
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

153

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10250982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1025.0982S1119

Abstract--- Missing of partial data is a problem that is

prevalent in most of the datasets used for statistical analysis. In

this study, we analyzed the missing values in ISBSG R1 2018

dataset and addressed the problem through imputation, a

machine learning technique which can increase the availability

of data. Additionally, we compare the performance of three

imputation methods: Classification and Regression Trees

(CART), Polynomial Regression (PR), Predictive Mean Matching

(PMM), and Random Forest (RF) applied to ISBSG R1 2018

dataset available from International Standards Benchmarks

Group. Through imputation, we were able to increase data

availability by four times. We also evaluated the performance of

these methods against the original dataset without imputation
using an ensemble of Linear Regression, Gradient Boosting,

Random Forest, and ANN. Imputation using CART can increase

the availability of the overall dataset but only at the loss of some

predictive capability of the model. However, CART remains the

option of choice to extend the usability of the data by retaining
rows that are otherwise removed from the dataset in traditional

methods. In our experiments, this approach has been able to

increase the usability of the original dataset to 63%, but with 2 to

3% decrease in its overall predictive performance.
Keywords--- Software Effort Estimation, Software Cost

Estimation, Effort Prediction, Gradient Boosting Machines,

Generalized Linear Model, Artificial Neural Networks, Random

Forests, Missing Data Imputation, Ensemble Models.

I. INTRODUCTION

Missing of partial data is a problem that is prevalent in

most of the datasets used for statistical analysis. Most of the

regression and machine learning techniques cannot handle

missing data. Traditionally, the approach has been to

remove rows containing missing values altogether. This

creates further challenges, especially in a data-sparse

domain like Software Effort estimation. The second problem

is that the removal of rows creates bias in the dataset,

especially if the missing values are not at random (1).

Datasets collated by non-profit organizations also contain a

considerable percentage of missing values (2), and it is

pertinent to solve this problem from the perspective of other

domains too.

Estimating Software Effort accurately has always been a

challenge to project managers and research scholars. In the

last couple of decades, many methods have been put up by

research scholars and scientist‟s hat could be classified as

Manuscript received September 16, 2019.
Sreekumar P. Pillai, Research Scholar, School of Management

Studies, NIT Calicut, Kozhikode, Kerala, India.(e-mail:

sreekumar.pillai@hotmail.com)
Dr.T. Radha Ramanan, Associate Professor, School of Management

Studies, NIT Calicut, Kozhikode, Kerala, India.(e-mail:

radha_ramanan@nitc.ac.in)
Dr.S.D. Madhu Kumar, Professor, Dept. of Computer Science, NIT

Calicut, Kozhikode, Kerala, India. (e-mail: madhu@nitc.ac.in)

Algorithmic models, Expert Judgment models, and AI-based

models (3). In the last decade, ANN has come to the

forefront in software estimation in terms of accuracy. The

effort to develop a software product is a function of many

factors, such as its size and many environmental factors.

In a previous study that we conducted, we had arrived at a

minimal variable subset from literature research and

subsequently undertaken a comparison of the output of

estimation models using these subsets. All these methods,

except manual methods, expect the dataset to be complete

with no missing values.

While software effort estimation is critical an activity,

research still struggles to get hold of data of adequate

quality to develop accurate models. Many companies fail to

do a precise estimate or keep a record of the actual effort

consumed in a project. Availability of reliable data is very

poor in the Software Engineering domain, and scholars and

practitioners struggle to get hold of data.

To address this challenge, the International Software

Benchmark Group (ISBSG) provides the Software Project

dataset for research and development. We use ISBSG R1

2018 dataset for our analysis. Even with the minimal

variable subset, we identified from the ISBSG dataset; we

would be able to use only 15% of the original dataset by

removing rows with NA values.

In this study, we analyzed the missing values in the

ISBSG dataset through imputation using three different

methods: Classification and Regression Trees (CART),

Polynomial Regression (PR), Predictive Mean Matching

(PMM), and Random Forest (RF).

We went further to evaluate all these approaches through

an ensemble model of Generalized Linear Regression,

Gradient Boosting, Random Forest, and ANN. Our analysis

evidence that imputation methods do not provide any

significant advantages to the predictive accuracy of the

model. Imputation using CART can simulate the original

distribution of the dataset.

