
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S4, July 2019

91

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10160782S419/2019©BEIESP

DOI: 10.35940/ijrte.B1016.0782S419

Abstract:The Travelling salesman problem also popularly known

as the TSP, which is the most classical combinatorial optimization

problem. It is the most diligently read and an NP hard problem in

the field of optimization. When the less number of cities is present,

TSP is solved very easily but as the number of cities increases it gets

more and more harder to figure out. This is due to a large amount of

computation time is required. So in order to solve such large sized

problems which contain millions of cities to traverse, various soft

computing techniques can be used. In this paper, we discuss the use

of different soft computing techniques like Genetic Algorithm (GA),

Particle Swarm Optimization (PSO), Ant Colony Optimization

(ACO) and etc. to solve TSP.

Index Terms: Ant Colony Optimization, Genetic Algorithm,

Particle Swarm Optimization, Soft Computing, Travelling Salesman

Problem.

I. INTRODUCTION

The TSP is used to discover the optimal path travelled by

the salesman from a starting location to an ending location

with a constraint that she / he visits only a certain set of cities

and returns to the starting location, by traversing through one

city only once, along with a condition that the total distance

travelled in between the starting point and the ending point is

minimized. This problem is declared as an NP hard problem

because it is cannot be solved exactly in polynomial time. A

minimum of exponential time is required to obtain an optimal

solution.

Till now, many heuristic algorithms in the field of operation

research methodologies have been developed to optimize this

minimization problem. TSP can be used in several fields such

as traffic, vehicle routing and military. It also includes other

Revised Manuscript Received on July 05, 2019.

 Valarmathi B, Associate Professor, Department of Software

Engineering, School of Information Technology and Engineering,

Vellore Institute of Technology, Vellore, India.

Santhi K, Associate Professor, Department of Analytics, School of

Computer Science and Engineering, Vellore Institute of Technology,

Vellore, India.

Ravi Chandrika, B.Tech.(Information Technology) Student,

Department of Information Technology, School of Information Technology

and Engineering, Vellore Institute of Technology, Vellore, India.

Peeyush Goel, B.Tech.(Information Technology) Student, Department of

Information Technology, School of Information Technology and

Engineering, Vellore Institute of Technology, Vellore, India.

Bhagyashree Bagwe, B.Tech.(Information Technology) Student,

Department of Information Technology, School of Information Technology

and Engineering, Vellore Institute of Technology, Vellore, India.

typical applications like, computer wiring, where the smallest

length of wires must be used to build the circuit, cutting

wallpaper, where we must use the lowest possible area of

sheets for the wallpaper and job sequencing, where the

parameters such as priority of jobs, time taken, resources

required play the major role. It also has statistical applications

like combinatorial data analysis.

The minimization problem is based along the distance

between a two cities. It is figured by using Euclidean Distance

and it is shown in the following equation 1:

 (1)

where (a1, b1) and (a2, b2) are the coordinates of city 1 and

city 2 respectively.

 TSP comes under the category of permutation problem in

which the main objective is to find the route of the

shortest path taking by considering the constraint that

every city must be visited only once. [3]

 The objective of this is to explore the various algorithms

that can be used along with GA which will help in solving

TSP.

 Another objective is improvising the existing algorithm

into a better and more optimal version.

II. RELATED STUDIES

TSP is encountered in combinatorial problems which come

under a general category of classic NP-Complete problem.

Here, NP stands for “non-deterministic polynomial time”.

Different methods such as an integer linear programming,

neural network approach which is based on the self-organized

feature map model, branch and bound based method for

solving the large-scale Multiple TSP (MTSP) and etc. are

used to solve the algorithm. Some more approaches to TSP

are GA, evolutionary simulated annealing, island-based GA,

bat algorithm, imperialist competitive algorithm, firefly

algorithm, Variable Neighbourhood Search (VNS) algorithm

and etc. A Discrete Water Cycle Algorithm (DWCA) was

proposed by Eneko Osaba et al. [2] for Asymmetric TSP

(ATSP). DWCA can prove to be more reliable in solving TSP

because it has a better performance in terms of optimality and

we get more stable quality solutions by the DWCA. DWCA

also provides with the best results with an outstanding

performance in 73.68% of the

TSP datasets. Samrat Hore et

al. [3] proposed a new

Performance Analysis of Genetic Algorithm,

Particle Swarm Optimization and Ant

Colony Optimization for solving the

Travelling Salesman Problem

Valarmathi B
1
, Santhi K

2
, Ravi Chandrika

3
, Peeyush Goel

4
, Bhagyashree Bagwe

5

Performance Analysis of Genetic Algorithm, Particle Swarm Optimization and Ant Colony Optimization for solving the

