntary motor commands from cortical neural activity and 
control prosthetic device that could help paralyzed patients 
in restoring their motor functions. Due to technical 
difficulties, it took almost two decades to test Schmidt’s 

proposition. In 1995, there were experiments which led to 
evolution of BMI approaches which used long-term 
recordings from huge neuron population (100-400 units). 

Invasive BCI aims to repair damaged sight and providing 
mobility to paralyzed patients. During neurosurgery, they 
are directly implanted into the brain’s grey matter. Due to 

their implantation in the grey matter such devices create the 
BCI devices of highest quality signals. However, due to 
body’s reaction to foreign object to an alien object in the 
brain, it can lead to scar-tissue build-up which can cause 
weak or even non-existent signals.  

William Dobelle was a private researcher and one of the 
firsts to create a BCI to restore sight. He implanted his first 
prototype into a man called “Jerry”. He was blinded in 1978 

when he was an adult. It was a single-array BCI consisting 
of 68 electrodes. They were implanted onto his visual cortex 
and produced phosphenes which is responsible for the 
sensation of sight. The device would send signals with the 
help of cameras mounted on glass. In the beginning, Jerry 
could only see grey shades at a low frame-rate and had a 
restricted perception. He had to remain hooked to a 
mainframe computer to use the device but faster computers 
and evolution of computer into smaller devices provided 
him mobility. Dobelle introduced a second-generation 
implant for 16 paying patients. This device was a more 
advanced version. It enabled better mapping of phosphenes 
into coherent sight. Phosphenes were spread across the 
entire visual field. Researchers called this “the starry-night 
effect”.  
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One of his patients, Jens, who was blinded as an adult, 
was successfully able to drive around the parking lot in 
research institute. Unfortunately, before his work could be 
documented, Dobelle died. Eventually, patients in the 
program had vision problems and lost their sight again.  

Philip Kennedy and Roy Bakay led a team of researchers 
at Emory University, Atlanta and became the first to create a 
BCI and install into a human to produce high quality signals 
to simulate movement. Johnny Ray, their patient was 
suffering from ‘locked-in syndrome’. Eventually, he learnt 

to control computer cursor. However, he died in 2002 of 
brain aneurysm.  In 2005, tetraplegic Matt Nagle was able to 
control an artificial hand and became the first person to do 
so. They implanted 96-electrode BrainGate in his right 
precentral gyrus which is the region of motor cortex 
responsible for arm movement. He could also control lights, 
computer cursor and TV. Jonathan Wolpaw was awarded the 
Altran Foundation for innovation for development of a BCI 
that had electrodes on the skull surface instead of implanting 
them directly into human brain. 

V. PRINCIPLES OF BRAIN COMPUTER 
INTERFACE OPERATION 

Invasive BCIs depend on physiological properties 
subcortical and cortical neurons that are responsible for 
modulating their activity associated with their movements. 
Such modulations vary a lot with different trials and 
neurons. Therefore, even though, during the execution of a 
certain movement, neighbouring neurons might reveal a 
definite firing modulation pattern, a single neuron firing 
varies greatly with every trial. 

The two essential, clinically viable operations expected 
from BCI are to extract the motor control signals from firing 
patterns of neuron population and the second is to use the 
control signals for reproducing motor behaviours in artificial 
actuators. BCI devices should feel the same way as the 
subject’s own limbs. According to recent research, this 

might be achieved by constructing conditions where the 
brain experiences as experience-dependent plasticity and 
assimilate the prosthetic limb as a subject’s body part. It was 

achieved through visual feedback. However, there is another 
methodology that is much more efficient involves using 
multiple artificial feedback signals that would be derived 
from position sensors and pressure that would be placed on 
the prosthetic limb. The brain would be trained by these 
feedback signals and to integrate properties of the prosthetic 
limb into tuning characteristics of cortical and sub-cortical 
neurons. To create a clinically viable BCI, the following 
bottlenecks should be passed: 

1) Attain extensive recordings of huge number of neurons 
from various brain regions. This leads to development of a 
new variety of biocompatible 3D electrode matrices that 
generated thousands of channels of the recordings. There 
would be minimal inflammatory reaction and little tissue 
damage at implantation in the process. 