However, for experiments with Machine Learning

techniques where the amount of data directly impacts the

performance of the model, CART provides the best option

to retain rows otherwise removed from the dataset in

traditional methods. This approach has been able to increase

the usability of the original dataset to 63%, but with no

improvement in the performance accuracy.

Evaluating Imputation Methods to Improve

Data Availability in a Software Estimation

Dataset
Sreekumar P. Pillai, T. Radha Ramanan, S.D. Madhu Kumar 

EVALUATING IMPUTATION METHODS TO IMPROVE DATA AVAILABILITY IN A SOFTWARE

ESTIMATION DATASET

154

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10250982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1025.0982S1119

II. BACKGROUND

Many studies have been attempted in the last decade to

address the problem of missing values in Datasets through

imputation.

Data ignoring approaches does not address the challenge

especially in data sparse domains and it is pertinent to

explore the opportunities to impute features and increase the

availability of the overall data rather than removing the rows

completely.

Scholars have been reporting varied results due to

imputation. Cartwright (4) has commented that a better

estimate for certain missing values for features will not

ensure a better overall estimate of the dataset.

2.1 The ISBSG Dataset

The data that we used in this study is from ISBSG

(Release 1, 2018). Of late, this dataset has been used in

many studies, ISBSG aims to provide IT industry data to

better software processes and products, as stated on their

website.

This dataset contains information on 8261 projects

executed globally and collected from 26 different countries

spread globally. The projects collated in the dataset were

implemented in 32countries (5).

A systematic mapping study was undertaken by Guevara

et al. (2), and they listed the 20 most frequently used

variables in Software Effort Estimation studies as evident in

the literature. We have considered a subset of these

variables that represent the software estimation domain.

III. PROBLEM STATEMENT

Software Effort Estimation is one of the core functions in

Software Engineering since it serves to establish processes

to manage the production of an intangible asset. All

downstream activities, including the sales and promotional

activity of software, depends on its estimation.

Despite this, any research into improving the estimation

process is hampered by many factors. While quantitative

methods are employed in many aspects of engineering, there

is a dearth of data from the actual implementation.

Additionally, organizations are reluctant to share project

management data to avoid sharing their productivity figures

and to comply with confidentiality imposed by regulatory

bodies. Research into Software Effort Estimation is faced

with challenges in getting quality data (6).

Non-profit organizations such as the International

Standards Benchmark Group (ISBSG) (5) consolidates

project management data from around the globe and their

Release 1 2018 consists of data related to 8261projects from

1989 to 2015.

Unfortunately, missing data is a challenge that software

datasets also face as in many other domains. For the most

critical variables, there is an average 30% of missing values

which limits its use especially in the case of Machine

Learning models that performs well with large data volumes

(7).

It is pertinent to address the problem of missing data so

that the sparse data that is available can be put to optimum

use.

IV. DATA SELECTION

The variable selection has been based on our survey of

systematic studies conducted previously on the subject (2),

(8).

From these, we identified a subset of variables and added

a few others that have the most pertinent impact on the

effort variable based on our knowledge of the domain and

their relevance from an industry perspective.

We have not considered any derived variables other than

the primarily observed project attributes.

 Data Quality Rating: ISBSG uses two attributes

ratings on, Data Quality, and Unadjusted Function

Points to denote the reliability of the sizing measure.

Projects are classified from A to D (from where the

submitter satisfy all criteria specified by ISBSG, to

where the data has severe shortcomings). ISBSG

recommends only projects classified as A or B to be

considered for statistical analysis. In our study, all

data rows rated as C or D were removed.

 Unadjusted Function Point Rating: Only projects

classified as A or B are considered for this research

as recommended by ISBSG and other scholars (2).

 Count Approach: The counting approach is the

technique used to measure the size of a project. The

following NESMA, IFPUG 4+, COSMIC, Mark II,

IFPUG old, Dreger, Albrecht (6), are retained. All

these are different versions of FPA and are retained.

Dreger (9) is merely a guide to IFPUG counts. All

these variants are included.

 Recording Method: Additionally, ISBSG records

whether their volunteering organization has

collected the information first hand or derived them

from other parameters, through the “Recording

Method” attribute in their dataset. We have used

only data that has been mentioned as directly

observed and recorded, in the dataset.

4.1 Rationale for Variable Selection

The section details our rationale for the choice of the 7

independent and the dependent variable

 Functional Size: The functional size refers to the

size of the software developed and has the most

impact on the software development effort but is not

linearly related to the project effort (10).