Travelling Salesman Problem

92

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10160782S419/2019©BEIESP

DOI: 10.35940/ijrte.B1016.0782S419

algorithm, the VNS algorithm, which was integrated with a

stochastic approach for solving the TSP with an optimal

solution. To evaluate the hardness / difficulty to solve the

different cases of TSP, Miguel Cárdenas-Montes et al. [1]

used direct, indirect measures. His methodology worked on

histograms, where he fitted the normalized areas of the

Weibull probability distribution, generated from the

application of the Dirichlet tessellation for the TSP instances.

A model was established between both variables whenever a

high correlation was found. Yongbo Chen et al. [5] proposed

an algorithm called Modified Two-part Wolf Pack Search

(MTWPS), which used both two-part individual encoding

approach and the transposition and extension (TE) operation

for the MTSP.

Yuzhe Yan et al. [6] modified the ACO for the TSP, where

strategies like adaptive tour construction and pheromone

updating strategies were used to make the balance in the

search space more intense and diverse. Xin Chen et al. [7]

proposed the spherical TSP algorithm where all the cities were

represented as points and solutions as paths, that resided on

the surface of a sphere. A hybrid algorithm combining the

Glow-worm Swarm Optimization and the 2-opt algorithm was

proposed. In it, glow-worms carrying the luciferin between

cities are converted to edges, by modifying the probability

formula and the luciferin updation formula.

Yu Lin et al. [8] Developed a hybrid algorithm of simulated

annealing and tabu search algorithm. By gathering enough

properties of the hybrid algorithm, he was able to improve the

search efficiency of the dynamic neighbourhood structure by

decreasing the randomness of the conventional 2-opt

neighbourhood. Mostafa Mahi et al. [9] Proposed a new

hybrid method which used PSO to the ACO parameters that

affect its performance. Also, to improve the local solutions,

he added the 3-Opt heuristic method to the given method.

Victer Paul et al. [10] Worked on permutation-coded GA and

proposed different population growing techniques such as

random, Gene Bank, Nearest Neighbour, Selective

Initialization (SI), Sorted Population (SP), and etc. Bihter

Avsar et al. [11] researched on divide-and-conquer problem

with a parallelized approach by using a Self-Organizing Map

(SOM) to solve the Euclidean TSP.

Manuel López-Ibánez et al. [12] supported this intuition by

providing an example based on the TSP with time windows.

From the above context, it was clear that to minimize the

travel time, the problem variant should be well studied, while,

to minimize the make span, the problem variant should be less

studied. Contributions in dynamic environments were made

by Michalis Mavrovouniotis et al. [13] where he proposed an

ACO framework where he used different immigrant schemes

such as random immigrants, memory-based immigrants and

elitism-based immigrants. All these immigrants were

integrated in the ACO to solve the dynamic problems. An

effective an metaheuristic hybridized method was proposed

by Zaniar Ardalan et al. [14] where he focused on local search

procedure. Inspired from the social and political global search

strategy, he proposed algorithm based on an imperialist

competitive algorithm. All these algorithms provide an insight

on how the problem can be solved.

III. PROPOSED ALGORITHMS

Different algorithms have different computing power and

have some limitations. These limitations can be based on

different parameters. Our proposed method works on

comparing of one of these parameters, number of cities, for 3

different algorithms, which are GA, PSO and ACO. The

additional work included is the addition of ACO algorithms in

our paper, which competes with GA and PSO for 5 different

set of number of cities. Performance wise results are listed out

which can help us in building efficient hybrid systems for a

certain size of datasets (number of cities).

