
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S12, September 2019

65
Retrieval Number: B10110982S1219/2020©BEIESP

DOI:10.35940/ijrte.B1011.0982S1219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Android Malware Detection using Machine

Learning

Atika Gupta, Sudhanshu Maurya, Divya Kapil, Nidhi Mehra, Harendra Singh Negi

Abstract: Machine Learning is empowering many aspects of

day-to-day lives from filtering the content on social networks to

suggestions of products that we may be looking for. This

technology focuses on taking objects as image input to find new

observations or show items based on user interest. The major

discussion here is the Machine Learning techniques where we

use supervised learning where the computer learns by the input

data/training data and predict result based on experience. We

also discuss the machine learning algorithms: Naïve Bayes

Classifier, K-Nearest Neighbor, Random Forest, Decision Tress,

Boosted Trees, Support Vector Machine, and use these

classifiers on a dataset Malgenome and Drebin which are the

Android Malware Dataset. Android is an operating system that is

gaining popularity these days and with a rise in demand of these

devices the rise in Android Malware. The traditional techniques

methods which were used to detect malware was unable to detect

unknown applications. We have run this dataset on different

machine learning classifiers and have recorded the results. The

experiment result provides a comparative analysis that is based

on performance, accuracy, and cost.

Keywords: Android, Malware, Machine learning, Classifiers

I. INTRODUCTION

As we know that smartphones are the requirement of the

new era and it has been around us and has become an

indispensable part of our day-to-day lives. As we are getting

several benefits, we are expecting more and more out of it.

Due to this, our consumption of cell phones is increasing, so

as our dependability, and we began to expect more and more

from our device. Today, we are in need of smartphones,

traditional phones are not sufficient to solve our daily real-

time task application, but smartphones are designed to do so.

Smartphones are categorized according to the OS installed in

it. The most popular OS includes Android OS, iPhone OS,

Blackberry RIM OS, and Microsoft Windows OS and out of

which Android captures the market with 86.2% sales in 2018

[1]. With the increase in demand for these devices, there is a

huge competition amongst manufacturers to deliver as many

products as they can to earn maximum profit. In this sprint

of producing more and more devices security somehow is

compromised.

Revised Manuscript Received on September 25, 2019.

Atika Gupta, School of Computing, Graphic Era Hill University,

Uttarakhand, India. E-mail: atika04591@gmail.com

Dr Sudhanshu Maurya, School of Computing, Graphic Era Hill

University, Uttarakhand, India. E-mail: dr.sm0302@gmail.com

Divya Kapil, School of Computing, Graphic Era Hill University,

Uttarakhand, India. E-mail: divya.k.rksh@gmail.com

Nidhi Mehra, School of Computing, Graphic Era Hill University,

Uttarakhand, India. E-mail: nidhigehu@gmail.com

Harendra Singh Negi, Computer Application, Graphic Era Deemed to

be University, Uttarakhand, India. E-mail:

mail.harendrasinghnegi@gmail.com

There is a huge pool of android developers with which

there is an alarming growth in the rate of malicious apps

which is becoming an issue for concern. Android is

considered vulnerable over iOS for the reason that it allows

the apps to be installed from the sources which are

unverified such as websites and apps from third-party stores

[2]. These malicious apps can hamper security as they can

steal confidential information and compromise the system. If

we roughly calculate a malicious android app is up every 10

seconds [3]. Android is also amongst the most valuable

target for the developers of malware. As developers are

finding interest and gains in malware so we have around 49

Android malware [4]. Due to which a great amount of effort

in coding the tools for software security which are capable of

handling these continuously flourishing market of malware.

Machine Learning is the subset of AI, which gives an

idea that if we feed correct data to the machine, it can learn

problem-solving by itself with experience [5]. It can also be

explained as the field which makes the computer learn based

on its experiences rather than programmed. The machine is

given the learning dataset, e.g. if we want the machine to

learn how a bird looks like, then we have to provide it with

the images of different types of birds from different angles

so that the next time the machines sees a bird it recognizes

that yes it is a bird and also record it for its experience [6].

Machine Learning classifiers are playing an important

role in the development of bright systems. ML takes a

dataset as input and produces a model that is capable of

handling new data. Adopting such methodologies has always

proven to enhance the accuracy of the detection system.

