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Abstract: Prediction of client behavior and their feedback
remains as a challenging task in today’s world for all the
manufacturing companies. The companies are struggling to
increase their profit and annual turnover due to the lack of exact
prediction of customer like and dislike.  This leads to the
accomplishment of machine learning algorithms for the
prediction of customer demands. This paper attempts to identify
the important features of the wine data set extracted from UCI
Machine learning repository for the prediction of customer
segment. The important features are extracted for the various
ensembling methods like Ada boost regressor, Ada boost classifier,
Random forest regressor, Extra Trees Regressor, Gradient booster
regressor. The extracted feature importance of each of the
ensembling methods is then fitted with logistic regression to
analyze the performance. The same extracted feature importance
of each of the ensembling methods are subjected to feature scaling
and then fitted with logistic regression to analyze the performance.
The Performance analysis is done with the performance metric
such asMean Squared error (MSE), Mean Absolute error (MAE),
R2 Score, Explained Variance Score (EVS) and Mean Squared
Log Error (MSLE). Experimental results shows that after
applying feature scaling, the feature importance extracted from
the Extra Tree Regressor isfound to be effective with the MSE of
0.04, MAE of 0.03, R2 Score of 94%, EVS of 0.9 and MSLE of
0.01 as compared to other ensembling methods.

Index Terms: Machine Learning, Mean Squared error, Mean
Absolute error, R2 Score, Explained Variance Score and Mean
Squared Log Error.

I. INTRODUCTION

Generally the dataset in the market have alot of attributes.
The single dependent variable of the dataset is predicted by
the occurrence of one or more independent variables.
However, the dependent variable does not need the existence
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of al independent variable for its predicted. Some of the
independent variable are not at all involved in the prediction
of the target variable. So it is very essentia to find the
important features of the machine learning dataset so as to
predict the value of the dependent variable with high
accuracy. The paper isorganized in such away that Section 2
deals with the related works. Section 3 discuss about the
proposed work followed by the implementation and
Performance Analysis in Section 4. The paper is concluded
with Section 5.

[I. RELATED WORK

A. Literature Review

The chemical samples and its proposition is needed to
predict the quality of wine. Due to the change in the mixing
of the chemicalsand their existencein the wine, the quality of
wine greatly changes. Based on the quality of the wine, the
customers prefer the product. The machine learning models
can be built to find the exact combination of the chemicalsto
be added based on the customers behavior. The machine
learning models like Linear Regression, Decision Trees and
Artificial Neural Networks are used to predict the customer
behavior that helps in finding the needed features to
understand the customer’s behavior and demand [1].

The data mining techniques are used to predict the
customers need and their behavior in choosing the wine. The
statistics that are involved in the data mining techniques can
find the exact combination of the independent variables that
are present in the dataset [2].

The customer relationship management is greatly needed
for any business to survive in the current market world. The
utilization charge of winewas evaluated using variousfactors
like such as manufactured goods involvement, biased
awareness, delicate qualities and socio demography [3].

Due to the growth in the online shopping, the customers
wish to buy the high quality wine through online web portal
shopping. In this scenario, the customersjust view the quality
of the wine only through the ingredients present in the wine
[4]. The various wine brands has worth in their improvement
and the current market is highly competitive [5].

A critica review on various feature selection, feature
extraction methods, classification methods and the
performances parameters are examined for predicting the
wine quality [6]-[10].
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1. PROPOSED WORK

In our proposed work, the wine data set is applied to
extract the important features using various ensembling
methods.. Our implementation in this paper is folded in five
ways.

(i) Firstly, the analysis of correlation matrix for the
entire features of the wine data set

(il)Secondly, extracting the feature importance of the
ensembling methods like Ada boost regressor, Ada
boost classifier, Random forest regressor, Extra
Trees Regressor, Gradient booster regressor.

(iii) Thirdly, extracted important features of the various
ensembling methods are fitted to logistic regression
methods.

(iv) Fourth, the extracted important features of the
various ensembling methods are subjected to feature
scaling and then fitted to logistic regression
methods.

(v) Fifth, the performance analysis of the feature
importance of various ensembling methods are done
by Mean Squared error, Mean Absolute error, R2
Score, Explained Variance Score and Mean Squared
Log Error.

A. System Architecture
The propose architecture of our work is shown in Fig. 1

IV. IMPLEMENTATION AND PERFORMANCE
ANALYSIS

A. Customer Segment Prediction

The Wine dataset is extracted from UCL Machine Learning
Repository is used for implementation with 13 independent
attribute and 1 Customer Segment dependent attribute. The
correlation matrix of the wine data set is depicted in Fig .2.
and is used to identify the relationship between the features.
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Fig. 2 Correlation Matrix of Wine data set
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Fig. 1 System Architecture

The attribute are shown below.
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. Total phenols
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. Nonflavanoid phenols
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12. OD280/0D315 of diluted wines
13. Proline Churn
14. Customer Segment - Dependent Attribute

The feature importance variables of the wine data set
extracted from the Ada boost regressor is shown in Fig. 3.
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Fig. 3 Feature Importance of Ada Boost Regressor

The distribution of high feature component along with their
variance values for the Ada boost regressor and Ada boost
classifier is shownin Fig. 4.

