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Abstract:The Travelling salesman problem also popularly known 

as the TSP, which is the most classical combinatorial optimization 

problem. It is the most diligently read and an NP hard problem in 

the field of optimization. When the less number of cities is present, 

TSP is solved very easily but as the number of cities increases it gets 

more and more harder to figure out. This is due to a large amount of 

computation time is required. So in order to solve such large sized 

problems which contain millions of cities to traverse, various soft 

computing techniques can be used. In this paper, we discuss the use 

of different soft computing techniques like Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), Ant Colony Optimization 

(ACO) and etc. to solve TSP. 

 
Index Terms: Ant Colony Optimization, Genetic Algorithm, 

Particle Swarm Optimization, Soft Computing, Travelling Salesman 

Problem.  

I. INTRODUCTION 

The TSP is used to discover the optimal path travelled by 

the salesman from a starting location to an ending location 

with a constraint that she / he visits only a certain set of cities 

and returns to the starting location, by traversing through one 

city only once, along with a condition that the total distance 

travelled in between the starting point and the ending point is 

minimized. This problem is declared as an NP hard problem 

because it is cannot be solved exactly in polynomial time. A 

minimum of exponential time is required to obtain an optimal 

solution. 

Till now, many heuristic algorithms in the field of operation 

research methodologies have been developed to optimize this 

minimization problem. TSP can be used in several fields such 

as traffic, vehicle routing and military. It also includes other 
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typical applications like, computer wiring, where the smallest  

 

length of wires must be used to build the circuit, cutting 

wallpaper, where we must use the lowest possible area of 

sheets for the wallpaper and job sequencing, where the 

parameters such as priority of jobs, time taken, resources 

required play the major role. It also has statistical applications 

like combinatorial data analysis. 

The minimization problem is based along the distance 

between a two cities. It is figured by using Euclidean Distance 

and it is shown in the following equation 1: 

                (1) 

where (a1, b1) and (a2, b2) are the coordinates of city 1 and 

city 2 respectively. 

    TSP comes under the category of permutation problem in 

which the main objective is to find the route of the 

shortest path taking by considering the constraint that 

every city must be visited only once. [3] 

    The objective of this is to explore the various algorithms 

that can be used along with GA which will help in solving 

TSP. 

    Another objective is improvising the existing algorithm 

into a better and more optimal version.  

II.  RELATED STUDIES 

TSP is encountered in combinatorial problems which come 

under a general category of classic NP-Complete problem. 

Here, NP stands for “non-deterministic polynomial time”. 

Different methods such as an integer linear programming, 

neural network approach which is based on the self-organized 

feature map model, branch and bound based method for 

solving the large-scale Multiple TSP (MTSP) and etc. are 

used to solve the algorithm. Some more approaches to TSP 

are GA, evolutionary simulated annealing, island-based GA, 

bat algorithm, imperialist competitive algorithm, firefly 

algorithm, Variable Neighbourhood Search (VNS) algorithm 

and etc. A Discrete Water Cycle Algorithm (DWCA) was 

proposed by Eneko Osaba et al. [2] for Asymmetric TSP 

(ATSP). DWCA can prove to be more reliable in solving TSP 

because it has a better performance in terms of optimality and 

we get more stable quality solutions by the DWCA. DWCA 

also provides with the best results with an outstanding 

performance in 73.68% of the 

TSP datasets. Samrat Hore et 

al. [3] proposed a new 
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algorithm, the VNS algorithm, which was integrated with a 

stochastic approach for solving the TSP with an optimal 

solution. To evaluate the hardness / difficulty to solve the 

different cases of TSP, Miguel Cárdenas-Montes et al. [1] 

used direct, indirect measures. His methodology worked on 

histograms, where he fitted the normalized areas of the 

Weibull probability distribution, generated from the 

application of the Dirichlet tessellation for the TSP instances. 

A model was established between both variables whenever a 

high correlation was found. Yongbo Chen et al. [5] proposed 

an algorithm called Modified Two-part Wolf Pack Search 

(MTWPS), which used both two-part individual encoding 

approach and the transposition and extension (TE) operation 

for the MTSP. 