Many other methods available in the market such as Anti-

virus which drain the system’s resources, we can use some

other methodologies to detect the malware as we don’t want

to engage many resources and hamper the responsiveness. In

this paper, we have used dataset CICAndMal2017 which is

Android dataset and have implemented several machine

learning classifiers such as Naïve Bayes Classifier, Random

Forest, Decision Tress, Boosted Trees, K-Nearest Neighbor,

and Support Vector Machine, on it to check the accuracy of

each with respect to that particular dataset.

In this paper, our work is divided into the following

sections. The discussion in Section II is about related Work.

Sec III shows the architecture of android, section IV gives

the idea of related vulnerabilities, section V describes the

methodology of our work in which we discuss evaluation

metrics and the classifiers which were used, section VI show

the results obtained and discussion, And finally, the

conclusion our paper in section VII.

mailto:dr.sm0302@gmail.com
mailto:nidhigehu@gmail.com
mailto:mail.harendrasinghnegi@gmail.com

Android Malware Detection using Machine Learning

66
Retrieval Number: B10110982S1219/2020©BEIESP

DOI:10.35940/ijrte.B1011.0982S1219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

II. RELATED WORK

There is a noteworthy work is done in the field of

detection of Android Malware. The analysis is broadly

categorized into two categories:

a) Static and

b) Dynamic.

Static malware detection is those which are done without

running the app and can include 1) API calls 2) permissions

which can be extracted from a special file in the package

known as AndroidManifest.xml. On the other hand,

Dynamic is the one which is done when the application is

running which includes [7]:

a) Network traffic analysis

b) IP address

c) Battery usage etc.

Also, these two approaches can be mixed to generate a

hybrid solution.

Uses a total of 30 apps and 5 malware samples namely:

Gold Dream, DroidKungFu2, Angry Birds Rio Unlocker,

Snake, PJApps. The resources were allocated before the app

starts and behavioral patterns were extracted. The features

used were all divided into seven categories: Network,

Power, Process, CPU, SMS, Memory, and Virtual Memory,

and these features were inputted to information gain to

select the features. To this input data, four types of

classifiers are applied: Naïve Bayesian, SVM-Support

Vector Machine, Random Forest, and Logistic Regression.

The author in this paper concludes that the performance of

Random Forest proves the most promising [7]. The static

and dynamic approaches are employed using two methods:

Heuristic method and Signature-based method [8]. In

signature-based, the common method used is an anti-virus

vendor and it depends upon identifying a unique signature

in the malware. But these methods fail when it comes to

unknown malicious code. On the other side, heuristic

depends upon the rules which are noted by either the

specialist or by the machine learning classifiers that can

define the suspicious behavior and can also detect the

malicious unknown code [9]. In this paper [10][1], the

author has extracted the Android APK file which is

equivalent to jar files in java by reverse engineering, as on

its extraction AndroidManifest.xml is accessible which

contains all the permissions. Permissions are seen to check

for the standard and non-standard ones and CFG (control

flow graphs) are generated using the raw bytecodes.

Application permissions and experiments based on feature

selection method is used in [9]. Feature Extractor

(communicates with different components and extract the

feature metrics), a processor (for analysis and detection),

Threat weighing unit (collects the analysis result from each

processor and apply the algorithm) and Main service (gets

information from an alert manager about the malicious app

and decides the action to be taken) modules are used. User

rating, application permissions, the number of ratings given,

size of the particular application are considered and the ML

algorithms Random forest, Bayesian network, Decision tree

are applied. The number of samples used was around 820

and the experiment concluded that a higher accuracy rate

can be achieved without using the false positives rate.

Some research paper presents the use of Neural Networks to

analyses the category of the application using permissions

from Manifest file by multilayered feedforward networks.

