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Abstract: Machine Learning is empowering many aspects of 

day-to-day lives from filtering the content on social networks to 

suggestions of products that we may be looking for. This 

technology focuses on taking objects as image input to find new 

observations or show items based on user interest. The major 

discussion here is the Machine Learning techniques where we 

use supervised learning where the computer learns by the input 

data/training data and predict result based on experience. We 

also discuss the machine learning algorithms: Naïve Bayes 

Classifier, K-Nearest Neighbor, Random Forest, Decision Tress, 

Boosted Trees, Support Vector Machine, and use these 

classifiers on a dataset Malgenome and Drebin which are the 

Android Malware Dataset. Android is an operating system that is 

gaining popularity these days and with a rise in demand of these 

devices the rise in Android Malware. The traditional techniques 

methods which were used to detect malware was unable to detect 

unknown applications. We have run this dataset on different 

machine learning classifiers and have recorded the results. The 

experiment result provides a comparative analysis that is based 

on performance, accuracy, and cost. 
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I. INTRODUCTION 

As we know that smartphones are the requirement of the 

new era and it has been around us and has become an 

indispensable part of our day-to-day lives. As we are getting 

several benefits, we are expecting more and more out of it. 

Due to this, our consumption of cell phones is increasing, so 

as our dependability, and we began to expect more and more 

from our device. Today, we are in need of smartphones, 

traditional phones are not sufficient to solve our daily real-

time task application, but smartphones are designed to do so. 

Smartphones are categorized according to the OS installed in 

it. The most popular OS includes Android OS, iPhone OS, 

Blackberry RIM OS, and Microsoft Windows OS and out of 

which Android captures the market with 86.2% sales in 2018 

[1]. With the increase in demand for these devices, there is a 

huge competition amongst manufacturers to deliver as many 

products as they can to earn maximum profit. In this sprint 

of producing more and more devices security somehow is 

compromised.  
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There is a huge pool of android developers with which 

there is an alarming growth in the rate of malicious apps 

which is becoming an issue for concern. Android is 

considered vulnerable over iOS for the reason that it allows 

the apps to be installed from the sources which are 

unverified such as websites and apps from third-party stores 

[2]. These malicious apps can hamper security as they can 

steal confidential information and compromise the system. If 

we roughly calculate a malicious android app is up every 10 

seconds [3]. Android is also amongst the most valuable 

target for the developers of malware. As developers are 

finding interest and gains in malware so we have around 49 

Android malware [4]. Due to which a great amount of effort 

in coding the tools for software security which are capable of 

handling these continuously flourishing market of malware. 

Machine Learning is the subset of AI, which gives an 

idea that if we feed correct data to the machine, it can learn 

problem-solving by itself with experience [5]. It can also be 

explained as the field which makes the computer learn based 

on its experiences rather than programmed. The machine is 

given the learning dataset, e.g. if we want the machine to 

learn how a bird looks like, then we have to provide it with 

the images of different types of birds from different angles 

so that the next time the machines sees a bird it recognizes 

that yes it is a bird and also record it for its experience [6].  

Machine Learning classifiers are playing an important 

role in the development of bright systems. ML takes a 

dataset as input and produces a model that is capable of 

handling new data. Adopting such methodologies has always 

proven to enhance the accuracy of the detection system. 

Many other methods available in the market such as Anti-

virus which drain the system’s resources, we can use some 

other methodologies to detect the malware as we don’t want 

to engage many resources and hamper the responsiveness. In 

this paper, we have used dataset CICAndMal2017 which is 

Android dataset and have implemented several machine 

learning classifiers such as Naïve Bayes Classifier, Random 

Forest, Decision Tress, Boosted Trees, K-Nearest Neighbor, 

and Support Vector Machine, on it to check the accuracy of 

each with respect to that particular dataset.  

In this paper, our work is divided into the following 

sections. The discussion in Section II is about related Work. 