Yuzhe Yan et al. [6] modified the ACO for the TSP, where 

strategies like adaptive tour construction and pheromone 

updating strategies were used to make the balance in the 

search space more intense and diverse. Xin Chen et al. [7] 

proposed the spherical TSP algorithm where all the cities were 

represented as points and solutions as paths, that resided on 

the surface of a sphere. A hybrid algorithm combining the 

Glow-worm Swarm Optimization and the 2-opt algorithm was 

proposed. In it, glow-worms carrying the luciferin between 

cities are converted to edges, by modifying the probability 

formula and the luciferin updation formula. 

Yu Lin et al. [8] Developed a hybrid algorithm of simulated 

annealing and tabu search algorithm. By gathering enough 

properties of the hybrid algorithm, he was able to improve the 

search efficiency of the dynamic neighbourhood structure by 

decreasing the randomness of the conventional 2-opt 

neighbourhood. Mostafa Mahi et al. [9] Proposed a new 

hybrid method which used PSO to the ACO parameters that 

affect its  performance. Also, to improve the local solutions, 

he added the 3-Opt heuristic method to the given method.  

Victer Paul et al. [10] Worked on permutation-coded GA and 

proposed different population growing techniques such as 

random, Gene Bank, Nearest Neighbour, Selective 

Initialization (SI), Sorted Population (SP), and etc. Bihter 

Avsar et al. [11] researched on divide-and-conquer problem 

with a parallelized approach by using a Self-Organizing Map 

(SOM) to solve the Euclidean TSP. 

Manuel López-Ibánez et al. [12] supported this intuition by 

providing an example based on the TSP with time windows. 

From the above context, it was clear that to minimize the 

travel time, the problem variant should be well studied, while, 

to minimize the make span, the problem variant should be less 

studied. Contributions in dynamic environments were made 

by Michalis Mavrovouniotis et al. [13] where he proposed an 

ACO framework where he used different immigrant schemes 

such as random immigrants, memory-based immigrants and 

elitism-based immigrants. All these immigrants were 

integrated in the ACO to solve the dynamic problems. An 

effective an metaheuristic hybridized method was proposed 

by Zaniar Ardalan et al. [14] where he focused on local search 

procedure. Inspired from the social and political global search 

strategy, he proposed algorithm based on an imperialist 

competitive algorithm. All these algorithms provide an insight 

on how the problem can be solved. 

III. PROPOSED ALGORITHMS 

Different algorithms have different computing power and 

have some limitations. These limitations can be based on 

different parameters. Our proposed method works on 

comparing of one of these parameters, number of cities, for 3 

different algorithms, which are GA, PSO and ACO. The 

additional work included is the addition of ACO algorithms in 

our paper, which competes with GA and PSO for 5 different 

set of number of cities. Performance wise results are listed out 

which can help us in building efficient hybrid systems for a 

certain size of datasets (number of cities). 

A. GA 

    The GA is a method which learns from the natural selection 

process, that drives biological evolution. It is applied for 

solving both forced and unforced problems. At each step, the 

population of individual solutions is repeatedly updated and 

random selection for the position of parents from the current 

population is made using GA. The next generation is 

produced by using these parents to produce children. As we 

pass multiple generations, the population "evolves" toward an 

optimal solution. GA can solve a variety of problems that 

cannot be solved even by standard algorithms. These 

problems may include the major objective function as 

discontinuous, non-differentiable, stochastic, or highly 

nonlinear. The GA can also prove effective for mixed integer 

programming problems, which includes some integer-valued 

constrained components. 

 

The three main types of rules that change the current 

population to next generation at every step in GA are: 

a) Selection rules are applied to select the individuals, 

called parents, that aid in the generation of the next level 

population. 

b) Crossover rules are applied to combine two parents to 

form children for the next generation. 

c) Mutation rules are given to apply random changes to 

individual parents to make children. 