 Development Type: The development type variable

groups the projects in the ISBSG dataset into the

nature of development.

 Language Type: The language type variable refers

to the generation of the language employed to

develop a software product. The programming

languages are classified into five distinct

generations based on their evolution and how

significantly they impact the function of software

productivity.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

155

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10250982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1025.0982S1119

 Project Elapsed Time: The project duration in

calendar months impacts the effort required to

develop software. The relation between software

effort and schedule is non-linear as concluded by

empirical studies (11).

 Team Size Group: The size of the team is

represented by the team size group. The size of the

team has an indirect impact on the cost due to

dysfunctions associated with having a large team.

 Value Adjustment Factor: The VAF represents

an adjustment factor to scale the functional size to

accommodate for differences in the environment

under which software is produced. VAF is derived

as part of the Function Point Analysis (FPA)

estimation process and can vary from 0.65 to 1.35.

 Industry Sector: The industry sector is a grouping

variable that classifies the ISBSG projects across18

distinct domain areas. The complexity of software

products/features needed by industry domains are

different and reflect its characteristics. Software

productivity also varies across industry domains

(12).

 Work Summary Effort: The summ.weffort

variable represents the effort required to produce

soft-ware of defined size and is the dependent

variable. Since above 90% of the cost of software

development is dependent on human effort, the cost

of software production depends on this variable.

V. MISSING VALUE ANALYSIS AND

IMPUTATION

Our analysis of missing values in the original dataset with

the selected variables is shown in Figure1. The team.size.gp

variable has the maximum number of missing values with

36% NAs. 21.729% of the dataset has no missing values. Of

the 64% available, there is data missing across four

variables and offers potential opportunity for data

imputation.

Standard imputation has been performed on ISBSG

dataset by Sentas and Angelis (13), Shepperd and

Cartwright (14), (4), Song et al. (1), Shera et al. (15), and

recently by Mittas et al. (16). We performed imputation of

missing values using Burren‟s, „Multivariate Imputation‟

method (17) as implemented in the mice „R‟ package.

Within the ISBSG dataset version we used, specific

projects have captured the unadjusted Function Points, and

there are others that captured Adjusted FP along with VAF.

We removed rows only where both these values are non-

existent. In cases where two of these values are present, we

have derived the missing value based on equation (1). This

helps us retain close to 30% of the rows missing VAF in the

original dataset.

Data imputation is done for Language Type (lang.type) and

Team Size Group (team.size.gp) variables based on

multivariate imputation further evidenced in the papers by

Cartwright (4), and recently by Lee (18).

Figure 1: Chart of Missing Data

5.1 Imputation Methodology

The multiple imputation techniques were developed by

Rubin (19) and Little (20), and overcomes the challenges

faced from missing values across most types of datasets.

Traditional imputation covers the imputation and error

minimization in a single step. The multiple imputations

work in three steps: imputation across „m‟ datasets, analysis

of the error, and finally, the pooling of the results from these

„m‟, observations. Vaan Burren implemented multiple

imputations using chained equations in the MICE package.

One condition of multiple imputations is that the data should

be missing completely at random (MCAR).

EVALUATING IMPUTATION METHODS TO IMPROVE DATA AVAILABILITY IN A SOFTWARE

ESTIMATION DATASET

156

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10250982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1025.0982S1119

In the case of ISBSG dataset, the data is collated from all

over the world (5) so this assumption is ascertained. In

multiple imputations, the number of iterations is a critical

factor to reckon. Rubin suggests a minimum of 5 repetitions

for adequate accuracy; however, experts relate this with the

percentage of missing values in the dataset. A 30% missing

data on average would require 30 imputations (11).

The imputation can be performed using a variety of

methods. We implemented Predictive Mean Matching

(PMM) for numerical variables, Cartesian and Regression

Trees (CART), Polytomous Regression (Polyreg), and

Random Forest (RF) for categorical variables.

The predictive mean matching metric was proposed by

Rubin and Little and improves the standard pre-diction line

by adding appropriate random noise to the predicted value.

A random value is then from a normal distribution with zero

mean and the standard deviation of the original dataset. The

assumption is that the missing values follow the same

distribution as the available rows.

The CART methods are not influenced by outliers and

deals with skewed distributions well making it suitable for

non-linear variables. CART has been recommended by

many authors (4). Multiple imputations for different

algorithms have been explored in detail by Vaan (17).

