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Abstract--- Resource block allocation in LTE is a complex 

metric consisting of available bandwidth, required data rate and 

channel state conditions. A Wi-Fi access point, co-operating with 

LTE eNB can service a single User Equipment (UE) through 

multiple interfaces (multihoming) for improving throughput. The 

challenge is to inter-operate the greedy LTE scheduler with 

deferral-based Wi-Fi band allocation. A joint scheduling 

therefore is a complex problem requiring a robust estimation 

method which not only optimize per-user throughput but also can 

support a minimum average system throughput condition. 

Kalman filter provides resource prediction while minimizing the 

mean square error. In this paper, we propose KRAFT, a novel 

LTE and Wi-Fi joint scheduler using Kalman filter. We 

periodically measure the discrete SINR values, available 

bandwidth and resource requirements to predict the system 

throughput optimized scheduling among Wi-Fi and LTE 

networks. Also, an energy-aware scheduling algorithm is 

proposed as a tie breaker between all the other approaches. 

Keywords--- Kalman Filter, Wi-Fi, LTE, Throughput 

Optimization. 

I. INTRODUCTION 

Last decade has seen enormous growth in the number 

of total mobile devices which are currently more than a  

Billion in number across the world as per [1, 18]. A 

mobile device along with multiple sensors such as 

camera, accelerometer, gyroscope etc., has capabilities to 

connect to other devices using more than one interface such 

as Bluetooth [2], Wi-Fi, General Packet Radio Service 

(GPRS) [3], Universal Mobile Telecommunications 

System (UMTS), Long Term Evolution (LTE) and so on. 

More recently, mm Wave [4] and 5G-New Radio (5G-NR) 

predictions are surrounding with their corresponding 

technologies in terms of interfaces to provide these 

accesses. 

As the number of sensors and interfaces increase in a 

mobile device, on one hand its overall throughput increases 

due to better technology, while on the other hand, its energy 

consumption rises because of increase in computing 

instructions per second. Therefore, a newer interface in a 

mobile device is required to have tradeoff between the total 

throughput and energy consumed. 

With the advent of these multiple interfaces, it has 

become necessary to design solutions which can use all of 

them simultaneously without hampering the battery 
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performance. It is shown that concurrent multipath 

transmissions [5], [6], [7], [8] can improve the overall 

throughput performance of a device which require either a 

router splitting the traffic flow or device initiating multiple 

TCP connections. In either case, a coordination among the 

role of available access technologies is critical in resource 

allocation and management. 

Utilizing multiple interfaces of a device is challenging 

because of multiple reasons such as: (i) lack of interface 

coordination, (ii) lack of aggregation statistics, (iii) 

unreliable load sharing and balancing, (iv) improper 

scheduling, and (v) inter-symbol as well as inter-radio 

interferences. 

The challenges, (i)-(ii) can be solved using an on-device 

scheduler with aggregator which should not only be able to 

expose the current status of the interfaces from the Kernel to 

the application but also should be able to coordinate usage 

of these interfaces. The load sharing problem i.e. challenge 

(iii), is therefore an extension of scheduling problem 

wherein a rate distributed to interfaces according to the 

network dynamism and application requirements can be 

assumed to satisfy the load balancing inherently. Finally, the 

challenge (iv) and (v) need to be solved from the network 

side and require much deeper analysis to solve challenges 

arising from factors such as multi-path propagation, user 

mobility etc. and therefore, need more careful 

considerations. 

Multihoming is a technique to use multiple interfaces 

simultaneously to optimize application throughput. Attempts 

are made in [9] to address multihoming issues by using a 

host-based identity protocol where a name-based 

networking schema is used to expose the transport layer 

issues to the network layer and later performing a joint 

optimization. Platform to support multihoming is proposed 

and described in [10]. The paper elaborates that in order to 

support multiple interfaces, each of them should be 

optimized for their quality performance. A joint resource 

allocation-based scheme is designed in [11] considering 

heterogeneous networks and two types of users: single 

networked, and multihomed. The problem is formulated as a 

convex problem and results are shown to improve system 

capacity. 

A multihoming scenario is described in the Figure 1 

where a User Equipment (UE) can in the common range of 

Access Point 1 (AP1) and Access Point 2 (AP2). The left 

figure shows that AP2 is completely shadowed by AP1 and 

AP2s users will be subset of AP1s users.  
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Fig. 1: Coexistent Network Scenarios: Complete Overlap 

(left) and Intersecting region (right) 

The right-side figure highlights that AP2 can serve 

additional users apart from serving common users with AP1. 