This feedforward network has 2 layers, one hidden layer

performs the sigmoid function and another output linear

function is deployed. The author believes that the

permission written in the manifest file can be modified by

the malicious code authors, so to check this the author

permuted the test data and fed the network [11]. One more

research is based on the APK analyzer. Here an APK

analyzer is applied to a totality of 6863 applications, out of

which 3938 applications were benign and 2925 were

malicious. Features like permissions, API calls, and many

others were drowned out from the manifest and dex class

file. All the features were combined using mutual

information and the Bayesian algorithm was used for

classification [12]. Another research work presents the

features extracted from the manifest file such as application

name, application category, description. Package, price,

rating count, rating value A total of 18,174 applications

were extracted for the features and were classified using K-

Mean clustering. It was analyzed that these methods were

enough to detect the malware, installation, and running was

not required [13]. One more interesting research found that

discusses using TinyDroid which uses Machine learning

techniques and instruction simplification. It proposes a

model that first extract the symbol-based opcode from the

Android APK. In the second step it uses the N-gram

approach and the classifier is trained to feed it to the

machine learning classifiers. The Drebin Dataset is

preprocessed to remove the unwanted features. This

experiment shows that TinyDroid gets a higher precision

rate and a less false alarm rate [14]. The study includes

extracting the features from Android devices and fed the

data to two machine learning algorithms which are the

Bayesian algorithm and Bayesian algorithm with a Chi-

square filtering test. The result of this experiment shows

that the Bayesian algorithm with Chi-square gives a more

accurate result which is near about 89% and the precision

rate of Bayesian algorithm is almost 80% [15]. Another

Study shows how to detect the fresh malware which is self-

updating because these are the most dangerous ones which

can steal confidential information. They have used 5-10

self-written Trojan malware which has two versions: one

for the benign app and one for the malicious one. Several

traffic-based information is extracted from the app while the

app is in running state, and the apps are installed in the

devices and the traffic is analyzed. This traffic analysis

helps us to distinguish the benign and malicious app. The

features are extracted and measured within equal time

intervals. This study was successful to detect the malicious

repacked app with the help of traffic analysis [16].

The lowest layer of the Android architecture which is Linux

kernel is accessed to extract the Linux based features and

afterward, these features are used to detect malicious

applications. A total of 59 features were abstracted which

includes: CPU, network, memory, etc. and on and all 6

malware was run and the system to observed to extract the

above-mentioned features.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S12, September 2019

67
Retrieval Number: B10110982S1219/2020©BEIESP

DOI:10.35940/ijrte.B1011.0982S1219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The data collection process is initiated every 10 secs and the

collected data is sent to the server which in turn classifies

this data. 39 features out of the total 59 were selected and

the results were compared before and after the application

of the features. Feature selection enhances the precision rate

and lowers down the false-positive rate [17].

III. ANDROID ARCHITECTURE

The architecture of Android is depicted in Figure 1. It

consists of the following layers:

a) Application Software: The first layer of this

architecture is the application software layer, which has

all the applications with which the user interacts. These

apps provide a way for the user to control the hardware.

Examples may include Camera, Clock, Calendar, and

many more.

b) Application Framework: This layer is the second layer

in the architecture which gives many services of higher

level to applications that are in the form of java classes.

Some major services such as Content providers,

Activity manager, Notification manager, Resource

manager, and view system are some of the components

of this layer.

Figure 1: Layered Architecture of Android

c) Libraries: The third layer is the bundle of libraries

which includes WebKit open-source web browsing

engine, familiar library libc, Android built-in database

SQLite which a convenient repository for dividing and

storing of application data, libraries which contains

features to record audio & video, libraries which are

responsible for securing the SSL.

d) Linux kernel Layerl: The lowermost layer is the Linux

kernel layer which includes almost 115 patches

altogether. The layer provides an abstraction level

between the hardware of the device and has all the

drivers which are essential like keyboard, camera,

display, etc. Here all the thing in whose handling Linux

is good at is done by the kernel such as an extensive

array of device drivers which provide us with the ease

of hardware peripheral interfacing, the networking, etc.

IV. VULNERABILITIES

Here, the classification of each vulnerability is done in

accordance with the layer from which it is generated. The

purpose of this classification is to get an idea of the weak

areas of the mobile architecture implementation.

a) Application layer: The major attack which occurs on

this layer is through the browser where the attacker can

execute some unwanted code to get into the system.

After making the way into the system it can get access

to all the sensitive data including the gallery. Also, the

injection of cookies cannot be controlled.

