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Abstract--- Missing of partial data is a problem that is 

prevalent in most of the datasets used for statistical analysis. In 

this study, we analyzed the missing values in ISBSG R1 2018 

dataset and addressed the problem through imputation, a 

machine learning technique which can increase the availability 

of data. Additionally, we compare the performance of three 

imputation methods: Classification and Regression Trees 

(CART), Polynomial Regression (PR), Predictive Mean Matching 

(PMM), and Random Forest (RF) applied to ISBSG R1 2018 

dataset available from International Standards Benchmarks 

Group.  Through imputation, we were able to increase data 

availability by four times. We also evaluated the performance of 

these methods against the original dataset without imputation 
using an ensemble of Linear Regression, Gradient Boosting, 

Random Forest, and ANN. Imputation using CART can increase 

the availability of the overall dataset but only at the loss of some 

predictive capability of the model. However, CART remains the 

option of choice to extend the usability of the data by retaining 
rows that are otherwise removed from the dataset in traditional 

methods. In our experiments, this approach has been able to 

increase the usability of the original dataset to 63%, but with 2 to 

3% decrease in its overall predictive performance. 
Keywords--- Software Effort Estimation, Software Cost 

Estimation, Effort Prediction, Gradient Boosting Machines, 

Generalized Linear Model, Artificial Neural Networks, Random 

Forests, Missing Data Imputation, Ensemble Models. 

I. INTRODUCTION 

Missing of partial data is a problem that is prevalent in 

most of the datasets used for statistical analysis. Most of the 

regression and machine learning techniques cannot handle 

missing data. Traditionally, the approach has been to 

remove rows containing missing values altogether. This 

creates further challenges, especially in a data-sparse 

domain like Software Effort estimation. The second problem 

is that the removal of rows creates bias in the dataset, 

especially if the missing values are not at random (1). 

Datasets collated by non-profit organizations also contain a 

considerable percentage of missing values (2), and it is 

pertinent to solve this problem from the perspective of other 

domains too. 

Estimating Software Effort accurately has always been a 

challenge to project managers and research scholars. In the 

last couple of decades, many methods have been put up by 

research scholars and scientist‟s hat could be classified as 
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Algorithmic models, Expert Judgment models, and AI-based 

models (3). In the last decade, ANN has come to the 

forefront in software estimation in terms of accuracy. The 

effort to develop a software product is a function of many 

factors, such as its size and many environmental factors. 

In a previous study that we conducted, we had arrived at a 

minimal variable subset from literature research and 

subsequently undertaken a comparison of the output of 

estimation models using these subsets. All these methods, 

except manual methods, expect the dataset to be complete 

with no missing values. 

While software effort estimation is critical an activity, 

research still struggles to get hold of data of adequate 

quality to develop accurate models. Many companies fail to 

do a precise estimate or keep a record of the actual effort 

consumed in a project. Availability of reliable data is very 

poor in the Software Engineering domain, and scholars and 

practitioners struggle to get hold of data. 

To address this challenge, the International Software 

Benchmark Group (ISBSG) provides the Software Project 

dataset for research and development. We use ISBSG R1 

2018 dataset for our analysis. Even with the minimal 

variable subset, we identified from the ISBSG dataset; we 

would be able to use only 15% of the original dataset by 

removing rows with NA values. 

In this study, we analyzed the missing values in the 

ISBSG dataset through imputation using three different 

methods: Classification and Regression Trees (CART), 

Polynomial Regression (PR), Predictive Mean Matching 

(PMM), and Random Forest (RF). 

We went further to evaluate all these approaches through 

an ensemble model of Generalized Linear Regression, 

Gradient Boosting, Random Forest, and ANN. Our analysis 

evidence that imputation methods do not provide any 

significant advantages to the predictive accuracy of the 

model. Imputation using CART can simulate the original 

distribution of the dataset.  