Polytomous regression is also known as multinomial logistic

regression or nominal regression. This models relationships

between a polytomous dependent variable and other

independent variables. They have multiple unordered

categories and, are called multinomial.

VI. DATA PRE-PROCESSING

The Descriptive statistics for the selected continuous

variables in our dataset after pre-processing steps are shown

in Table 1, under the data heading “Original”.

6.1 Removing Outliers

To avoid unrealistic inferences regarding outliers from

univariate detection, we used a multivariate outlier detection

procedure using cook‟s distance (21), (22). This approach

considers all numerical predictor variables collectively, to

decide whether an observation is an outlier. A

computational procedure towards this is also provided by

Kannan and Manoj (23). It computes the influence of each

data point (row) on the predicted outcome as in Equation 5.

We considered observations that have a cook‟s distance

greater than 4 times the mean as influential outliers and

these were removed from the datasets before imputation

(24).

6.2 Normalization

As recommended by Peterson and other scholars, on

statistical analysis of software projects, Scatter plots are

employed for univariate analysis of their data (8), (25). We

used multivariate normality-based outlier detection (as

discussed in the previous section) to identify and remove

outliers. Further, we normalized the data using Box Cox

normalization.

Table 1: Descriptive Statistics of the data for each of the Experiments

Variable mean sd median mad min max range skew kurtosis se

Original (n = 1111)

value.af 1.01 0.08 1.00 0.00 0.65 1.31 0.66 -0.18 3.73 0.00

funct.size 459.78 793.18 229.00 212.01 6.00 14656.00 14650.00 8.00 108.17 23.80

proj.elap.tm 8.97 7.25 7.10 4.60 0.30 87.00 86.70 3.57 25.52 0.22

summ.weffort 5371.42 9802.71 2387.00 2521.90 17.00 134211.00 134194.00 5.48 44.72 294.10

CART (n = 4630)

value.af 1.01 0.07 1.00 0.00 0.65 1.31 0.66 0.87 5.60 0.00

funct.size 307.82 654.58 126.00 127.50 3.00 16148.00 16145.00 10.50 186.49 9.62

proj.elap.tm 7.87 6.46 6.00 4.45 0.10 87.00 86.90 2.59 14.65 0.09

summ.weffort 3884.11 7829.75 1595.00 1699.06 4.00 134211.00 134207.00 6.34 58.37 115.07

Polyreg (n = 4630)

value.af 1.01 0.07 1.00 0.00 0.65 1.31 0.66 0.87 5.60 0.00

funct.size 307.82 654.58 126.00 127.50 3.00 16148.00 16145.00 10.50 186.49 9.62

proj.elap.tm 7.90 6.44 6.00 4.45 0.10 87.00 86.90 2.48 13.91 0.09

summ.weffort 3884.11 7829.75 1595.00 1699.06 4.00 134211.00 134207.00 6.34 58.37 115.07

Random Forest (n = 4630)

value.af 1.00 0.07 1.00 0.00 0.65 1.30 0.66 0.87 5.60 0.00

funct.size 307.80 654.58 126.00 127.50 3.00 16148.00 16145.00 10.50 186.49 9.62

proj.elap.tm 8.00 6.47 6.00 4.40 0.10 87.00 86.90 2.50 13.79 0.10

summ.weffort 3884.10 7829.75 1595.00 1699.10 4.00 134211.00 134207.00 6.34 58.37 115.07

CART=Classification and Regression Trees,

Polyreg=Polytomous Regression, RF=Random Forests,

value.af=Value Adjustment Factor, funct.size=Functional

Size, proj.elap.tm=Project Elapsed Time,

summ.weffort=Summary Work Effort.

6.3 Homogeneous Levels and ANOVA

The ANOVA test for the categorical variables shows the

presence of homogeneous groups within the dataset. We

analyzed the homogeneous groups using the multiple

comparison procedure proposed by Donoghue (26), (27).

Three variables in our dataset had homogeneous groups

within their levels, and they were consolidated to form

distinct groups. The levels in the lang.type variable was

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

157

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10250982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1025.0982S1119

reduced to two levels based on the ANOVA and post-hoc

tests conducted to (2GL) (4GL), and (3GL) (ApG) since

there existed no significant difference between the mean of

these groups.