Traditionally, numbers of   users served by AP1 and AP2 

are disjoint and therefore total number of users are more. 

For the scenarios shown in Fig. 1, for a single user, multiple 

APs can provide service and therefore there is a throughput 

optimization avenue available for that user. 

The approaches covered in literature are disjoint to the 

fact that challenges (i)-(v) are to be satisfied by a single 

system for a goal of overall optimization. The network 

interfaces use their corresponding frequency bands to send 

and receive data from a UE. In order to serve the overall 

users in a coherent and throughput-satisfying way, a joint 

estimate of throughput from multiple interfaces is essential. 

Kalman filter provides a way to estimate resources using a 

linear quadratic estimation method. In a very first usage of 

this property to the best of our knowledge, this paper builds 

upon an overall system to optimize throughput using 

Kalman filter for the joint optimization of throughput in a 

multi-homed scenario.  

The system is compared between distributed as well as 

centralized optimization and a tie- breaker using energy is 

proposed. 

The rest of the paper is organized as follows. Section 2 

explains the mutlihoming scenario in detail with an 

emphasis on our approach to deal with a heterogeneous 

system. Section 3 provides details of Kalman filter with 

respect to the proposed system scenario. A distributed 

approach is compared with a centralized approach in Section 

4. Section 5 presents numerical analysis and results while 

the conclusions are drawn in Section 6 with an overview 

about our future work. 

II. THE PARADIGM OF MULTIHOMING 

The Internet has evolved as a network of multiple 

heterogeneous networks with varied hardware, software, 

frequency spectrum and access devices. Figure 2 illustrates 

one such heterogeneous system in which a UE receives 

signals from an eNB and a 5G Femtocell.  

The smartphones can scan more than 20 neighboring 

base-stations simultaneously before selecting a single largest 

signal strength as a home carrier.  

Using the gigahertz level processing capabilities of a UE 

moving towards faster clock cycles augmented with next 

generation of scheduling algorithms, it is possible to use 

multiple radios simultaneously. 

 
Fig.2: Network Multihoming Illustration 

A. System Considerations 

The multihoming scenario has various participating 

entities in the system. At the bottommost layer, there are 

resource- hungry devices which contend or share 

throughput, at the middle layer, the resources are allocated 

to the devices and at the topmost layer, the decision for 

resource allocation is typically made. Understanding these 

system considerations is important to design a robust and 

scalable scheduler and are presented here. 

D2D Communication 

The device to device (D2D) communication is widely 

stud- ied [12], [13] for collaborative or shared network 

usage. A mobile hotspot is an example in which a dongle or 

mobile device serves other devices in the vicinity using the 

Wi-Fi technology while the backhaul is also wireless, 

primarily LTE network in the MHz spectrum range. 

X2-based Signaling 

Implications arising from user mobility such as change in 

signal strengh and handover are communicated among eNBs 

(evolved node-B) using X2 signaling interface [14]. In case 

of vertical radio technologies, a signaling compatibility or 

fallback mechanism is considered for smooth information 

exchange between the network points. 

Multi-Radio 

Different technologies bring multiple inter-operability 

challenges. For example: LTE eNBs operate in the ∼MHz  

range while the LTE Femtocell and 801.11 based Wi-Fi 

operate in the ∼2.4 GHz range. Moreover, the packet 

scheduling and contention mechanisms in all these 

technologies is also different. Therefore, when designing a 

joint scheduler considering these technologies, the 

heterogeneity of the parameters should be considered fully.  

Decision Mechanism 

The joint scheduling problem can be dealt either centrally 

[15] at the mobile core network or in a distributed fashion at 

the traffic entry points by self-coordination mechanisms. In 

both these methods, there is a difference in the energy 

consumptions due to control plane message exchanges and 

energy savings by optimizing the network usage itself.  
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B. System Design 

For a heterogeneous system shown in Figure 2, the 

specific design choices such as signal fading, user 

throughput, sys- tem throughput, and packet loss are to be 

considered. Here, we describe ways of approaching the 

problem of resource scheduling for joint optimal throughput 

using Wi-Fi and LTE. 