Sec III shows the architecture of android, section IV gives 

the idea of related vulnerabilities, section V describes the 

methodology of our work in which we discuss evaluation 

metrics and the classifiers which were used, section VI show 

the results obtained and discussion, And finally, the 

conclusion our paper in section VII.  
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II. RELATED WORK 

There is a noteworthy work is done in the field of 

detection of Android Malware. The analysis is broadly 

categorized into two categories: 

a) Static and 

b) Dynamic. 

Static malware detection is those which are done without 

running the app and can include 1) API calls 2) permissions 

which can be extracted from a special file in the package 

known as AndroidManifest.xml. On the other hand, 

Dynamic is the one which is done when the application is 

running which includes [7]:  

a) Network traffic analysis 

b) IP address 

c) Battery usage etc.  

Also, these two approaches can be mixed to generate a 

hybrid solution.  

Uses a total of 30 apps and 5 malware samples namely: 

Gold Dream, DroidKungFu2, Angry Birds Rio Unlocker, 

Snake, PJApps. The resources were allocated before the app 

starts and behavioral patterns were extracted. The features 

used were all divided into seven categories: Network, 

Power, Process, CPU, SMS, Memory, and Virtual Memory, 

and these features were inputted to information gain to 

select the features. To this input data, four types of 

classifiers are applied: Naïve Bayesian, SVM-Support 

Vector Machine, Random Forest, and Logistic Regression. 

The author in this paper concludes that the performance of 

Random Forest proves the most promising [7]. The static 

and dynamic approaches are employed using two methods: 

Heuristic method and Signature-based method [8]. In 

signature-based, the common method used is an anti-virus 

vendor and it depends upon identifying a unique signature 

in the malware. But these methods fail when it comes to 

unknown malicious code. On the other side, heuristic 

depends upon the rules which are noted by either the 

specialist or by the machine learning classifiers that can 

define the suspicious behavior and can also detect the 

malicious unknown code [9]. In this paper [10][1], the 

author has extracted the Android APK file which is 

equivalent to jar files in java by reverse engineering, as on 

its extraction AndroidManifest.xml is accessible which 

contains all the permissions. Permissions are seen to check 

for the standard and non-standard ones and CFG (control 

flow graphs) are generated using the raw bytecodes. 

Application permissions and experiments based on feature 

selection method is used in [9]. Feature Extractor 

(communicates with different components and extract the 

feature metrics), a processor (for analysis and detection), 

Threat weighing unit (collects the analysis result from each 

processor and apply the algorithm) and Main service (gets 

information from an alert manager about the malicious app 

and decides the action to be taken) modules are used. User 

rating, application permissions, the number of ratings given, 

size of the particular application are considered and the ML 

algorithms Random forest, Bayesian network, Decision tree 

are applied. The number of samples used was around 820 

and the experiment concluded that a higher accuracy rate 

can be achieved without using the false positives rate.  

Some research paper presents the use of Neural Networks to 

analyses the category of the application using permissions 

from Manifest file by multilayered feedforward networks. 