A. GA

 The GA is a method which learns from the natural selection

process, that drives biological evolution. It is applied for

solving both forced and unforced problems. At each step, the

population of individual solutions is repeatedly updated and

random selection for the position of parents from the current

population is made using GA. The next generation is

produced by using these parents to produce children. As we

pass multiple generations, the population "evolves" toward an

optimal solution. GA can solve a variety of problems that

cannot be solved even by standard algorithms. These

problems may include the major objective function as

discontinuous, non-differentiable, stochastic, or highly

nonlinear. The GA can also prove effective for mixed integer

programming problems, which includes some integer-valued

constrained components.

The three main types of rules that change the current

population to next generation at every step in GA are:

a) Selection rules are applied to select the individuals,

called parents, that aid in the generation of the next level

population.

b) Crossover rules are applied to combine two parents to

form children for the next generation.

c) Mutation rules are given to apply random changes to

individual parents to make children.

The steps required in GA are Initial population, Calculate

fitness, Check stopping condition, Selection, Crossover and

Mutation.

Step 1: Generate initial random population.

Step 2: Calculate the fitness of individuals.

Step 3: Satisfy the stop criteria.

Step 4: Selection of the individuals.

Step 5: We can only shuffle the route using the crossover

operator.

Step 6: Mutation Operator.

Step 7: Go to step 2.

Step 8: End.

B.PSO

 PSO mimics the behaviors of bird flocking. In PSO, each

single solution is a "bird" which is named "particle" in the

search space. The majority of the particles have fitness values

which are evaluated by the fitness function to be optimized,

and have velocities which direct the flying of the particles.

The particles fly through the problem space by following the

current optimum particles. PSO is initialized with a group of

random particles and then searches for optima by updating

generations. In every iteration, each particle is updated by

subsequent two "best" values. The first one is the best solution

it has achieved so far. This

value is called pbest. Another

"best" value that is tracked by

the particle swarm optimizer

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S4, July 2019

93

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10160782S419/2019©BEIESP

DOI: 10.35940/ijrte.B1016.0782S419

is the best value, obtained so far by any particle in the

population. This best value is a global best and called gbest.

The steps applied in PSO are specified below.

Step 1: Population Initialization.

Step 2: Do 3-8 steps till we meet ending condition.

Step 3: Find fitness.

Step 4: Calculate pBest.

Step 5: Calculate gBest.

Step 6: Calculate velocity.

Step 7: Update current solution.

Step 8: Update current solution with pBest.

Step 9: Check for stopping condition.

C.ACO

 ACO comes under the class of algorithms which mimics the

actions of an ant colony. It includes artificial 'ants', also called

simulation agents, which locates optimal solutions by

representing all the possible solutions while moving through a

parameter space. As real ants lay down a pheromone trail

wherever they go, while searching their environment in order

to direct each other towards the resources, similarly, the

simulated 'ants' store their locations and the standard of their

solutions, which helps them in locating better solutions in the

later simulation iterations. The steps involved in ACO are

given below:

Step 1: Initialization.

Step 2: Determine the probability of traversing from one city

to another.

Step 3: Finding the best route.

Step 4: Update current solution with best cost and best path.

Step 5: Check for stopping condition

IV. EXPERIMENTAL STUDIES

We put forward a series of comparative experiments on GA,

PSO and ACO. In each of the comparative experiments, all the

three algorithms share the same configurations, and the same

irrelevant variables, including same original population /

particle swarm and the same city location

A. GA

The code for solving GA has been written and the output for

500 generations for 20 cities was obtained. Fig 4.1(a) shows

the output for the first 5 generations and Fig 4.1(b) shows the

output for the last 5 generations. Next, we obtained the output

for 500 generations for 52 cities. Fig 4.2(a) shows the output

for the first 5 generations and Fig 4.2(b) shows the output for

the last 5 generations.