The dev.type variable was reduced from three levels to

two:” New development” and” Enhancement”. The one-way

ANOVA test done on the ind.sector variable showed a

statistically significant difference be-tween 14 industry

sectors. The other 7 were re-grouped into the identified

primary groups. This helped us balance the number of levels

and get significant ones consolidated appropriately.

VII. METHODOLOGY

The steps we adopted to create the samples, the modeling

and verification methodology is provided in Figure 2. In the

first step, we developed and tuned these model hyper

parameters for optimum performance individually, using the

grid search method and the best performing one selected for

the lowest MMRE.

As the next step, based on the best hyper parameters, we

created stack ensembles of these four models, from a grid of

all the 12 possible combinations of models. For each

imputation method, we obtained 12models, and the best

group was selected based on the lowest MMRE.

Figure 2: The Imputation and Validation Steps

We created four samples from the ISBSG dataset. One

dataset that we called original had the rows for all NA

values removed. For the other three samples replicated from

the root dataset, we imputed theproj.elap.tm variable using

the PMM (17) method since this is a continuous variable.

For the two categorical variables: team.size.gp and

lang.type, we employed three different methods

Classification and Regression Trees (CART), Polytomous

Regression (Polyreg) and Random Forest (RF) thus creating

4 total samples (28). The descriptive statistics of each of

these samples is provided in Table 1.

7.1 Modeling and Testing

We tested the performance of the imputed dataset using

an ensemble model to rule out bias from a single algorithm

conflicting with the imputation method used. Additionally,

the literature has established that ensembles of different

models give better prediction accuracy against individual

models (29). The4 different models employing Generalized

Linear Model (30), Gradient Boosting Machines (GBM)

(31), Random Forests (RF), (32) and Artificial Neural

Network (ANN), (33) were combined to form the ensemble.

We used the train and test sets to build and test our models

by splitting the dataset using the 80:20 ratio. We made the

model using the training set reserving the test set to validate

the model accuracy within dependent data.

7.2 Measuring Model Accuracy

The accuracy of the models is evaluated and reported

using the following nomenclature from the literature. For

any single project, Magnitude of Relative Error (MRE):

Measures the absolute estimation accuracy and is defined as

(11):

| |

(1)

Mean Magnitude of Relative Error (MMRE): The Mean

Magnitude of Relative Error (MMRE) is expressed as given:

∑

| |

(2)

Prediction (PRED): For n projects, the prediction at level

p is defined as:

(3)

k is the number of projects where the MRE is less than or

equals p. Desirable MMRE and PRED thresholds were first

published by (34), and subsequently by other scholars (35).

VIII. RESULTS

Table 2 summarizes our findings and reports the accuracy

metrics of each of the imputation methods and the number

of data observations against which the training has been

done. The no-impute sample had only 686 observations in

the training set against 2800 in the case of others. The

imputation methods help increase data availability by 4

times. In the case of the no-impute sample, there is a very

high probability of labels in the testing data set against

which the model wouldn‟t be trained on, which can cause

the machine learning algorithm to fail at random, affecting

the stability of the model.

Innoimpute and CART based imputation, the best

accuracy is provided by an ensemble of all four models. In

the case of Polyreg and RF imputation, an ensemble of just

two algorithms provide the

best accuracy.

EVALUATING IMPUTATION METHODS TO IMPROVE DATA AVAILABILITY IN A SOFTWARE

ESTIMATION DATASET

158

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10250982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1025.0982S1119

We evidence that while imputation considerably increases

the availability of data (in our case raising it to 64% of the

initially available, imputation does not necessarily improve

the overall performance of the dataset as commented by

other scholars (28). The study by Song et al. (36) on

imputation by K-NN algorithm concludes the negative

performance of imputation when the overall percentage of

missingness exceeds 40%.

While there is a trade-off in terms of predictive accuracy

for the additional availability of data, CART remains a

viable option to increase data availability for data

consuming algorithms in the case of Ma-chine Learning and

Deep Learning. The representational capability of the Pmm-

CART imputation has increased by 2.8% as seen by the

increased R2value. Our study also reiterates that CART

performs best compared to other models we have evaluated.