This feedforward network has 2 layers, one hidden layer 

performs the sigmoid function and another output linear 

function is deployed. The author believes that the 

permission written in the manifest file can be modified by 

the malicious code authors, so to check this the author 

permuted the test data and fed the network [11]. One more 

research is based on the APK analyzer. Here an APK 

analyzer is applied to a totality of 6863 applications, out of 

which 3938 applications were benign and 2925 were 

malicious. Features like permissions, API calls, and many 

others were drowned out from the manifest and dex class 

file. All the features were combined using mutual 

information and the Bayesian algorithm was used for 

classification [12]. Another research work presents the 

features extracted from the manifest file such as application 

name, application category, description. Package, price, 

rating count, rating value A total of 18,174 applications 

were extracted for the features and were classified using K-

Mean clustering. It was analyzed that these methods were 

enough to detect the malware, installation, and running was 

not required [13]. One more interesting research found that 

discusses using TinyDroid which uses Machine learning 

techniques and instruction simplification. It proposes a 

model that first extract the symbol-based opcode from the 

Android APK. In the second step it uses the N-gram 

approach and the classifier is trained to feed it to the 

machine learning classifiers. The Drebin Dataset is 

preprocessed to remove the unwanted features. This 

experiment shows that TinyDroid gets a higher precision 

rate and a less false alarm rate [14]. The study includes 

extracting the features from Android devices and fed the 

data to two machine learning algorithms which are the 

Bayesian algorithm and  Bayesian algorithm with a Chi-

square filtering test. The result of this experiment shows 

that the Bayesian algorithm with Chi-square gives a more 

accurate result which is near about 89% and the precision 

rate of Bayesian algorithm is almost 80% [15]. Another 

Study shows how to detect the fresh malware which is self-

updating because these are the most dangerous ones which 

can steal confidential information. They have used 5-10 

self-written Trojan malware which has two versions: one 

for the benign app and one for the malicious one. Several 

traffic-based information is extracted from the app while the 

app is in running state, and the apps are installed in the 

devices and the traffic is analyzed. This traffic analysis 

helps us to distinguish the benign and malicious app. The 

features are extracted and measured within equal time 

intervals. This study was successful to detect the malicious 

repacked app with the help of traffic analysis [16]. 

The lowest layer of the Android architecture which is Linux 

kernel is accessed to extract the Linux based features and 

afterward, these features are used to detect malicious 

applications. A total of 59 features were abstracted which 

includes: CPU, network, memory, etc. and on and all 6 

malware was run and the system to observed to extract the 

above-mentioned features.  
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The data collection process is initiated every 10 secs and the 

collected data is sent to the server which in turn classifies 

this data. 39 features out of the total 59 were selected and 

the results were compared before and after the application 

of the features. Feature selection enhances the precision rate 

and lowers down the false-positive rate [17]. 

III. ANDROID ARCHITECTURE  

The architecture of Android is depicted in Figure 1. It 

consists of the following layers: 

a) Application Software: The first layer of this 

architecture is the application software layer, which has 

all the applications with which the user interacts. These 

apps provide a way for the user to control the hardware. 

Examples may include Camera, Clock, Calendar, and 

many more. 

b) Application Framework: This layer is the second layer 

in the architecture which gives many services of higher 

level to applications that are in the form of java classes. 

Some major services such as Content providers, 

Activity manager, Notification manager, Resource 

manager, and view system are some of the components 

of this layer.  

 
Figure 1: Layered Architecture of Android 

c) Libraries: The third layer is the bundle of libraries 

which includes WebKit open-source web browsing 

engine, familiar library libc, Android built-in database 

SQLite which a convenient repository for dividing and 

storing of application data, libraries which contains 

features to record audio & video, libraries which are 

responsible for securing the SSL. 

d) Linux kernel Layerl: The lowermost layer is the Linux 

kernel layer which includes almost 115 patches 

altogether. The layer provides an abstraction level 

between the hardware of the device and has all the 

drivers which are essential like keyboard, camera, 

display, etc. Here all the thing in whose handling Linux 

is good at is done by the kernel such as an extensive 

array of device drivers which provide us with the ease 

of hardware peripheral interfacing, the networking, etc. 

IV. VULNERABILITIES 

Here, the classification of each vulnerability is done in 

accordance with the layer from which it is generated. The 

purpose of this classification is to get an idea of the weak 

areas of the mobile architecture implementation. 

a) Application layer: The major attack which occurs on 

this layer is through the browser where the attacker can 

execute some unwanted code to get into the system. 

After making the way into the system it can get access 

to all the sensitive data including the gallery. Also, the 

injection of cookies cannot be controlled. 

 
Figure 2: Mobile architecture and associated 

vulnerability 

b) Application Framework Layer: The attack which takes 

place at this layer is the DDoS attack and can also be 

unauthorized access. In some cases, it has been seen 

that the attacker gets deactivated all the locks on 

sensitive data, which may compromise much sensitive 

information like the contacts, gallery, camera, etc. 

c) Library Layer: The vulnerabilities here are having a 

huge impact. The attack launched was the DOS (Denial 

of service) attack which leads to the stack overflow by 

the execution of the API passing the wrong number of 

arguments. Some attacks were also carried out by the 

malware to get the authorization from the root of the 

device. By doing this, an attacker can change the code 

and make it act maliciously without anyone knowing 

about the change in the signed APK.  

d) Linux Kernel Layer: This layer is the most secure, but 

still some of the vulnerabilities can be found. Any 

number of fork commands (command to create a 

process) an be launched without authenticating the 

identity of the source by using the wrong set of 

permissions [18]. 