2) Develop efficient algorithms to be assimilated in the 
software for BCI that could translate neuron activity into 
highly accurate command signals for controlling an artificial 
actuator containing multiple degrees of freedom. 

3) Learn to utilize brain plasticity in order to include 
prosthetics in body representations. 

4) Implement new generation prosthetics, that can 
effectively accept brain-derived control signals and perform 
movements with multiple degrees of freedom. 

 Some possible solutions to the above challenges are: 
Modern technology offers implanted microwire arrays as 

the best compromise between recording longevity, safety 
and neuronal yield that is needed to run a BMI. Before it can 
be utilized for long-term applications, it needs to undergo 
some significant modifications such as biocompatibility, 
wireless head stages in order to amplify neuronal signals so 
that risk of infection can be reduced in the process of 
connecting external hardware to brain implants. 

Recent microelectrode designs have made possible for 
good quality recordings to last several months and in some 
cases even years. However, the quality degrades due to 
electrode encapsulation by fibrous tissue and death of the 
cell near the electrode.  Some approaches have been 
proposed by a few authors but their utility remains unclear. 
Some approaches would be electrodes coated with factors 
that would encourage neuronal growth or electrodes 
containing neurotrophic medium.  

VI. INCORPORATING PROSTHETIC GADGETS 
INTO BODY REPRESENTATION 

Controlling an artificial actuator via BCI has been 
compared to the operation of operating tools. Head and 
Holmes have suggested that ‘body schema’ can widen itself 

to include a wielded tool.  
Recent studies indicate that while manipulating a 

myoelectric prosthetic hand, the right ventral premotor 
cortex activated at specific points. The results suggested that 
long-term use of artificial actuator leads to sub-cortical and 
cortical mapping.  

 In another experiment, decoding algorithms were trained 
for prediction of limb movement of animals from their 
neural population. Their limbs stopped moving eventually as 
they were controlling actuators from their neuronal activity. 
Their neuronal tuning to their limb mobility decreased as 
they used their brain activity to control the artificial actuator. 

VII. CREATING PROSTHETIC DEVICE TO FEEL 
LIKE PATIENT’S OWN LIMB 

Proprioceptive signals and peripheral tactile are 
responsible for our normal limb operation that gives us the 
sense that the limb is part of our body. We’ll have to include 

sensors in the prosthetics that can send channels of sensory 
information back to the patient’s brain, so that the prosthetic 

feels as a patient’s body part. In recent BMIs animal subjects 

are sent sensory information via actuator by visual feedback. 
Motor parameters have predictions that are more stable in 
the presence of visual feedback than when it is absent. 

Previous studies on monkeys have shown them sensing 
micro stimulation patterns and utilize these for guiding their 
behavioural responses. A recent study revealed that the owl 
monkeys could decode the vibratory stimuli that was applied 
on their arms and learn how to guide reaching movements.  
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Later, matching patterns of micro stimulation through 
electrodes that were implanted in the primary somatosensory 
cortex were applied instead of the vibratory stimuli. 
Monkeys could interpret correctly all the instructions that 
cortical micro stimulation provided. Eventually, their 
behavioural performance surpassed their performance when 
they had vibratory stimulus applied to their skin. 

Micro stimulation gives hope for development of a new 
generation of prosthetics restoring motor behaviours in 
patients. 

VIII. NON- ELECTROENCEPHALOGRAPHY 
BASED BRAIN COMPUTER INTERFACE 

The year 2016 saw the development of a new BCI that 
requires no visual fixation. It involves not fixing eyes on a 
particular letter on a virtual keyboard. The keyboard consists 
of letters having their own background circle that would in 
different time transitions micro-oscillate in brightness. 
Choice of letter selection is based on whatever fits best 
between background circle brightness oscillation pattern and 
oscillation pattern of unintentional pupil size. The user can 
improve his/ her accuracy by mental rehearsal of the words 
‘dark’ and ‘bright’ in synchronization of transition of the 

circle or letter’s brightness. 