Table 2: Summary of Results

ID Stack Model MSE RMSE MMRE MAE R2 NOBS

Error Metrics

1 1,2,3,4 No Impute 0.110 0.332 0.047 0.224 0.818 686

2 1,2,3,4 Pmm-CART 0.162 0.402 0.058 0.212 0.841 2867

3 2,3 Pmm-RF 0.200 0.447 0.066 0.236 0.805 2870

4 2,3 Pmm-Polyreg 0.193 0.439 0.066 0.215 0.834 2868

Prediction

ID Stack Model PRED(5) PRED(10) PRED(15) PRED(20) PRED(25) PRED(30)

1 1,2,3,4 No Impute 0.594 0.895 0.977 0.995 1.000 1.000

2 1,2,3,4 Pmm-CART 0.547 0.847 0.948 0.973 0.987 0.994

3 2,3 Pmm-RF 0.501 0.801 0.919 0.968 0.985 0.991

4 2,3 Pmm-Polyreg 0.499 0.800 0.919 0.971 0.989 0.995

CART=Classification and Regression Trees,

Polyreg=Polytomous Regression, RF=Random Forests,

Stack:1=Gradient Boosting Machine, 2=Generalized Linear

Model, 3=Random Forests,4=Artificial Neural Networks.

IX. CONCLUSION

The results of our experiments on the ISBSG dataset to

improve data availability is promising towards optimum

utilization of data but this comes at the cost of the predictive

accuracy of the overall model. Among the models that we

compared: CART, Polyreg and Random Forest, CART

shows the best performance that is near to the non-imputed

dataset. We recommend the use of CART in instances where

data retention is the priority.

There are opportunities for further experiments in

imputation using other algorithms, chained equations or

different iterations to improve accuracy. As the next step,

we propose research towards identifying new techniques

and experiments with other datasets to increase data

availability in the software estimation domain.

REFERENCES

1. Q. Song, M. J. Shepperd, X. Chen, J. Liu, Can k -NN

Imputation Improve the Performance of C4. 5 With

Small Software Project Data Sets? A Comparative

Evaluation, Journal of Systems and Software 81 (2008)

1–31.

2. F. Gonzalez-Ladron-de Guevara, M. Fernandez-Diego,

C. Lukan, The usage of ISBSG data fields in software

effort estimation: A systematic mapping study, The

Journal of Systems and Software 113 (2016) 188–215.

3. T. Menzies, Z. Chen, J. Hihn, K. Lum, Best Practices in

Software Effort Estimation, Ieee Transactions on

Software Engineering 1 (2006) 1.

4. M. Cartwright, Data Imputation Techniques for Software

Engineering: Case for Support, IEEE Transactions on

Soft-ware Engineering (2003) 1–8.

5. ISBSG, Demographics of Development & Enhancement

Repository, Technical Report, ISBSG, 2017.

6. R. Jeffery, M. Ruhe, I. Wieczorek, using public domain

metrics to estimate software development effort,

Proceedings -7th International Software Metrics

Symposium, 2001 (2001) 16 –27.

7. M. Jørgensen, M. J. Shepperd, A Systematic Review of

Software Development Cost Estimation Studies, IEEE

Transactions on Software Engineering 33 (2007) 33–53.

8. K. Petersen, Measuring and Predicting Software

Productivity: A Systematic Map and Review,

Information and Soft-ware Technology 53 (2011) 317–

343.

9. J. B. Dreger, Function Point Analysis (Prentice Hall

advanced reference series), Prentice Hall, 1989.

10. M. Jørgensen, B. Boehm, S. Rifkin, Software

development effort estimation: Formal models or expert

judgment? IEEE Software 26 (2009) 14–19.

11. W. Rosa, R. Madachy, B. Boehm, B. Clark, C. Jones, J.

Mcgarry, J. Dean, Improved Method for Predicting

Software Effort and Schedule, International Cost

Estimating and Analysis Association (ICEAA) (2014).

12. A. Trendowicz, J. Munch, Chapter 6 Factors Influencing

Software Development Productivity-State-of-the-Art and

Industrial Experiences, Advances in Computers 77

(2009) 185–241. URL: https://www.ebook.

de/de/product /8322757/advances incomputers

volume77.html.

13. P. Sentas, L. Angelis, Categorical missing data

imputation for software cost estimation by multinomial

logistic regression, Journal of Systems and Software 79

(2006) 404–414.

14. M. Shepperd, M. Cartwright, Predicting with sparse data,

IEEE Transactions on Software Engineering 27 (2001)

987–998.

15. S. K. Sehra, J. Kaur, Y. S. Brar, N. Kaur, Analysis of

Data Mining Techniques for Software Effort Estimation,

2014 11th International Conference on Information

Technology: New Generations (2014) 633–638.