 

The steps required in GA are Initial population, Calculate 

fitness, Check stopping condition, Selection, Crossover and 

Mutation. 

Step 1: Generate initial random population.  

Step 2:  Calculate the fitness of individuals.  

Step 3: Satisfy the stop criteria.  

Step 4: Selection of the individuals.    

Step 5: We can only shuffle the route using the crossover 

operator.  

Step 6: Mutation Operator.  

Step 7: Go to step 2. 

Step 8: End. 

B.PSO 

  PSO mimics the behaviors of bird flocking. In PSO, each 

single solution is a "bird" which is named "particle" in the 

search space. The majority of the particles have fitness values 

which are evaluated by the fitness function to be optimized, 

and have velocities which direct the flying of the particles. 

The particles fly through the problem space by following the 

current optimum particles. PSO is initialized with a group of 

random particles and then searches for optima by updating 

generations. In every iteration, each particle is updated by 

subsequent two "best" values. The first one is the best solution 

it has achieved so far.  This 

value is called pbest. Another 

"best" value that is tracked by 

the particle swarm optimizer 
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is the best value, obtained so far by any particle in the 

population. This best value is a global best and called gbest. 

The steps applied in PSO are specified below. 

Step 1: Population Initialization.  

Step 2: Do 3-8 steps till we meet ending condition.  

Step 3: Find fitness.  

Step 4: Calculate pBest.  

Step 5: Calculate gBest.  

Step 6: Calculate velocity.  

Step 7: Update current solution.  

Step 8: Update current solution with pBest.  

Step 9: Check for stopping condition. 

 

C.ACO 

    ACO comes under the class of algorithms which mimics the 

actions of an ant colony.  It includes artificial 'ants', also called 

simulation agents, which locates optimal solutions by 

representing all the possible solutions while  moving through a 

parameter space. As real ants lay down a pheromone trail 

wherever they go, while searching their environment in order 

to direct each other towards the resources, similarly, the 

simulated 'ants' store their locations and the standard of their 

solutions, which helps them in locating better solutions in the 

later simulation iterations. The steps involved in ACO are 

given below: 

Step 1: Initialization.  

Step 2: Determine the probability of traversing from one city 

to another.  

Step 3: Finding the best route.  

Step 4: Update current solution with best cost and best path. 

Step 5: Check for stopping condition 

  

IV. EXPERIMENTAL STUDIES 

We put forward a series of comparative experiments on GA, 

PSO and ACO. In each of the comparative experiments, all the 

three algorithms share the same configurations, and the same 

irrelevant variables, including same original population / 

particle swarm and the same city location 

A. GA 

The code for solving GA has been written and the output for 

500 generations for 20 cities was obtained. Fig 4.1(a) shows 

the output for the first 5 generations and Fig 4.1(b) shows the 

output for the last 5 generations. Next, we obtained the output 

for 500 generations for 52 cities. Fig 4.2(a) shows the output 

for the first 5 generations and Fig 4.2(b) shows the output for 

the last 5 generations. 

  
Fig 4.1 (a) Output for the first 5 generations for 20 cities  

using GA 

 
Fig. 4.1(b) Output for the last 5 generations for 20 cities   

using GA along with the final solution 

 
Fig 4.2. (a) Output for the first 5 generations for 52 cities  

using GA 

 
Fig 4.2. (b) Output for the last 5 generations for 52 cities  

using GA along with the final solution 

B. PSO 

The code for solving PSO has been written and the output for 

20 cities was obtained. Fig 4.3(a) shows the pBest for the last 

3 particles along with the final gBest for 20 cities and Fig 

4.3(b) shows the graph(path travelled from one city to 

another) for 20 cities. Next, we obtained the output for 52 

cities. Fig 4.4(a) shows the pBest for the last 3 particles along 

with the final gBest for 52 cities and Fig 4.4(b) shows the 

graph(path travelled from one city to another) for 52 cities. 