V. METHODOLOGY 

The investigation is carried out using two datasets, and the 

details of these datasets are depicted in table 1. 

TABLE I.  DATASETS AND THEIR DETAILS 

Dataset Samples Features Benign Malware 

Malgenom

e 

3799 215 2539 1260 

Drebin 15036 215 9476 5560 
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The first dataset which is used for this experiment is 

Malgenome dataset which consists of features from 3799 

application samples, in which the number of apps with 

malware is 1260 and the benign applications are 2539. This 

dataset is widely used by the researchers and is obtained via 

static code analysis of the Android App. The second dataset 

which is used is Drebin dataset where the samples used were 

15036, from which the number of malicious apps is 5560 

and the benign apps were 9476. The number of features used 

in both the datasets is 215. 

The flow of our experiment is depicted in figure 3. We 

started with the raw dataset of Android Malware. The data is 

then pre-processed to filter out the unnecessary features and 

the pre-processing is also done by the WEKA tool. After the 

pre-processing is done, the data is fed into the different 

classifiers of machine learning to fetch the evaluation result.  

 
Figure 3: Flow of the experiment 

A. Evaluation Metric 

There are certain performance metrics which are used 

and are as follow: 

 TPR: TPR is defined as the ratio classified apps that 

are correct which contains malware to the number of 

malicious apps in totality. 

 TPR= TP / (TP + FN) 

Where TP: True positives (correctly identified malicious 

apps), and FN: False negatives which are misclassified 

malware instances. 

 FPR: This is given as the ratio wrongly classified 

benign apps to the number of benign apps in totality. 

 FPR= FP / (TN + FP) 

Where FP: false positives and TN: true negatives. 

 Precision: This rate is positive predictive and is 

stated as below: 

 Precision= FP / (TP + FP) 

 The time taken to test the models are given in 

seconds. These models are tested on 64 bit, Windows 

10 PC which is having 12 GB of RAM. 

B. WEKA Tool 

The tool which we have used here to analyze the dataset 

is the WEKA Tool. It is a software that is open-source that 

pre-process the data first according to the need for an 

experiment, apply several machine learning algorithms, and 

create a visual representation. We take raw data as input 

which may have several null values and unwanted attributes, 

the pre-processing phase of WEKA helps to clean all that. 

Next, depending on the kind of model which you need to 

develop you may have to select from the given options like 

Cluster, Classify, or Associate. Under each selection you 

have several machine learning algorithms, you may select an 

algorithm of your choice and the particular dataset to get the 

results. Also, the same dataset can be applied to different 

models, and then the output can be compared to check which 

model gives the best output to meet your purpose. WEKA is 

open-source under GNU public licensing and is considered 

platform-independent as the code is written in java and it 

provides the user with a graphical user interface to interact 

with files and provides visual graphs and curves for analysis 

[19]. 

C. Classifiers 

1. Naïve Bayes: This is a classifier of machine learning, 

which comes under the group of supervised learning 

and is based on probabilistic logic. This algorithm 

assumes that all the values for particular features are 

not dependent on any of the other feature’s value. In 

this classification, we try to find out the best 

hypothesis (h) for the give data (d). To find out the 

best hypothesis the easiest solution is to use our prior 

knowledge. The theorem provides us with a method 

of calculating the best hypothesis provided the 

knowledge previously gained. The theorem here 

says: 

P(hy|da) = (P(da|hy) * P(hy)) / P(da)  

Where P(hy|da) here is the probability of the given 

hypothesis in which the data (da) and is known as the 

posterior probability. P(da|hy) here the probability of 

the data da to provided hypothesis hy. P(hy) here is 

the probability of the true hypothesis and is known as 

prior knowledge. P(da) here is the probability of data 

provided [20]. 