Fig 4.1 (a) Output for the first 5 generations for 20 cities

using GA

Fig. 4.1(b) Output for the last 5 generations for 20 cities

using GA along with the final solution

Fig 4.2. (a) Output for the first 5 generations for 52 cities

using GA

Fig 4.2. (b) Output for the last 5 generations for 52 cities

using GA along with the final solution

B. PSO

The code for solving PSO has been written and the output for

20 cities was obtained. Fig 4.3(a) shows the pBest for the last

3 particles along with the final gBest for 20 cities and Fig

4.3(b) shows the graph(path travelled from one city to

another) for 20 cities. Next, we obtained the output for 52

cities. Fig 4.4(a) shows the pBest for the last 3 particles along

with the final gBest for 52 cities and Fig 4.4(b) shows the

graph(path travelled from one city to another) for 52 cities.

Fig 4.3 (a) Final Output for 20

cities using PSO

Performance Analysis of Genetic Algorithm, Particle Swarm Optimization and Ant Colony Optimization for solving the

Travelling Salesman Problem

94

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10160782S419/2019©BEIESP

DOI: 10.35940/ijrte.B1016.0782S419

Fig 4.3 (b) Graph for 20 cities using PSO

Fig 4.4 (a) Final Output for 52 cities using PSO

Fig 4.4 (b) Graph for 52 cities using PSO

C. ACO

The code for solving ACO has been written and the output

for 500 generations for 20 cities was obtained. Fig 4.5(a)

shows the output for the last 15 generations and the final cost

for 20 cities and Fig 4.5(b) shows the graph(path travelled

from one city to another) for 20 cities. Next, we obtained the

output for 500 generations for 52 cities. Fig 4.6(a) shows the

output for the last 5 generations and the final cost for 52 cities

and Fig 4.6(b) shows the graph(path travelled from one city to

another) for 52 cities.

Fig 4.5 (a) Final Output for 20 cities using ACO

Fig 4.6 (a) Final Output for 52 cities using ACO

Fig 4.5 (b) Graph for 20 cities using ACO

Fig 4.6 (b) Graph for 52 cities using ACO

V. RESULTS AND CONCLUSIONS

Results obtained from the above output screens(section 4) are

presented in a tabular form in Table 1 where we put forward

the no. of cities/dataset size(chromosome size) and the best

cost obtained by PSO, ACO and GA algorithms for these

number of cities. The above table is converted in graphical

format (Fig 5.) for easier representation and interpretation of

the values.

Table 1 Comparison table for performance of PSO, ACO and

GA at 10, 20, 30, 40 and 52 number of cities.

SIZE
COST

PSO ACO GA

10 8002 2821 2823

20 7597 5280 8680

30 7084 6379 12485

40 4121 6742 15750

52 3243 7715 22385

Table 2 Rank-wise comparison for GA,PSO and ACO for

10,20,30,40 and 52 cities
Size First Best Second Best Third Best

10 ACO GA PSO

20 ACO PSO GA

30 ACO,PSO ACO,PSO GA

40 PSO ACO GA

52 PSO ACO GA

GA, PSO and ACO are used with 5 different sizes of datasets

for each of the algorithms, and produced the results from it.

The produced output was

compared with different

dataset size. Furthermore

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S4, July 2019

95

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10160782S419/2019©BEIESP

DOI: 10.35940/ijrte.B1016.0782S419

study and research can be carried out between these

algorithms on the basis of other parameters, like no. of

iterations, or the parameters passed, etc. These comparisons

can help us understand the weak points of these algorithms

which will help in producing better hybrid systems by

combining 2 or more algorithms for a particular dataset size in

future.

Fig.5. Comparison graph for performance of PSO, ACO and

GA at 10, 20, 30, 40 and 52 number of cities

Summary of experiments are given below and the rank-wise

comparison from Table 2 gives us the following key points:

1. At very low values of a number of cities in a chromosome,

i.e, 10, ACO performs the best, followed by GA, followed by

PSO.

2. At lower values of a number of cities in a chromosome, i.e,

20, ACO performs the best, followed by PSO, followed by

GA.

3. As the medium value of a number of cities in a

chromosome, i.e, 30, ACO and PSO both perform the best,

followed by GA.

4. At higher values of a number of cities in a chromosome, i.e.,

40 and 52, PSO performs the best, followed by ACO,

followed by GA.