Channel Effects 

Channel properties in a wireless communication system 

vary widely. A transmitted signal undergoes fading, mul- 

tipath and Doppler effect before reaching the destination. 

Moreover, there are added noise and interference which 

affect the signal quality. 

Analyzing the impact of these parameters is necessary to 

build a throughput-optimized system. The signal variations 

in an Additive White Gaussian Noise (AWGN) channel due 

to Rayleigh fading are shown in Figure 3 by considering 

different Doppler frequencies. Multiple NLOS (non-line of 

sight) between the transmitter and the receiver causes the 

Rayleigh fading which assumes numerous reflection waves 

with i.i.d. (independent and identically distributed) 

property. Therefore, in case of multi-homing scenario, we 

consider channel effects on different waves directed towards 

a single receiver from multiple transmitters. 

 
Fig. 3: Signal Variations with the Doppler Frequency 

Channel Estimation 

The channel knowledge in an LTE system is acquired by 

sending periodic pilot signals (already known at the re- 

ceiver) before sending the data. This assists eNB in 

synchronization, timings, transmission rate, coding and 

modulation scheme, and finding channel state information. 

The channel conditions are estimated and tracked 

continuously using the feedback given by the receiver. Due 

to large scale and small scale fading, the channel state varies 

in about every 5 ms. Due to this variations, there are channel 

estimation errors which further leads to signal detection. 

Therefore, a robust channel estimator is required for a 

optimal system design. 

C. A Case for the Kalman Filter 

As discussed earlier, designing a multi-homing system 

re- quires a robust channel estimator which can adopt 

itself timely and can incorporate multiple system 

parameters inherently. Kalman filtering which uses the 

linear quadratic estimation on a series of observations over 

time to produce a close estimate within an interval. This 

is a critical step in multi-homing given the fact that 

channel effects and estimation errors adversely affect the 

system throughput. Therefore, in the next section, we 

describe a Kalman filter based LTE and Wi-Fi joint 

scheduler with an objective to optimize the system 

throughput. 

III. KALMAN FILTER BASED LTE AND WIFI 

SCHEDULER 

Resource scheduling in a multi-homing system requires 

inputs and estimations from various entities.  

In general, the joint scheduling of LTE and Wi-Fi can be 

done either by a cooperating control plane exchange between 

two Access Points (APs) in the resource plane or using a 

central con- troller with a global view of the network as 

illustrated in the Figure 4. 

  
Fig.4: Illustration of Resource Scheduling using 

Estimation 

The user plane provides information to the resource plane 

consisting of APs. The part (A) in the figure highlights the 

distributed control plane while the (B) part shows a global 

decision method. In a hybrid system, A and B can be 

combined.  

The resource plane gathers measurements from the UE, 

external data such as other UEs signal strength, resource 

block (RBs) allocations, and past stored data such as signal 

to noise ratio, to estimate the channel conditions. These 

estimations in a distributed control are communicated to the 

other AP whose scheduler decides based upon a joint metric 

which resource is to be allocated to a given UE. For the 

central scheme, the controller estimates and schedules 

jointly using global state information available. The rest of 

this section describes how we build independent modules 

described in the Figure 4. 

UE State Estimation 

Kalman filter can be used to estimate the channel state 

conditions as shown in [16] and later adjusting throughput 

using the scheduling algorithms [17].  

In this work, we combine channel state information and 

the joint scheduling algorithm to determine the UE state. 

The channel state is estimated using Kalman filter approach 

as shown in the Figure 5. 

 



 

KRAFT: KALMAN FILTER BASED ENERGY-AWARE LTE AND WI-FI JOINT THROUGHPUT 

OPTIMIZATION 

27 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B10050982S1119/2019©BEIESP 
DOI: 10.35940/ijrte.B1005.0982S1119 

 

 

  

Kalman Estimator 

At each of the Kalman Estimator (KE), the inputs such 

as Signal to Noise Interference Ratio (SINR), Bit Error 

Rate (BER), Throughput (Current) and Policy information 

such as proportional fair or maximum throughput is 

correlated with the previous state information to estimate 

the next state. 