IX. ELECTROENCEPHALOGRAPHY BASED 
BRAIN COMPUTER INTERFACE 

EEG is considered to be the most studied of all non-invasive 
interfaces due to its portability, fine temporal resolution, low 
setup cost and ease of use. Bin He and his team at the 
University of Minnesota have recently suggested that EEG 
based BCIs could accomplish tasks nearly equivalent to 
invasive BCIs. Bin he and his team identified co-localization 
and co-variation of hemodynamic and electrophysiological 
signals that were induced by motor imagination. This was 
achieved by using functional neuroimaging including EEG 
source imaging and BOLD functional MRI. Bin He and his 
team showed the its potential to control flight of a virtual 
helicopter in 3-dimensional space based on motor 
imagination. In 2013, it was announced that he had 
developed the technology to guide a remote-control 
helicopter through an obstacle course.  

X. ELECTROCOTIGRAPHY  

ECoG or electrocorticography measures brain activity 
with the help of electrodes on the surface of the brain. ECoG 
has higher temporal and spatial resolution than EEG, but is 
an invasive technology that entails health hazard. Recent 
experiments on monkeys have revealed that ECoG performs 
with extreme accuracy for months. ECoG has been used on 
humans for analysing alpha, beta, gamma waves generated 
due to voluntary motor action.  

XI. DRY ACTIVE ELECTRODE ARRAYS 

Babak Taheri at University of California, Davis in the 
early 1990s showed the first single, multichannel dry active 
electrode arrays by utilizing micromachining. In 1994, he 
published its construction and results. It was observed that 
this array electrode performed better than silver/ silver 

chloride electrodes. The device has four sensor sites with 
integrated electronics that reduces noise by utilizing the 
concept of impedance matching.  

In 1999, Hunter Peckham and his team of researchers at 
Case Western Reserve University in Cleveland, ohio helped 
quadriplegic Jim Jatich by using 64-electrode EEG skullcap. 
Jim Jatich focused on simple, opposite concepts such as up 
and down. The researchers identified noise patterns by 
analysing his beta -rhythm EEG output using a software. 
They identified a pattern to control a switch. The pattern 
involved above average activity as on and below average 
activity as off. He was also enabled to control a computer 
cursor where they used signals to drive nerve controllers that 
were embedded in his hands. 

XII. DIY BCI 

In 2001, a group of engineers and neuroscientists created 
a group called the OpenEEG Project. Their primary device 
was a ModularEEG. It consists of a 6-channel signal capture 
board. To build it at home, it would cost between $200 and 
$400. In 2010, a tutorial was published by the title of “How 

to Hack Toy EGGs” by the frontier Nerds of NYU’s ITP 

program. It displayed how to create a single channel at-
home EEG with the help of Arduino and a mattel mindflex. 
In 2013, OpenBCI built a high quality and open source 8-
channel EEG acquisition board, sold under $500. Two years 
later, they built Ultracortex, the first 3D  printed headset and 
a Ganglion Board, a 4-channel EEG acquisition board which 
was sold for under $100. 

In 2015, NeuroTechX was introduced with the aim of 
creating an international network for nuerotechnology. It 
involves researchers, hackers and enthusiasts from different 
parts of the world.  

Functional Magnetic resonance imaging (fMRI) and 
Magnetoencephalography and Magnetoencephalography 
(MEG) have been used in various non-invasive BCIs 
successfully. fMRI was used to achieve to scan two users to 
play real-time Pong by altering their blood flow or 
haemodynamic responses with the help of biofeedback 
methods.  

In 2008, the Advanced Telecommunications Research 
(ATR) Computational Neuroscience Laboratories in Kyoto, 
Japan allowed scientists to directly reconstruct images from 
the brain and then display these images on a computer in 
black and white at a 10x10 pixel resolution.  