Figure 2: Mobile architecture and associated

vulnerability

b) Application Framework Layer: The attack which takes

place at this layer is the DDoS attack and can also be

unauthorized access. In some cases, it has been seen

that the attacker gets deactivated all the locks on

sensitive data, which may compromise much sensitive

information like the contacts, gallery, camera, etc.

c) Library Layer: The vulnerabilities here are having a

huge impact. The attack launched was the DOS (Denial

of service) attack which leads to the stack overflow by

the execution of the API passing the wrong number of

arguments. Some attacks were also carried out by the

malware to get the authorization from the root of the

device. By doing this, an attacker can change the code

and make it act maliciously without anyone knowing

about the change in the signed APK.

d) Linux Kernel Layer: This layer is the most secure, but

still some of the vulnerabilities can be found. Any

number of fork commands (command to create a

process) an be launched without authenticating the

identity of the source by using the wrong set of

permissions [18].

V. METHODOLOGY

The investigation is carried out using two datasets, and the

details of these datasets are depicted in table 1.

TABLE I. DATASETS AND THEIR DETAILS

Dataset Samples Features Benign Malware

Malgenom

e

3799 215 2539 1260

Drebin 15036 215 9476 5560

Android Malware Detection using Machine Learning

68
Retrieval Number: B10110982S1219/2020©BEIESP

DOI:10.35940/ijrte.B1011.0982S1219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

The first dataset which is used for this experiment is

Malgenome dataset which consists of features from 3799

application samples, in which the number of apps with

malware is 1260 and the benign applications are 2539. This

dataset is widely used by the researchers and is obtained via

static code analysis of the Android App. The second dataset

which is used is Drebin dataset where the samples used were

15036, from which the number of malicious apps is 5560

and the benign apps were 9476. The number of features used

in both the datasets is 215.

The flow of our experiment is depicted in figure 3. We

started with the raw dataset of Android Malware. The data is

then pre-processed to filter out the unnecessary features and

the pre-processing is also done by the WEKA tool. After the

pre-processing is done, the data is fed into the different

classifiers of machine learning to fetch the evaluation result.

Figure 3: Flow of the experiment

A. Evaluation Metric

There are certain performance metrics which are used

and are as follow:

 TPR: TPR is defined as the ratio classified apps that

are correct which contains malware to the number of

malicious apps in totality.

 TPR= TP / (TP + FN)

Where TP: True positives (correctly identified malicious

apps), and FN: False negatives which are misclassified

malware instances.

 FPR: This is given as the ratio wrongly classified

benign apps to the number of benign apps in totality.

 FPR= FP / (TN + FP)

Where FP: false positives and TN: true negatives.

 Precision: This rate is positive predictive and is

stated as below:

 Precision= FP / (TP + FP)

 The time taken to test the models are given in

seconds. These models are tested on 64 bit, Windows

10 PC which is having 12 GB of RAM.

B. WEKA Tool

The tool which we have used here to analyze the dataset

is the WEKA Tool. It is a software that is open-source that

pre-process the data first according to the need for an

experiment, apply several machine learning algorithms, and

create a visual representation. We take raw data as input

which may have several null values and unwanted attributes,

the pre-processing phase of WEKA helps to clean all that.

Next, depending on the kind of model which you need to

develop you may have to select from the given options like

Cluster, Classify, or Associate. Under each selection you

have several machine learning algorithms, you may select an

algorithm of your choice and the particular dataset to get the

results. Also, the same dataset can be applied to different

models, and then the output can be compared to check which

model gives the best output to meet your purpose. WEKA is

open-source under GNU public licensing and is considered

platform-independent as the code is written in java and it

provides the user with a graphical user interface to interact

with files and provides visual graphs and curves for analysis

[19].

C. Classifiers

1. Naïve Bayes: This is a classifier of machine learning,

which comes under the group of supervised learning

and is based on probabilistic logic. This algorithm

assumes that all the values for particular features are

not dependent on any of the other feature’s value. In

this classification, we try to find out the best

hypothesis (h) for the give data (d). To find out the

best hypothesis the easiest solution is to use our prior

knowledge. The theorem provides us with a method

of calculating the best hypothesis provided the

knowledge previously gained. The theorem here

says:

P(hy|da) = (P(da|hy) * P(hy)) / P(da)

Where P(hy|da) here is the probability of the given

hypothesis in which the data (da) and is known as the

posterior probability. P(da|hy) here the probability of

the data da to provided hypothesis hy. P(hy) here is

the probability of the true hypothesis and is known as

prior knowledge. P(da) here is the probability of data

provided [20].