16. N. Mittas, E. Papatheocharous, L. Angelis, A. S.

Andreou, Integrating non-parametric models with linear

components for producing software cost estimations,

Journal of Systems and Software 99 (2015) 120–134.

URL: http: //dx.doi.org/10.1016/j. jss.2014.09.025.

17. S. van Buuren, K. Groothuis-Oudshoorn, S. Van Buuren,

K. Groothuis-Oudshoorn, mice: Multivariate Imputation

by Chained Equations in R, Journal of Statistical

Software VV (2011). URL:http://www.jstatsoft.org/.

http://www.jstatsoft.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

159

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10250982S1119/2019©BEIESP
DOI: 10.35940/ijrte.B1025.0982S1119

18. J. B. Taeho Lee, Taewan G, MND-SCEMP: An

empirical study of a software cost estimation modeling

process in the defense domain, Empirical Software

Engineering 19 (2014) 213–240.

19. P. Taylor, D. B. Rubin, D. B. Rubin, Multiple Imputation

after 18 + Years, American Statistical Association 91

(2012)37–41.

20. J. Roderick, A Test of Missing Completely at Random

for Multivariate Data with Missing Values Author (s),

American Statistical Association 83 (2010) 1198–1202.

URL:http://www.jstor.org/stable/2290157.

21. R. D. Cook, Detection of Influential Observation in

Linear Regression, Technometrics 19 (1977) 15–18.

22. X. Y. Leandro L. Minku, Ensembles and locality: Insight

on improving software effort estimation, Information and

Software Technology 55 (2013) 1512–152.

23. K. S. Kannan, K. Manoj, Outlier detection in

multivariate data, Applied Mathematical Sciences 9

(2015) 2317–2324.

24. L. Lavazza, G. Valetto, Requirements-based estimation

of change costs, Empirical Software Engineering 5

(2000) 229–243.

25. R. J. Yeong-Seok Seo, Doo-Hwan Bae, AREION:

Software effort estimation based on multiple regressions

with adaptive recursive data partitioning, Information

and Software Technology 55 (2013) 1710–1725.

26. J. R. Donoghue, Implementing Shaffer‟s multiple

comparison procedure for a large number of groups,

Wiley Online 1998 (1998) i–38.

27. S. Graves, H.P. Piepho, L. Sundar, D.-R. Maintainer, L.

Selzer, Package ‟multcompView‟ Visualizations of

Paired Com-parisons, R package http://CRAN.R-

project.org/package=multcompView (2015).

28. S. Van Buuren, Flexible Imputation of Missing Data Stef

Van Buuren, 1st ed., CRC Press, Netherlands, 2012.

29. R. Polikar, Ensemble based systems in decision making,

Circuits and Systems Magazine, IEEE 6 (2006) 21–

45.doi:10.1109/MCAS.2006.1688199.arXiv:arXiv:1011.

1669v3.

30. T. Nykodym, T. Kraljevic, A. Wang, A. Bartz,

Generalized Linear Modeling with H2O, November,

H2O, 2017. URL:http://www.h2o.ai/wp-

content/uploads/2018/01/GLM-BOOKLET.pdf.

31. V. K. Ayyadevara, Gradient Boosting Machine, Pro

Machine Learning Algorithms (2018) 117–134.

URL:http://link.springer.com/10.1007/978-1-4842-3564-

56.

32. P. Geurts, D. Ernst, L. Wehenkel, extremely randomized

trees, Machine Learning 63 (2006) 3–42.

33. A. Candel, E. Ledell, Deep Learning with H2O, June,

H2o, 2018.

34. H. S.D. Conte, V.Y. Shen, Software Engineering Metrics

and Models, benjamin/c ed., Benjamin/Cummings,

Menlo Park, 1986, 1986.

35. D. Port, M. Korte, Comparative Studies of the Model

Evaluation Criterions Mmre and Pred in Software Cost

Estimation Research, Proceedings of the Second ACM-

IEEE International Symposium on Empirical Software

Engineering and Measurement (2008) 51–60.

URL:http://doi.acm.org/10.1145/1414004.141401.

36. L. Song, L. L. Minku, X. Yao, the impact of parameter

tuning on software effort estimation using learning

machines, Proceedings of the 9th International

Conference on Predictive Models in Software

Engineering - PROMISE ’13 (2013)1–10.