2. J48: J48 algorithm is a classifier that belongs to the 

decision tree group which is in turn part of a 

supervised learning approach in which the data input 

is continuously split according to particular 

parameters. The tree can be categorized into two 

types of nodes such as decision nodes and leaves. 

The additional features of J48 are decision tree 

pruning which means to prune or not to traverse the 

next node if we find the best solution, derivation of 

rules, accounting for missing values. The basic steps 

of this algorithm are: 

 If the instance belongs to the same class, it is 

denoted by leaf and then the leaf is returned by 

labeling the same class. 
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 The attributes are tested to calculate the potential 

information and then the information gain is 

calculated. 

 Then the best solution is selected for branching 

[21]. 

 

3. Random Forest: Random Forest is a classifier of 

machine learning in which a supervised learning 

approach for classification is. We know that the 

forest terminology is used for a collection of trees, 

more trees mean more robust forest. This algorithm 

creates trees randomly on the dataset and selects the 

best suited by voting. Due to this approach, it 

eliminates the issue of over-fitting by averaging the 

values. These votes can be weighted or un-

weighted.[22] The steps followed by the algorithm 

are: 

 Bootstrapping of a dataset is done to eliminate 

the data which is not required. 

 A tree is created using a random number of 

attributes. The attributes form the leaves and 

nodes using the tree building algorithm. 

 The trees are not pruned and are allowed to grow 

to its fullest. 

VI. RESULTS AND DISCUSSIONS 

This section contains the result of our experiment which 

was carried out on two different datasets and the classifiers 

applied were three namely: J48 Decision Tree, Naïve Bayes, 

and Random Forest. The tool was utilized as an open-source 

tool, WEKA. The datasets were optimized using this tool 

only. For all the classifiers the value of percentage split was 

set to 70% and 30%. Splitting the dataset means divided it 

into two parts: one for the testing and the other for training.  

The same configuration for both the datasets was used in 

order to maintain the consistency. The given table 2 and 

table 3 clearly defines the result of each classifier used in 

accordance with different parameters. 

Figure 4 shows the classification of classes resulted 

which are class S (Malware) and class B (Benign), and 

Figure 5 shows some of the attributes of the Malgenome 

dataset. 

TABLE II.  RESULTS ON MALGENOME DATASET  

Classifier TPR FPR Precision F-Measure 

Naïve Bayes 0.961     0.038 0.962 0.962 

J48 0.989   0.015 0.989 0.989       

Random 

Forest 

0.991 0.014     0.991 0.991 

TABLE III.  TABLE 3: RESULTS ON DREBIN DATASET  

Classifier TPR FPR Precision F-Measure 

Naïve Bayes 0.835 0.126 0.862       0.837       

J48 0.972     0.033     0.972       0.972       

Random 

Forest 

0.984     0.022     0.984       0.984       

 
Figure 4 : Shows the Malgenome dataset results 

 
Figure 5: Some of the attributes visualized of Malgenome 

Figure 6 shows the classification of classes resulted 

which are class S (Malware) and class B (Benign), and 

Figure 7 shows some of the attributes of the Drebin dataset. 

 
Figure 6 : Shows the Drebin dataset results 

 
Figure 7: Some of the attributes visualized of Drebin 
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VII. CONCLUSION 

Machine learning is a branch of computer science which 

suggests that if we input correct data to the computer then it 

can learn and perform future actions with the help of that 

training data and its experience. The analysis done here is 

how the different machine learning classifiers work for a 

given particular dataset. The different malware datasets 

used were Malgenome and Drebin datasets. We tried to 

analyze and summarize the accuracy of three classifiers of 

machine learning which are J48 Decision Tree, Naïve 

Bayes, and Random Forest on these datasets. The tool used 

for experimentation is the open-source tool WEKA. The 

results of each are depicted by the tables. 
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