2. J48: J48 algorithm is a classifier that belongs to the

decision tree group which is in turn part of a

supervised learning approach in which the data input

is continuously split according to particular

parameters. The tree can be categorized into two

types of nodes such as decision nodes and leaves.

The additional features of J48 are decision tree

pruning which means to prune or not to traverse the

next node if we find the best solution, derivation of

rules, accounting for missing values. The basic steps

of this algorithm are:

 If the instance belongs to the same class, it is

denoted by leaf and then the leaf is returned by

labeling the same class.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S12, September 2019

69
Retrieval Number: B10110982S1219/2020©BEIESP

DOI:10.35940/ijrte.B1011.0982S1219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

 The attributes are tested to calculate the potential

information and then the information gain is

calculated.

 Then the best solution is selected for branching

[21].

3. Random Forest: Random Forest is a classifier of

machine learning in which a supervised learning

approach for classification is. We know that the

forest terminology is used for a collection of trees,

more trees mean more robust forest. This algorithm

creates trees randomly on the dataset and selects the

best suited by voting. Due to this approach, it

eliminates the issue of over-fitting by averaging the

values. These votes can be weighted or un-

weighted.[22] The steps followed by the algorithm

are:

 Bootstrapping of a dataset is done to eliminate

the data which is not required.

 A tree is created using a random number of

attributes. The attributes form the leaves and

nodes using the tree building algorithm.

 The trees are not pruned and are allowed to grow

to its fullest.

VI. RESULTS AND DISCUSSIONS

This section contains the result of our experiment which

was carried out on two different datasets and the classifiers

applied were three namely: J48 Decision Tree, Naïve Bayes,

and Random Forest. The tool was utilized as an open-source

tool, WEKA. The datasets were optimized using this tool

only. For all the classifiers the value of percentage split was

set to 70% and 30%. Splitting the dataset means divided it

into two parts: one for the testing and the other for training.

The same configuration for both the datasets was used in

order to maintain the consistency. The given table 2 and

table 3 clearly defines the result of each classifier used in

accordance with different parameters.

Figure 4 shows the classification of classes resulted

which are class S (Malware) and class B (Benign), and

Figure 5 shows some of the attributes of the Malgenome

dataset.

TABLE II. RESULTS ON MALGENOME DATASET

Classifier TPR FPR Precision F-Measure

Naïve Bayes 0.961 0.038 0.962 0.962

J48 0.989 0.015 0.989 0.989

Random

Forest

0.991 0.014 0.991 0.991

TABLE III. TABLE 3: RESULTS ON DREBIN DATASET

Classifier TPR FPR Precision F-Measure

Naïve Bayes 0.835 0.126 0.862 0.837

J48 0.972 0.033 0.972 0.972

Random

Forest

0.984 0.022 0.984 0.984

Figure 4 : Shows the Malgenome dataset results

Figure 5: Some of the attributes visualized of Malgenome

Figure 6 shows the classification of classes resulted

which are class S (Malware) and class B (Benign), and

Figure 7 shows some of the attributes of the Drebin dataset.

Figure 6 : Shows the Drebin dataset results

Figure 7: Some of the attributes visualized of Drebin

Android Malware Detection using Machine Learning

70
Retrieval Number: B10110982S1219/2020©BEIESP

DOI:10.35940/ijrte.B1011.0982S1219

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

VII. CONCLUSION

Machine learning is a branch of computer science which

suggests that if we input correct data to the computer then it

can learn and perform future actions with the help of that

training data and its experience. The analysis done here is

how the different machine learning classifiers work for a

given particular dataset. The different malware datasets

used were Malgenome and Drebin datasets. We tried to

analyze and summarize the accuracy of three classifiers of

machine learning which are J48 Decision Tree, Naïve

Bayes, and Random Forest on these datasets. The tool used

for experimentation is the open-source tool WEKA. The

results of each are depicted by the tables.

REFERENCES

1. J. Sahs and L. Khan, “A machine learning approach to android

malware detection,” Proc. - 2012 Eur. Intell. Secur. Informatics

Conf. EISIC 2012, pp. 141–147, 2012.