However, for experiments with Machine Learning 

techniques where the amount of data directly impacts the 

performance of the model, CART provides the best option 

to retain rows otherwise removed from the dataset in 

traditional methods. This approach has been able to increase 

the usability of the original dataset to 63%, but with no 

improvement in the performance accuracy. 
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II. BACKGROUND 

Many studies have been attempted in the last decade to 

address the problem of missing values in Datasets through 

imputation.  

Data ignoring approaches does not address the challenge 

especially in data sparse domains and it is pertinent to 

explore the opportunities to impute features and increase the 

availability of the overall data rather than removing the rows 

completely. 

Scholars have been reporting varied results due to 

imputation. Cartwright (4) has commented that a better 

estimate for certain missing values for features will not 

ensure a better overall estimate of the dataset. 

2.1  The ISBSG Dataset 

The data that we used in this study is from ISBSG 

(Release 1, 2018). Of late, this dataset has been used in 

many studies, ISBSG aims to provide IT industry data to 

better software processes and products, as stated on their 

website. 

This dataset contains information on 8261 projects 

executed globally and collected from 26 different countries 

spread globally. The projects collated in the dataset were 

implemented in 32countries (5). 

A systematic mapping study was undertaken by Guevara 

et al. (2), and they listed the 20 most frequently used 

variables in Software Effort Estimation studies as evident in 

the literature. We have considered a subset of these 

variables that represent the software estimation domain. 

III. PROBLEM STATEMENT 

Software Effort Estimation is one of the core functions in 

Software Engineering since it serves to establish processes 

to manage the production of an intangible asset. All 

downstream activities, including the sales and promotional 

activity of software, depends on its estimation. 

Despite this, any research into improving the estimation 

process is hampered by many factors. While quantitative 

methods are employed in many aspects of engineering, there 

is a dearth of data from the actual implementation. 

Additionally, organizations are reluctant to share project 

management data to avoid sharing their productivity figures 

and to comply with confidentiality imposed by regulatory 

bodies. Research into Software Effort Estimation is faced 

with challenges in getting quality data (6).  

Non-profit organizations such as the International 

Standards Benchmark Group (ISBSG) (5) consolidates 

project management data from around the globe and their 

Release 1 2018 consists of data related to 8261projects from 

1989 to 2015. 

Unfortunately, missing data is a challenge that software 

datasets also face as in many other domains. For the most 

critical variables, there is an average 30% of missing values 

which limits its use especially in the case of Machine 

Learning models that performs well with large data volumes 

(7). 

It is pertinent to address the problem of missing data so 

that the sparse data that is available can be put to optimum 

use. 

IV. DATA SELECTION 

The variable selection has been based on our survey of 

systematic studies conducted previously on the subject (2), 

(8). 

From these, we identified a subset of variables and added 

a few others that have the most pertinent impact on the 

effort variable based on our knowledge of the domain and 

their relevance from an industry perspective. 

We have not considered any derived variables other than 

the primarily observed project attributes. 

 Data Quality Rating: ISBSG uses two attributes 

ratings on, Data Quality, and Unadjusted Function 

Points to denote the reliability of the sizing measure. 

Projects are classified from A to D (from where the 

submitter satisfy all criteria specified by ISBSG, to 

where the data has severe shortcomings). ISBSG 

recommends only projects classified as A or B to be 

considered for statistical analysis. In our study, all 

data rows rated as C or D were removed. 

 Unadjusted Function Point Rating: Only projects 

classified as A or B are considered for this research 

as recommended by ISBSG and other scholars (2). 

 Count Approach: The counting approach is the 

technique used to measure the size of a project. The 

following NESMA, IFPUG 4+, COSMIC, Mark II, 

IFPUG old, Dreger, Albrecht (6), are retained. All 

these are different versions of FPA and are retained. 

Dreger (9) is merely a guide to IFPUG counts. All 

these variants are included.  