Joint Scheduler 

The Joint Scheduler (JE) takes input from the Kalman 

Estimator for LTE as well as Wi-Fi. In a distributed 

scenario (Part A in the Figure 4), the JE is  

placed at each of the APs or eNBs. For a central 

controller case (Part B in the Figure 4), the JE is placed 

at the central node which optimizes system globally at 

the cost of collected control plane which introduces 

additional latency into the resource allocation decision 

process. This is an iterative process where the inputs to the 

JE are used to finalize the allocated resources to each of 

the UEs in the system. 

 
Fig. 5: Channel State Estimation and Joint Scheduling 

The next section describes our system model to achieve    

 

IV. SYSTEM MODEL 

Consider a receiver (UE) receiving inputs from multiple 

transmitters (Wi-Fi AP and LTE eNB) through an 

AWGN channel. The estimated output at the UE, k, from 

any one of the transmitter can be given as: 

         (1) 

In Equation 1, xk (t) is the transmitted signal and n(t) is 

the channel noise at any given time t. Consider that a 

known pilot signal, p(t) is sent from the transmitter to the 

UE, the signal error at the UE can be calculated as: 

              (2) 

In Equation 2,  is the received pilot signal. The 

error or the received pilot signal should be sent back to 

the transmitter which should estimate signal to noise 

ratio and bit error rate for the UE. 

The system itself introduces some errors along with the 

external errors due to problems in the estimation, transmit- 

ter and receiver hardware, and channel noise. These 

additional errors are propagated while measuring the 

system parameters. The measured parameters are called 

observed state from which, using proper techniques, one can 

estimate the optimal system state. For linear systems with 

AWGN properties which introduce Gaussian errors, 

Kalman filter can recursively provide best estimate from 

the available observed states. Further, for non-linear 

system, one can qualify the system optimally which is out 

of scope in this work. Next, we describe the Kalman 

specific parameters, a joint throughput estimator and 

finally, providing energy optimization by proposing 

KRAFT which considers the accuracy of estimates and 

energy consumption before deciding on the scheduling. 

Kalman Estimator for Single Paramter 

The Kalman estimator presented here has three phases: 

estimation, prediction and correction. For a random 

variable, X, the expected value over time, T is given by: 

                 (3) 

In Equation 3, p(x) is the weight given to a value x. 

Considering ‘T’ to be periodic and in the order of ∼ms for 

an  LTE RB scheduling case, we can also find the discrete  

average of Equation 3 as: 

(4) 

On the similar thoughts, the variance σ2 and co-variance 

of ith sample with respect to the jth, Cij can be defined in 

the discrete format. Therefore, the co-variance matrix, C 

for an i.i.d process, one parameter can be defined as: 

(5) 

Therefore, the current state of a random variable X can 

be found out using the previous states as follows for a linear 

estimation: 

xk = Φk−1xk−1 + N  (6) 

In Equation 6, N is the random variable of Gaussian 

noise drawn from N (0, C) and Φk−1 is the state transition 

matrix at k − 1. In the prediction stage, a new state is 

calculated from the previous state incorporating old 

estimates using: 

        (7) 

Observe that in Equation 7, there might be additional 

error introduced due to estimation from an estimate. This 

is corrected in the third stage, correction as follows: 

       (8) 

In Equation 8, G is the gain of Kalman filter and E is the 

error in the previous estimates. This recursive approach can 

estimate the state of a single parameter in the system. 

Next, we will build model to combine multiple parameters. 

Joint Estimation 

For a set of parameters, a joint estimation can provide 

us a way to provide better estimates of input variables 

and hence the throughput decisions can be improved. The 

joint estimation is similar to finding a correlated instance 

of random variables.  
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The co-variance of two random variables X1 and X2 is 

given by: 

Cov (X1, X2) = E [(X1  − E[ X1 ])(X2  − E[ X2 ])] (9) 

If the expression presented in Equation 9 is positive on 

taking an average, it can be simplified as: 

Cvar = E [X1X2] − E[ X1]E[X2]        (10) 

For a system with two parameters, a joint estimation 

then can be carried out by inputting Cvar in the Eq. 8 as 

follows: 

=            (11) 

Finally, as  in the Equation 11 evolves as a 

multivariate random walk, the positivity of one variable 

affects the lag of other and vice-versa. This property 

captures both the variables simultaneously in making the 

decision. Next sub- section illustrates using KRAFT for 

energy aware decisions for throughput optimization. 