In 2011, the researchers from UC Berkeley used fMRI 
data to publish a study of reconstruction of videos second-
by-second that the subjects watched. The researchers built a 
statistical model that related the brain activity of subjects 
caused due to watching the videos to the visual pattern in the 
videos shown. This statistical model was then looked against 
100 one-second video segments, in a million of seconds of 
random YouTube video database. These 100 video extracts 
which were all of one second were combined with a 
mashed-up image that looked similar to the video being 
viewed. 
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XIII. BRAIN COMPUTER INTERFACE 
TECHNIQUES IN NEURO IMAGING 

Motor imagery comprises of imagining moving various 
body parts leading to sensorimotor cortex activation 
responsible for modulating sensorimotor oscillations in 
EEG. BCI would infer the user’s intent. Motor imagery 
generally undergoes through a lot of training sessions before 
achieving the acceptable control of BCI. The users are 
unable to master control scheme, irrelevant of training 
duration. This leads to the pace of gameplay being very 
slow. Recently, advanced machine learning methods were 
developed for creating subject-specific model to detect 
performance of motor imagery. Mental relaxation of a 
subject is monitored by biofeedback. Various biofeedback 
systems have been used for treating disorders such as teeth 
grinding, attention deficit hyperactivity disorder (ADHD), 
sleep problems in children and chronic pain. Passive BCI 
enhance human computer interaction using BCI with the 
help of implicit knowledge on user’s state. For example, 

simulations for detecting user’s wish to push brakes while 

emergency car stopping process. Game developers that use 
passive BCIs have to recognize that as the user repeats 
game’s levels, their cognitive state will adapt to it. The user 

will react in a different way to things from his first play to 
second play. For example, if the user is already expecting an 
event in the game, they’ll be less surprised by it. 

XIV. WORKING 

BCI gives power to paralytic patients to control a 
wheelchair or write a book through thought alone. In June 
2006, Peter Brunner, an American scientist demonstrated 
that he was able to compose a message by concentrating on 
a display. He wore a close-fitting cap that had electrodes 
embedded into it. The electrodes picked up EEG activity 
from his brain. This information was used to identify 
specific characters or letters for the message. His 
demonstration is based on the Wadsworth system. This 
system makes use of adaptive algorithms and pattern 
matching techniques to enhance communication. 

A. Background 

Brain cells use spikes or action potentials to communicate 
with each other. These are brief deviations of cell membrane 
potential from resting voltage. They reach other neurons 
while traveling along neuron’s axons and long filaments. 

B. Electrode 

Usually electrodes of 40um to 200um diameters or more 
are implanted into the cortex. Electrodes used in BCIs are 
usually 1mm in length and come in arrays. They pick up 
action potentials near the recording sites which usually 
occurs at <50um. Usually the uninsulated tip is the 
recording site.  

C. Brain signals 

BCIs record and decode brain signals. Neurons 
communicate by sending and receiving electrical signals. 
Advanced electrical sensors can listen to these signals. In 
bodies of healthy people, brain sends signals to muscles via 
the central nervous system. Medical conditions such as 
neuromuscular diseases can disrupt the communication 

between brain and muscles. This leads to paralysis. 
However, brain can generate activity for intended 
movements in many cases. BCI uses this brain activity to 
control assistive devices. 

D. Measuring brain signals 

There are many ways to measure brain signals.  
Electroencephalography (EEG) is one of the most 
commonly used techniques. This method requires electrodes 
to placed either directly under the scalp or in the brain tissue 
through a surgery. Signal quality from electrodes on surface 
of brain is better than those from electrodes from scalp. 
Electrodes on brain tissue do not cause any harm to the 
brain. Other methods include fMRI and MEG. fMRI uses 
MRI-scanner and MEG uses MEG-scanner for measuring 
brain activity. But they are not suitable for at-home use 
because they require huge expensive machines. Near-
infrared spectroscopy (NIRS) is another method for 
measuring brain activity. It does so by shining near-infrared 
light through skull. It does not require surgery and is 
portable. However, it’s quality of measuring the brain 

activity is not enough. 

E. Brain function 

Brain has a ‘control centre’ for every body part, 

responsible for its movement. Different methods for 
measuring brain activity ‘see’ when these control centres are 
active. For example, waving your hand or wiggling toe are 
controlled by distinct brain regions. These control centres 
become active by simply thinking about moving a particular 
body part. Some area gets activated during numeric 
calculations, understanding language etc. The BCI can 
detect these areas. Thus, even a paralytic patient can 
perform mental tasks and therefore intentionally activate 
precise regions of brain, making BCIs a success. 