 Recording Method: Additionally, ISBSG records 

whether their volunteering organization has 

collected the information first hand or derived them 

from other parameters, through the “Recording 

Method” attribute in their dataset.  We have used 

only data that has been mentioned as directly 

observed and recorded, in the dataset. 

4.1  Rationale for Variable Selection 

The section details our rationale for the choice of the 7 

independent and the dependent variable 

 Functional Size: The functional size refers to the 

size of the software developed and has the most 

impact on the software development effort but is not 

linearly related to the project effort (10). 

 Development Type: The development type variable 

groups the projects in the ISBSG dataset into the 

nature of development. 

 Language Type: The language type variable refers 

to the generation of the language employed to 

develop a software product. The programming 

languages are classified into five distinct 

generations based on their evolution and how 

significantly they impact the function of software 

productivity. 
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 Project Elapsed Time: The project duration in 

calendar months impacts the effort required to 

develop software.  The relation between software 

effort and schedule is non-linear as concluded by 

empirical studies (11). 

 Team Size Group: The size of the team is 

represented by the team size group. The size of the 

team has an indirect impact on the cost due to 

dysfunctions associated with having a large team.  

 Value Adjustment Factor: The VAF represents 

an adjustment factor to scale the functional size to 

accommodate for differences in the environment 

under which software is produced. VAF is derived 

as part of the Function Point Analysis (FPA) 

estimation process and can vary from 0.65 to 1.35. 

 Industry Sector: The industry sector is a grouping 

variable that classifies the ISBSG projects across18 

distinct domain areas. The complexity of software 

products/features needed by industry domains are 

different and reflect its characteristics. Software 

productivity also varies across industry domains 

(12). 

 Work Summary Effort: The summ.weffort 

variable represents the effort required to produce 

soft-ware of defined size and is the dependent 

variable. Since above 90% of the cost of software 

development is dependent on human effort, the cost 

of software production depends on this variable. 

V. MISSING VALUE ANALYSIS AND 

IMPUTATION 

Our analysis of missing values in the original dataset with 

the selected variables is shown in Figure1. The team.size.gp 

variable has the maximum number of missing values with 

36% NAs. 21.729% of the dataset has no missing values. Of 

the 64% available, there is data missing across four 

variables and offers potential opportunity for data 

imputation. 

Standard imputation has been performed on ISBSG 

dataset by Sentas and Angelis (13), Shepperd and 

Cartwright (14), (4), Song et al. (1), Shera et al. (15), and 

recently by Mittas et al. (16). We performed imputation of 

missing values using Burren‟s, „Multivariate Imputation‟ 

method (17) as implemented in the mice „R‟ package.  

Within the ISBSG dataset version we used, specific 

projects have captured the unadjusted Function Points, and 

there are others that captured Adjusted FP along with VAF. 

We removed rows only where both these values are non-

existent. In cases where two of these values are present, we 

have derived the missing value based on equation (1).  This 

helps us retain close to 30% of the rows missing VAF in the 

original dataset. 

Data imputation is done for Language Type (lang.type) and 

Team Size Group (team.size.gp) variables based on 

multivariate imputation further evidenced in the papers by 

Cartwright (4), and recently by Lee (18). 

 
Figure 1: Chart of Missing Data 

5.1  Imputation Methodology 

The multiple imputation techniques were developed by 

Rubin (19) and Little (20), and overcomes the challenges 

faced from missing values across most types of datasets. 

Traditional imputation covers the imputation and error 

minimization in a single step. The multiple imputations 

work in three steps: imputation across „m‟ datasets, analysis 

of the error, and finally, the pooling of the results from these 

„m‟, observations. Vaan Burren implemented multiple 

imputations using chained equations in the MICE package. 