Energy Aware Decisions with KRAFT 

In this subsection, we explain how a joint estimation 

using the Kalman filter enhances the performance of a 

system in an energy-aware scenario. We call this model, 

KRAFT. In KRAFT, along with one user-specific 

parameter, there is always an energy parameters associated 

while modeling using Equation 10. 

In an unbiased Kalman filter, the estimation of one 

parameter impacts that of other as the parameters are not 

i.i.d (independent and identically distributed) which results 

in the change of Kalman gain by fluctuating numerical 

values. When discretized, these parameters carry their states 

to the next estimate and therefore provide a general 

mechanism to satisfy our requirement of finding the future 

value. 

KRAFT assigns each of the input parameters to the 

system as shown in Figure 5. The energy is always 

assigned the highest weight and therefore the system is 

favorable towards saving energy. For each set of 

parameters, the throughput is then estimated using the 

optimized method described in [17, 19, 20]. Finally, the 

throughput is estimated using four different scenarios as 

described in the following cases. In this work, following 

cases are analyzed.  

1. Case 1: Wi-Fi: 

Here, the decisions are solely based on the Wi-Fi and 

LTE is not taken into the considerations. 

2. Case 2: LTE: 

Like above, here only LTE is taken into consideration for 

scheduling. 

3. Case 3: Joint: 

In this case, both LTE and Wi-Fi are jointly scheduled as 

illustrated in the earlier subsection. 

4. Case 4: KRAFT: 

Here, KRAFT is simulated to  provide  energy  the  prime 

importance while scheduling.  

Next section discusses the results obtained in this work. 

V. RESULTS 

The prime objective of this work is to provide a 

mechanism for joint scheduling while saving energy. 

Figure 6 shows the energy usage between multiple 

approaches on a normalized scale. For small number of 

users (N=50), both Joint and Kraft are able to serve 

better. The reason is Joint works by allocating Wi-Fi and 

LTE resources in the order of preference and availability 

which for small set of users can be satisfied without large 

scale estimations, and therefore is similar to KRAFT.  

In case of small number of users, the energy consumed 

by Wi-Fi only and LTE-only is almost half as compared to 

the other two approaches which is due to the fact that 

individual approaches do not focus on improving 

throughput but only on providing connectivity. As the 

number of users quadrupled (N=200), KRAFT per- forms 

at least 20% better than Joint by considering energy 

optimization. The LTE-only approach while in this case 

becomes power hungry because of the fact that LTE can 

provide more data rate to the users at the cost of using more 

energy. 

 
Fig. 6: Comparing Energy Usage between Multiple 

Approaches 

      Figure 7 compares the throughput (in Mbps) of various 

approaches for the parameters similar to [7]. The throughput 

of Wi-Fi is based upon CSMA/CA approach which depends 

upon contention. Therefore as the number of resource block 

to be allocated increase, the throughput goes down and is 

minimum of all the approaches. For LTE, the throughput is 

based upon centrally allocated resource block scheduling 

mechanism which outperforms Wi-Fi only system. In case of 

Joint, the throughput is a factor of coordinated assignment 

and therefore for small  RBs  it  is  more  than  the  KRAFT 

in some cases while KRAFT, as it considers the overall 

metrics in order to evaluate the assignment by estimation 

outperforms almost all the schemes. 

 
Fig.7: Comparing Throughput of Multiple Schemes 
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VI. CONCLUSION 

In this work, a Kalman filter based energy-aware joint 

estimator for resource block scheduling in LTE and Wi-Fi 

is designed. We call it KRAFT. A cooperative system in 

which Wi-Fi access point (AP) works in accord with the 

LTE eNB is proposed which can support a User 

Equipment’s (UE) Quality of Experience (QoE) needs by 

allowing it to connect through multiple interfaces. The 

challenge of interoperability between the greedy LTE 

scheduler and the deferral based Wi-Fi band allocation is 

solved by providing an exchange mechanism. The discrete 

SINR values, available bandwidth and resource 

requirements are periodically measured to estimate the 

system throughput optimized scheduling among Wi-Fi and 

LTE networks. Finally, an energy-aware scheduling 

algorithm is proposed as a tie breaker between all the 

other approaches such as Wi-Fi only, LTE only and Joint. 

It is shown that KRAFT outperforms all other approaches 

both in terms of energy savings and throughput. Out future 

work includes emulating the proposed framework on a 

real-time testbed. 
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