F. Brain signals 

Electrodes are placed on regions of brain that can be 
controlled. They receive signals that respond to control. The 
detected signals are converted to a command for operating a 
device. Thus, every time the patient counts backward in 
their head and select from a menu, for example an email 
program, they can click computer mouse. 

G. Signal production 

Subjects can produce brain signals in two ways: 
1) Presenting stimuli to patient or having him/her 

imagine movements. 
2) Reading brain activity of the subject 

H. Recording 

Signals are amplified about 10,000x in several stages. The 
head stage amplifier, located close to electrode array 
amplifies 1-10x along with doing high pass filtering. Second 
stage includes bandpass filtering and signal amplification is 
typically of 1000x or more.  
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I. Attention pattern detection 

EEG records brain signals on several frequencies. 
Different emotions correspond to different brainwave 
characteristics. For example, the brainwave of an alert 
person is different from a tired, slow person. Alpha, beta, 
gamma, delta, theta are different categories used to identify 
types of brainwaves. A person generates alpha waves while 
in meditation. They are more prominent in frequency range 
of 8 to 13 Hz. Beta waves have frequency range of 13 to 22 
Hz which changes when person is in a focused or excited 
state. Theta waves are generated when a person is in deep 
meditation and frequencies ranging from 4 to 8Hz. Delta 
waves have lowest frequency range of 1 to 4 Hz. Gamma 
waves have frequency range above 32 Hz.  

J. Signal processing 

After signal acquisition, the task of signal processing 
begins. It is processed by a single component consisting of 2 
important steps: feature extraction and feature classification. 
Feature extraction involves evaluating signal and detecting 
signal features by using a signal extraction algorithm. The 
result is processed by a feature classification algorithm that 
relates the detected feature to the output device. This is a 
challenging process as the feature extraction algorithm has 
to deal with signal source which is noisy. To detect feature 
from such a source, researchers depend on temporal- spatial 
or time-frequency analysis.  

XV. ETHICAL PERSPECTIVE 

Many ethical issues arise in the various applications of 
BCIs. Who would be held responsible if the brain-actuated 
mobile robot causes damage? Is it degrading our human 
dignity by using pre-conscious brain information processed 
by a BCI? Should young people be allowed to interact BCI 
based games with their plastic brain? Is user personality 
affected by use of BCIs? 

BCIs face a wide array of issues such as privacy, safety, 
oral responsibility. Before participating in a study, the 
subject should be informed of all relevant risks, benefits, 
purpose of research and procedure. All misunderstandings 
should be clarified. 

XVI. NEUROSURGICAL ISSUES 

The most important question is the safety of BCI. It 
should be reliable and durable. Patients response is also 
important, for example after a period of time, will signal 
acquisition face obstruction from scar formation. If the BCI 
has a short half-life, it will require reimplantation after 
short-time frames that risks injury to patient in that area. 

For a BCI to enable a motor impaired patient, it requires a 
minimum of three- dimensional control. One dimensional 
control allows only binary interaction. Two-dimensional 
control allows cursor to move along x and y axis.  However, 
to be able to control a robotic arm, many more DOF are 
required. Speed and accuracy of the device are two major 
factors to be considered so that the patient can function with 
minimum errors in real-time. 
 

XVII. MENS REA 

In Mens Rea, user commits the crime with a certain 
mental state. Active BCIs do not affect the user’s intentions. 

According to the American Model Penal code, for some 
crime the agent must act purposely while for others 
recklessly to be found guilty. 

XVIII. ACTUS REUS 

Agent is found guilty only if he/she satisfies a specific 
conduct, status or omission. 

Actus Reus is satisfied if the agent does not perform some 
obligated task or performs a task, he/she ought not to or 
becomes member of a prohibited group such as a terrorist 
group. 

XIX. TYPOLOGY 

A. Active 

 User performs a mental task deliberately to generate a 
particular pattern of brain activity. Imagining movement of 
different parts of the body activates different parts of motor 
cortical areas. However, it is prone to errors and requires a 
lot of effort. 