One condition of multiple imputations is that the data should 

be missing completely at random (MCAR). 
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In the case of ISBSG dataset, the data is collated from all 

over the world (5) so this assumption is ascertained. In 

multiple imputations, the number of iterations is a critical 

factor to reckon. Rubin suggests a minimum of 5 repetitions 

for adequate accuracy; however, experts relate this with the 

percentage of missing values in the dataset. A 30% missing 

data on average would require 30 imputations (11).  

The imputation can be performed using a variety of 

methods. We implemented Predictive Mean Matching 

(PMM) for numerical variables, Cartesian and Regression 

Trees (CART), Polytomous Regression (Polyreg), and 

Random Forest (RF) for categorical variables. 

The predictive mean matching metric was proposed by 

Rubin and Little and improves the standard pre-diction line 

by adding appropriate random noise to the predicted value. 

A random value is then from a normal distribution with zero 

mean and the standard deviation of the original dataset. The 

assumption is that the missing values follow the same 

distribution as the available rows. 

The CART methods are not influenced by outliers and 

deals with skewed distributions well making it suitable for 

non-linear variables. CART has been recommended by 

many authors (4). Multiple imputations for different 

algorithms have been explored in detail by Vaan (17). 

Polytomous regression is also known as multinomial logistic 

regression or nominal regression. This models relationships 

between a polytomous dependent variable and other 

independent variables. They have multiple unordered 

categories and, are called multinomial. 

VI. DATA PRE-PROCESSING 

The Descriptive statistics for the selected continuous 

variables in our dataset after pre-processing steps are shown 

in Table 1, under the data heading “Original”. 

6.1  Removing Outliers 

To avoid unrealistic inferences regarding outliers from 

univariate detection, we used a multivariate outlier detection 

procedure using cook‟s distance (21), (22). This approach 

considers all numerical predictor variables collectively, to 

decide whether an observation is an outlier. A 

computational procedure towards this is also provided by 

Kannan and Manoj (23). It computes the influence of each 

data point (row) on the predicted outcome as in Equation 5. 

We considered observations that have a cook‟s distance 

greater than 4 times the mean as influential outliers and 

these were removed from the datasets before imputation 

(24). 

6.2 Normalization 

As recommended by Peterson and other scholars, on 

statistical analysis of software projects, Scatter plots are 

employed for univariate analysis of their data (8), (25). We 

used multivariate normality-based outlier detection (as 

discussed in the previous section) to identify and remove 

outliers. Further, we normalized the data using Box Cox 

normalization. 

Table 1: Descriptive Statistics of the data for each of the Experiments 

Variable mean sd median mad min max range skew kurtosis se 

Original (n = 1111) 

value.af 1.01 0.08 1.00 0.00 0.65 1.31 0.66 -0.18 3.73 0.00 

funct.size 459.78 793.18 229.00 212.01 6.00 14656.00 14650.00 8.00 108.17 23.80 

proj.elap.tm 8.97 7.25 7.10 4.60 0.30 87.00 86.70 3.57 25.52 0.22 

summ.weffort 5371.42 9802.71 2387.00 2521.90 17.00 134211.00 134194.00 5.48 44.72 294.10 

CART (n = 4630) 

value.af 1.01 0.07 1.00 0.00 0.65 1.31 0.66 0.87 5.60 0.00 

funct.size 307.82 654.58 126.00 127.50 3.00 16148.00 16145.00 10.50 186.49 9.62 

proj.elap.tm 7.87 6.46 6.00 4.45 0.10 87.00 86.90 2.59 14.65 0.09 

summ.weffort 3884.11 7829.75 1595.00 1699.06 4.00 134211.00 134207.00 6.34 58.37 115.07 

Polyreg (n = 4630) 

value.af 1.01 0.07 1.00 0.00 0.65 1.31 0.66 0.87 5.60 0.00 

funct.size 307.82 654.58 126.00 127.50 3.00 16148.00 16145.00 10.50 186.49 9.62 

proj.elap.tm 7.90 6.44 6.00 4.45 0.10 87.00 86.90 2.48 13.91 0.09 

summ.weffort 3884.11 7829.75 1595.00 1699.06 4.00 134211.00 134207.00 6.34 58.37 115.07 