Fig 5. Comparison graph for performance of PSO, ACO and

GA at 10, 20, 30, 40 and 52 number of cities

Summary of experiments are given below and the rank-wise

comparison from Table 2 gives us the following key points:

1. At very low values of a number of cities in a chromosome,

(i.e,) 10, ACO performs the best, followed by GA, followed

by PSO. 2. At lower values of a number of cities in a

chromosome, (i.e,) 20, ACO performs the best, followed by

PSO, followed by GA. 3. As the medium value of a number of

cities in a chromosome, i.e, 30, ACO and PSO both perform

the best, followed by GA. 4. At higher values of a number of

cities in a chromosome, i.e., 40 and 52, PSO performs the

best, followed by ACO, followed by GA.

REFERENCES

[1] Cárdenas-Montes, “Creating hard-to-solve instances of travelling

salesman problem”, Applied Soft Computing, vol. 71, pp. 268-276,

2018.

[2] Osaba, E., Del Ser, J., Sadollah, A., Bilbao, M. N., & Camacho, “A

discrete water cycle algorithm for solving the symmetric and asymmetric

traveling salesman problem”, Applied Soft Computing, vol. 71, pp.

277-290, 2018.

[3] Hore, S., Chatterjee, A., & Dewanji, “Improving variable neighborhood

search to solve the traveling salesman problem”, Applied Soft

Computing, vol. 68, pp. 83-91, 2018.

[4] Zhou, H., Song, M., & Pedrycz, “A comparative study of improved GA

and PSO in solving multiple traveling salesmen problem”, Applied Soft

Computing, vol. 64, pp. 564-580, 2018.

[5] Chen, Y., Jia, Z., Ai, X., Yang, D., & Yu, “A modified two-part wolf

pack search algorithm for the multiple traveling salesmen problem”,

Applied Soft Computing, vol. 61, pp. 714-725, 2017.

[6] Yan, Y., Sohn, H. S., & Reyes, “A modified ant system to achieve better

balance between intensification and diversification for the traveling

salesman problem”, Applied Soft Computing, vol. 60, pp. 256-267,

2017.

[7] Chen, X., Zhou, Y., Tang, Z., & Luo, “A hybrid algorithm combining

glowworm swarm optimization and complete 2-opt algorithm for

spherical travelling salesman problems”, Applied Soft Computing, vol.

58, pp. 104-114, 2017.

[8] Lin, Y., Bian, Z., & Liu, “Developing a dynamic neighborhood structure

for an adaptive hybrid simulated annealing–tabu search algorithm to

solve the symmetrical traveling salesman problem”, Applied Soft

Computing, vol. 49, pp.937-952, 2016.

[9] Mahi, M., Baykan, Ö. K., & Kodaz, “A new hybrid method based on

particle swarm optimization, ant colony optimization and 3-opt

algorithms for traveling salesman problem”, Applied Soft Computing,

vol. 30, pp. 484-490, 2015.

[10] Paul, P. V., Moganarangan, N., Kumar, S. S., Raju, R., Vengattaraman,

T., & Dhavachelvan, “Performance analyses over population seeding

techniques of the permutation-coded genetic algorithm: An empirical

study based on traveling salesman problems”, Applied Soft Computing,

vol. 32, pp. 383-402, 2015.

[11] Avşar, B., & Aliabadi, D. “Parallelized neural network system for

solving Euclidean traveling salesman problem”, Applied Soft

Computing, vol. 34, pp. 862-873, 2015.

[12] López-Ibáñez, M., Blum, C., Ohlmann, J. W., & Thomas, B. “The

travelling salesman problem with time windows: Adapting algorithms

from travel-time to makespan optimization”, Applied Soft Computing,

vol. 13, pp. 3806-3815, 2013.

[13] Mavrovouniotis, M., & Yang, “Ant colony optimization with

immigrants schemes for the dynamic travelling salesman problem with

traffic factors”, Applied Soft Computing, vol. 13, pp. 4023-4037, 2013.

[14] Ardalan, Z., Karimi, S., Poursabzi, O., & Naderi, “A novel imperialist

 competitive algorithm for generalized traveling salesman problems”,

 Applied Soft Computing, vol. 26, pp. 546-555, 2015.