International Journal of Engineering and Advanced Technology (IJEAT)
I SSN: 2249-8958 (Online), Volume-8 I ssue-6, August, 2019

Total_Phenols 1
Magnesium -
Ash_Alcanity 1
Ash 1
Malic_Acid 1
Acohal |

0D280

Color_Intensity

Hue

Flavangids

0o

01

03

04 05

Fig. 5 Feature Importance of Ada Boost Classifier

The distribution of high feature component along with their
variance values for the Random forest regressor and Extra
tress regressor is shown in Fig. 6.
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Fig. 4 Important Features of Ada Boost Regressor and
Classifier
The feature importance variables of the wine data set
extracted from the Ada boost classifier is shown in Fig. 5.
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Fig. 6 Important Features of Random Forest and Extra
Trees Regressor

The feature importance variables of the wine data set
extracted from the Random forest regressor is shown in Fig.7.
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Fig. 7 Feature Importance of Random Forest Regressor

The feature importance variables of the wine data set
extracted from the Extra Trees regressor is shown in Fig.§.
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Fig. 8 Feature Importance of Extra Trees Regressor

The feature importance variables of the wine data set
extracted from the Gradient Boosting regressor is shown in
Fig. 9.
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Fig. 9 Feature Importance of Gradient Boosting
Regr essor

The distribution of high feature component along with their
variance values for the Gradient Boosting regressor is shown
inFig. 10.
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Fig. 10 Important Features of Gradient Boosting
Regr essor

The extracted important features of the various ensembling
methods like Ada boost regressor, Ada boost classifier,
Random forest regressor, Extra Trees Regressor, Gradient
booster regressor are then fitted to logistic regression
methods and the performance is analyzed. The performance
analysis of the feature importance of various ensembling
methods are done by Mean Squared error, Mean Absolute
error, R2 Score, Explained Variance Score and Mean
Squared Log Error. The performance metric comparison is
shown in the Table. 1 and Table. 2.

Table. 1 Performance Comparison of MSE, MAE and R2
Scorefor various Ensembling befor e Featur e Scaling

Ensembling Methods Fitting to Logistic Regression
Before Feature Scaling

MSE MAE | R2 Score

AdaBoost Regressor 0.11 011 0.78

Adaboost Classifier 019 1 019 | o061

Random Forest 012 | 012 | 079

Regressor

Extra Trees Regressor 0.08 0.08 0.83

Gradient Boosting 011 011 078

Regressor
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Table. 2 Performance Comparison of EVSand MSLE
Scorefor various Ensembling befor e Featur e Scaling

Ensembling Methods Fitting to Logistic

Regression Before Feature

Scaling
EVS MSLE

AdaBoost Regressor 0.78 0.15
Ada boost Classifier 0.69 0.02
Random Forest Regressor 0.79 0.16
Extra Trees Regressor 0.83 0.01
Gradient Boosting 0.78 0.15
Regressor

The extracted important features of the various ensembling
methods like Ada boost regressor, Ada boost classifier,
Random forest regressor, Extra Trees Regressor, Gradient
booster regressor are subjected to feature scaling and then
fitted to logistic regression methods. The performance
analysis of the feature importance of various ensembling
methods are done by Mean Squared error, Mean Absolute
error, R2 Score, Explained Variance Score and Mean
Squared Log Error. The performance metric comparison is
shown in the Table. 3 and Table. 4.

Table. 3 Performance Comparison of MSE, MAE and R2
Scorefor various Ensembling after Feature Scaling

Ensembling Methods Fitting to Logistic Regression
after Feature Scaling
MSE MAE | R2 Score
AdaBoost Regressor 0.27 0.27 0.94
Adaboost Classifier 0.16 0.16 0.69
Random Forest 026 | 026 | 093
Regressor
Extra Trees Regressor 0.04 0.03 0.94
Gradient Boosting 0.27 0.27 0.93

Table. 4 Performance Comparison of EVSand MSLE
Scorefor various Ensembling after Feature Scaling

Ensembling Methods Fitting to Logistic

Regression after Feature

Scdling
EVS MSLE

AdaBoost Regressor 0.74 0.02
Ada boost Classifier 0.69 0.03
Random Forest Regressor 0.73 0.02
Extra Trees Regressor 0.93 0.01
Gradient Boosting 0.84 0.02
Regressor

V. CONCLUSION

This paper attempts to predict the customer behaviour by
extracting the important features from the wine data set. The
correlation matrix of the wine data set is recognized between
each attributes in the wine data set. The extracted feature
importance of each of the ensembling methods like Ada boost
regressor, Ada boost classifier, Random forest regressor,
Extra Trees Regressor, Gradient booster regressor is then
fitted with logistic regression to analyze the performance.
The same extracted feature importance of each of the
ensembling methods are subjected to feature scaling and then
fitted with logistic regression to analyze the performance.
The Performance analysis is done with the performance
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metric such as MSE, MAE, R2 Score, EVS and MSLE.
Experimental results shows that after applying feature
scaling, the feature importance extracted from the Extra Tree
Regressor is found to be effective with the MSE of 0.04,
MAE of 0.03, R2 Score of 94%, EVS of 0.9 and MSLE of
0.01 as compared to other ensembling methods.
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