Random Forest (n = 4630) 

value.af 1.00 0.07 1.00 0.00 0.65 1.30 0.66 0.87 5.60 0.00 

funct.size 307.80 654.58 126.00 127.50 3.00 16148.00 16145.00 10.50 186.49 9.62 

proj.elap.tm 8.00 6.47 6.00 4.40 0.10 87.00 86.90 2.50 13.79 0.10 

summ.weffort 3884.10 7829.75 1595.00 1699.10 4.00 134211.00 134207.00 6.34 58.37 115.07 

CART=Classification and Regression Trees, 

Polyreg=Polytomous Regression, RF=Random Forests, 

value.af=Value Adjustment Factor, funct.size=Functional 

Size, proj.elap.tm=Project Elapsed Time, 

summ.weffort=Summary Work Effort. 

6.3 Homogeneous Levels and ANOVA 

The ANOVA test for the categorical variables shows the 

presence of homogeneous groups within the dataset. We 

analyzed the homogeneous groups using the multiple 

comparison procedure proposed by Donoghue (26), (27). 

Three variables in our dataset had homogeneous groups 

within their levels, and they were consolidated to form 

distinct groups. The levels in the lang.type variable was 
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reduced to two levels based on the ANOVA and post-hoc 

tests conducted to (2GL) (4GL), and (3GL) (ApG) since 

there existed no significant difference between the mean of 

these groups. 

The dev.type variable was reduced from three levels to 

two:” New development” and” Enhancement”. The one-way 

ANOVA test done on the ind.sector variable showed a 

statistically significant difference be-tween 14 industry 

sectors. The other 7 were re-grouped into the identified 

primary groups. This helped us balance the number of levels 

and get significant ones consolidated appropriately. 

VII. METHODOLOGY 

The steps we adopted to create the samples, the modeling 

and verification methodology is provided in Figure 2. In the 

first step, we developed and tuned these model hyper 

parameters for optimum performance individually, using the 

grid search method and the best performing one selected for 

the lowest MMRE. 

As the next step, based on the best hyper parameters, we 

created stack ensembles of these four models, from a grid of 

all the 12 possible combinations of models. For each 

imputation method, we obtained 12models, and the best 

group was selected based on the lowest MMRE. 

 
Figure 2: The Imputation and Validation Steps 

We created four samples from the ISBSG dataset. One 

dataset that we called original had the rows for all NA 

values removed. For the other three samples replicated from 

the root dataset, we imputed theproj.elap.tm variable using 

the PMM (17) method since this is a continuous variable. 

For the two categorical variables: team.size.gp and 

lang.type, we employed three different methods 

Classification and Regression Trees (CART), Polytomous 

Regression (Polyreg) and Random Forest (RF) thus creating 

4 total samples (28). The descriptive statistics of each of 

these samples is provided in Table 1. 

7.1  Modeling and Testing 

We tested the performance of the imputed dataset using 

an ensemble model to rule out bias from a single algorithm 

conflicting with the imputation method used. Additionally, 

the literature has established that ensembles of different 

models give better prediction accuracy against individual 

models (29). The4 different models employing Generalized 

Linear Model (30), Gradient Boosting Machines (GBM) 

(31), Random Forests (RF), (32) and Artificial Neural 

Network (ANN), (33) were combined to form the ensemble. 

We used the train and test sets to build and test our models 

by splitting the dataset using the 80:20 ratio. We made the 

model using the training set reserving the test set to validate 

the model accuracy within dependent data. 