2. J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant

Permission Identification for Machine-Learning-Based Android

Malware Detection,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp.

3216–3225, 2018.

3. J. Qiu, W. Luo, L. Pan, Y. Tai, J. Zhang, and Y. Xiang, “Predicting

the Impact of Android Malicious Samples via Machine Learning,”

IEEE Access, vol. 7, pp. 66304–66316, 2019.

4. Y. Zhou and X. Jiang, “Dissecting Android malware:

Characterization and evolution,” Proc. - IEEE Symp. Secur. Priv., no.

4, pp. 95–109, 2012.

5. F. Musumeci et al., “An Overview on Application of Machine

Learning Techniques in Optical Networks,” IEEE Commun. Surv.

Tutorials, vol. 21, no. 2, pp. 1383–1408, 2019.

6. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.

Ayyash, “Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications,” IEEE Commun. Surv. Tutorials, vol.

17, no. 4, pp. 2347–2376, 2015.

7. H. S. Ham and M. J. Choi, “Analysis of Android malware detection

performance using machine learning classifiers,” Int. Conf. ICT

Converg., pp. 490–495, 2013.

8. B. Amos, H. Turner, and J. White, “Applying machine learning

classifiers to dynamic android malware detection at scale,” 2013 9th

Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666–

1671, 2013.

9. A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,

“‘Andromaly’: A behavioral malware detection framework for

android devices,” J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161–190,

2012.

10. R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine Learning

Classification over Encrypted Data,” no. February, pp. 8–11, 2015.

11. M. Ghorbanzadeh, Y. Chen, Z. Ma, T. C. Clancy, and R. McGwier,

“A neural network approach to category validation of Android

applications,” 2013 Int. Conf. Comput. Netw. Commun. ICNC 2013,

pp. 740–744, 2013.

12. S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android

malware detection using ensemble learning,” IET Inf. Secur., vol. 9,

no. 6, pp. 313–320, 2015.

13. A. A. A. Samra, K. Yim, and O. A. Ghanem, “Analysis of clustering

technique in android malware detection,” Proc. - 7th Int. Conf. Innov.

Mob. Internet Serv. Ubiquitous Comput. IMIS 2013, pp. 729–733,

2013.

14. T. Chen, Q. Mao, Y. Yang, M. Lv, and J. Zhu, “TinyDroid: A

lightweight and efficient model for android malware detection and

classification,” Mob. Inf. Syst., vol. 2018, 2018.

15. L. Yu, Z. Pan, J. Liu, and Y. Shen, “Android malware detection

technology based on improved Bayesian classification,” Proc. - 3rd

Int. Conf. Instrum. Meas. Comput. Commun. Control. IMCCC 2013,

pp. 1338–1341, 2013.

16. L. Tenenboim-Chekina et al., “Detecting application update attack on

mobile devices through network featur,” pp. 91–92, 2014.

17. H. H. Kim and M. J. Choi, “Linux kernel-based feature selection for

Android malware detection,” APNOMS 2014 - 16th Asia-Pacific

Netw. Oper. Manag. Symp., 2014.

18. et al., “Analysis of Android Vulnerabilities and Modern Exploitation

Techniques,” ICTACT J. Commun. Technol., vol. 05, no. 01, pp.

863–867, 2014.

19. W. Ahmed, A. Saeed, A. Salah, and E. Abdala, “A Comparative

Study for Machine Learning Tools Using WEKA and Rapid Miner

with Classifier Algorithms Random Tree and Random Forest for

Network Intrusion Detection,” vol. 4, no. 4, pp. 749–752, 2019.

20. E. P. F. Lee et al., “An ab initio study of RbO, CsO and FrO (X2∑+;

A2∏) and their cations (X3∑-; A3∏),” Phys. Chem. Chem. Phys.,

vol. 3, no. 22, pp. 4863–4869, 2001.

21. G. Kaur, “Improved J48 Classification Algorithm for the Prediction

of Diabetes,” vol. 98, no. 22, pp. 13–17, 2014.

22. F. Livingston, “Implementation of Breiman’s Random Forest

Machine Learning Algorithm,” Mach. Learn. J. Pap., pp. 1–13, 2005.