B. Reactive 

It involves modulating brain activity in response to an 
external stimulus. For example, in P300-based selection, 
stimuli like letters or symbols or other characters are 
displayed on a screen. User directs his/ her attention to the 
intended symbol. The BCI device identifies the signal 
generated about 300ms after the stimulus is flashed on the 
screen. Locked-in patients can  create art with the help of 
Brain Painting application. 

C. Passive 

It monitors the brain activity of patient. The patient does 
not need to perform a mental task. They monitor workload 
and arousal, thus preventing risky situations by identifying 
user’s lapse in attention. Affective BCIs might detect that 
the user is frustrated or bored and adapt a suitable task or 
introduce engaging elements 

XX. BRAIN STIMULATION IN 
NEUROREHABILITATION OF STROKE 

One of the major causes of chronic disability is stoke and 
neurotrauma. Electric currents have been shown to modulate 
cognition and behaviour. It was demonstrated that tDCS or 
transcranial direct current stimulation can help in improving 
learning ability. When experimented on chronic stroke 
patients, their reaction time and pinch force of affected hand 
improved. Many studies revealed that tDCS timing relative 
to training affects stimulation effects. Recently, tDCS and 
EEG-based BMI were combined. It involved placing 
stimulation electrode to only 1cm near EEG electrode, being 
used for BMI control. This was done to avoid direct contact 
as it could lead to amplifier saturation. 
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Another strategy was used that involves use of 
neuromagnetic brain signals (MEG). It could pass through 
stimulation electrode. This revealed that BMI utilizing SMR 
or primary motor cortex could control orthotic device of this 
region. 

XXI. APPLICATIONS 

A. Medical application: 

Studies on consciousness level determination systems with 
their brain-related studies have been developed. The 
significance of these studies is the decrease in alertness level 
that results from alcohol drinking and smoking. 

Traffic accidents are one of the main causes for death and 
serious injuries. Researchers have studied motion sickness 
in drivers. Motion sickness leads to loss of driver’s ability to 
maintain self-control which leads to accident. In a study, a 
virtual reality-based motion sickness platform with a 32-
channel EEG system and joystick was designed for 
reporting motion sickness level in experiments.  

BCIs have been used to detect and diagnose disorders 
such as brain tumour, dyslexia, narcolepsy, epilepsy and 
encephalitic. 

B. Smart environment 

Combination of Internet of things and BCIs offer luxury 
and safety. Brain computer interface-based smart living 
environmental auto-adjustment control system (BSLEACS) 
has been proposed to monitor user’s mental state and adapt 
to surrounding appliances. Brain signals improve work 
conditions by analysing mental fatigue and task time in EEG 
features. 

C. Games and entertainment 

Combination of BCIs with games provides a multi-brain 
entertainment experience. In a video game called 
BrainArena, users can join a competitive football game with 
the help of BCIs. They can score goals by hand movements. 
An EEG game for emotional control has been developed in 
which the player can move the ball only if he/she is relaxed. 
Therefore, the most relaxed player wins and thus they need 
to control their stress in order to win at the game. 

D. Security and authentication 

Security systems that are object or biometric based are 
prone to vulnerable to several attacks such as shoulder 
surfing and theft crime. Cognitive biometrics use brain 
signals for identifying information. An external observer 
cannot attain brain signal. They are of importance to patients 
who are disabled and do not have the required physical trait. 

E. Opportunistic state-based detection 

Neural state monitoring in combination with pervasive 
intelligence has the potential to change our surrounding 
environment. Early symptoms of ailments like migraines 
could help the patient in getting recommendations from a 
physician to stop a particular activity or other factors to 
prevent those symptoms. 

Most alarm clocks go off without any regard of the sleep 
stage, the user is in. A person’s energy level during the day 

depends on the sleep stage they were in before waking up. 
By involving a device that incorporates an interactive 

system with the brain activity such that the device would 
wake the user when they are in the optimal sleep cycle. 
Thus, the user would wake up refreshed and alert. 

F. Use of speech for brain computer interface control 

Speech processing has been studied using various 
neuroimaging, lesion models, neurophysiological studies. 
These studies have revealed the that speech processing has a 
distributed network  of cortical areas including the Wernicke 
and Broca centre. Wernicke centre is responsible for 
receptive language whereas the Broca centre is associated 
with expressive language. 