 
Fig 4.3 (a) Final Output for 20 

cities using PSO 
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Fig 4.3 (b) Graph for 20 cities using PSO 

 
Fig 4.4 (a) Final Output for 52 cities using PSO 

 
Fig 4.4 (b) Graph for 52 cities using PSO 

C. ACO 

The code for solving ACO has been written and the output 

for 500 generations for 20 cities was obtained. Fig 4.5(a) 

shows the output for the last 15 generations and the final cost 

for 20 cities and Fig 4.5(b) shows the graph(path travelled 

from one city to another) for 20 cities. Next, we obtained the 

output for 500 generations for 52 cities. Fig 4.6(a) shows the 

output for the last 5 generations and the final cost for 52 cities 

and Fig 4.6(b) shows the graph(path travelled from one city to 

another) for 52 cities. 

 
Fig 4.5 (a) Final Output for 20 cities using ACO 

 

 
Fig 4.6 (a) Final Output for 52 cities using ACO 

 

 
Fig 4.5 (b) Graph for 20 cities using ACO 

 
Fig 4.6 (b) Graph for 52 cities using ACO 

V. RESULTS AND CONCLUSIONS  

Results obtained from the above output screens(section 4) are 

presented in a tabular form in Table 1 where we put forward 

the no. of cities/dataset size(chromosome size) and the best 

cost obtained by PSO, ACO and GA algorithms for these 

number of cities. The above table is converted in graphical 

format (Fig 5.) for easier representation and interpretation of 

the values. 

Table 1 Comparison table for performance of PSO, ACO and 

GA at 10, 20, 30, 40 and 52 number of cities. 

SIZE 
COST  

PSO  ACO  GA  

10 8002 2821 2823 

20 7597 5280 8680 

30 7084 6379 12485 

40 4121 6742 15750 

52 3243 7715 22385 

 

Table 2 Rank-wise comparison for GA,PSO and ACO for 

10,20,30,40 and 52 cities 
Size First Best Second Best Third Best 

10 ACO GA PSO 

20 ACO PSO GA 

30 ACO,PSO ACO,PSO GA 

40 PSO ACO GA 

52 PSO ACO GA 

 

GA, PSO and ACO are used with 5 different sizes of datasets 

for each of the algorithms, and produced the results from it. 

The produced output was 

compared with different 

dataset size. Furthermore 
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study and research can be carried out between these 

algorithms on the basis of other parameters, like no. of 

iterations, or the parameters passed, etc. These comparisons 

can help us understand the weak points of these algorithms 

which will help in producing better hybrid systems by 

combining 2 or more algorithms for a particular dataset size in 

future. 

Fig.5. Comparison graph for performance of PSO, ACO and 

GA at 10, 20, 30, 40 and 52 number of cities 

Summary of experiments are given below and the rank-wise 

comparison from Table 2 gives us the following key points: 

1. At very low values of a number of cities in a chromosome, 

i.e, 10, ACO performs the best, followed by GA, followed by 

PSO.  

2. At lower values of a number of cities in a chromosome, i.e, 

20, ACO performs the best, followed by PSO, followed by 

GA.  

3. As the medium value of a number of cities in a 

chromosome, i.e, 30, ACO and PSO both perform the best, 

followed by GA.  

4. At higher values of a number of cities in a chromosome, i.e., 

40 and 52, PSO performs the best, followed by ACO, 

followed by GA. 

 

 
Fig 5. Comparison graph for performance of PSO, ACO and 

GA at 10, 20, 30, 40 and 52 number of cities 

 

Summary of experiments are given below and the rank-wise 

comparison from Table 2 gives us the following key points: 

1. At very low values of a number of cities in a chromosome, 

(i.e,) 10, ACO performs the best, followed by GA, followed 

by PSO. 2. At lower values of a number of cities in a 

chromosome, (i.e,) 20, ACO performs the best, followed by 

PSO, followed by GA. 3. As the medium value of a number of 

cities in a chromosome, i.e, 30, ACO and PSO both perform 

the best, followed by GA. 4. At higher values of a number of 

cities in a chromosome, i.e., 40 and 52, PSO performs the 

best, followed by ACO, followed by GA. 
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