Since there are many cortical areas related to speech, 
separable physiology and cognitive task of using speech 
may provide features to motor derived control.  

Wilson showed that auditory cortex can be utilized for 
controlling computer cursor. A recent study consisting of 9 
participants, showed that ECoG signals differentiate 
between speech or imagined speech and rest. 

XXII. CHALLENGES 

 Current BCIs have the potential to detect only 2-3 mental 
states. One of the main challenges is that signals acquired by 
the same person during different sessions vary. Also, 
different users executing same tasks generate different EEG 
signals. The signals acquired contains noise such as eye and 
muscle movements. These are called artifacts and are 
removed manually by clinicians. 

XXIII. FUTURE 

Many studies have been done in this field which 
continues to develop and promises a great future. 
Eventually, they may be used in severely disabled people to 
restore their motor functions. BCIs depend on sensors and 
other hardware for signal acquisition. They are expected to 
be small and portable and not require skin abrasion. They 
must be easy to set-up and function for many hours without 
maintenance requirement. Most of these needs are met by 
current technology. Dry electrode options are also available 
nowadays. The components need to be able to record signals 
for years, remain reliable and functional and needs to be 
safe. Although, many advances are being made in this filed. 
It is unclear which technology would be more successful. 
ECoG might prove to be more   stable than BCIs that are 
based on neuronal action potentials. Important researches 
continue to be experimented on animals before human trials 
begin. Even after many years of research and development, 
BCIs have not achieved great success. Expectations 
regarding its applications are high. Clear distinction should 
be made between currently viable and potential applications 
to avoid unrealistic expectations During experiments, 
applying stimulus to subjects that rely on presence or 
absence of a certain brain activity can allow for 
development of complex designs. Recent studies in single-
trial analysis have seen an increased interest in brain 
reading, where contents of subjective perception are 
inferred.  
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Focus on single- trial analysis will eventually increase our 
knowledge of human cognition 

XXIV. RESULT AND DISCUSSION 

In this paper, we have presented studies and 
demonstrations of various types of Brain Computer Interface 
and its results done over the past few decades. These studies 
and experiments have helped people with disabilities such as 
paralysis, stroke etc. with an opportunity to communicate to 
the outer world.  The studies involve working of the brain 
computer interface and its applications in the life of both 
disabled and healthy people.  We discussed its successful 
collaboration with Internet of things (IOT) and its impact on 
security and authentication procedures, games and 
entertainment field and in the medical field. Early 
experiments were mostly done on animals. Later they were 
done on tetraplegic patients.  

Some researches have considered the problem of long 
training durations and successfully decreased it to some 
extent. This has helped motor- impaired patients to carry out 
daily activities such as sending and reading emails and 
controlling a wheel chair. 

XXV. CONCLUSION 

Our vision of neuro prosthetics that might become a 
reality in the next 10-20 years has a fully- implantable 
recording system that can transmit multiple streams of 
electric signals wirelessly. These signals are derived from 
thousands of neurons and sent to BMI that can decode 
temporal and spatial characteristics of mobility, also 
including cognitive characteristics of intended actions. The 
device would merge peripheral low-level control signals that 
would be derived from an artificial ‘reflex-like’ control loop 

and high-order motor commands that would be derived from 
subcortical and cortical neural activity. Artificial actuators 
with many arrays of position and touch sensors would be 
able to generate streams of sensory feedback signals directly 
delivered through spatiotemporal patterns of multi-channel 
micro stimulation, to subcortical and cortical somatosensory 
region of subject’s brain. It’s been suggested that by 2050, 

BCI would be helping humans control object by using their 
mind. BCIs are involved in various research fields such as 
neuromarketing and advertising, games and entertainment, 
medical and security and authentication.  It can have a great 
impact in the field of medicine and rehabilitation. However, 
it faces challenges such as minimizing cost, identify suitable 
patient selection and more clinical trials to test its efficacy. 
Patient’s needs and priorities are critical so that the 

prosthetic device feel like a part of their own body.  
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