7.2 Measuring Model Accuracy 

The accuracy of the models is evaluated and reported 

using the following nomenclature from the literature. For 

any single project, Magnitude of Relative Error (MRE): 

Measures the absolute estimation accuracy and is defined as 

(11): 

    

 
|                            |

            
 

(1) 

Mean Magnitude of Relative Error (MMRE): The Mean 

Magnitude of Relative Error (MMRE) is expressed as given: 

     

 
 

 
∑ 

 

   

|                            |

            
 

(2) 

Prediction (PRED): For n projects, the prediction at level 

p is defined as: 

 
        

 

 
 

(3) 

k is the number of projects where the MRE is less than or 

equals p. Desirable MMRE and PRED thresholds were first 

published by (34), and subsequently by other scholars (35). 

VIII. RESULTS 

Table 2 summarizes our findings and reports the accuracy 

metrics of each of the imputation methods and the number 

of data observations against which the training has been 

done. The no-impute sample had only 686 observations in 

the training set against 2800 in the case of others. The 

imputation methods help increase data availability by 4 

times. In the case of the no-impute sample, there is a very 

high probability of labels in the testing data set against 

which the model wouldn‟t be trained on, which can cause 

the machine learning algorithm to fail at random, affecting 

the stability of the model. 

Innoimpute and CART based imputation, the best 

accuracy is provided by an ensemble of all four models. In 

the case of Polyreg and RF imputation, an ensemble of just 

two algorithms provide the 

best accuracy.  
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We evidence that while imputation considerably increases 

the availability of data (in our case raising it to 64% of the 

initially available, imputation does not necessarily improve 

the overall performance of the dataset as commented by 

other scholars (28). The study by Song et al. (36) on 

imputation by K-NN algorithm concludes the negative 

performance of imputation when the overall percentage of 

missingness exceeds 40%. 

While there is a trade-off in terms of predictive accuracy 

for the additional availability of data, CART remains a 

viable option to increase data availability for data 

consuming algorithms in the case of Ma-chine Learning and 

Deep Learning. The representational capability of the Pmm-

CART imputation has increased by 2.8% as seen by the 

increased R2value. Our study also reiterates that CART 

performs best compared to other models we have evaluated. 

Table 2: Summary of Results 

ID Stack Model MSE RMSE MMRE MAE R2 NOBS 

Error Metrics 

1 1,2,3,4 No Impute 0.110 0.332 0.047 0.224 0.818 686 

2 1,2,3,4 Pmm-CART 0.162 0.402 0.058 0.212 0.841 2867 

3 2,3 Pmm-RF 0.200 0.447 0.066 0.236 0.805 2870 

4 2,3 Pmm-Polyreg 0.193 0.439 0.066 0.215 0.834 2868 

Prediction 

ID Stack Model PRED(5) PRED(10) PRED(15) PRED(20) PRED(25) PRED(30) 

1 1,2,3,4 No Impute 0.594 0.895 0.977 0.995 1.000 1.000 

2 1,2,3,4 Pmm-CART 0.547 0.847 0.948 0.973 0.987 0.994 

3 2,3 Pmm-RF 0.501 0.801 0.919 0.968 0.985 0.991 

4 2,3 Pmm-Polyreg 0.499 0.800 0.919 0.971 0.989 0.995 

CART=Classification and Regression Trees, 

Polyreg=Polytomous Regression, RF=Random Forests, 

Stack:1=Gradient Boosting Machine, 2=Generalized Linear 

Model, 3=Random Forests,4=Artificial Neural Networks. 

IX. CONCLUSION 

The results of our experiments on the ISBSG dataset to 

improve data availability is promising towards optimum 

utilization of data but this comes at the cost of the predictive 

accuracy of the overall model. Among the models that we 

compared: CART, Polyreg and Random Forest, CART 

shows the best performance that is near to the non-imputed 

dataset. We recommend the use of CART in instances where 

data retention is the priority. 

There are opportunities for further experiments in 

imputation using other algorithms, chained equations or 

different iterations to improve accuracy. As the next step, 

we propose research towards identifying new techniques 

and experiments with other datasets to increase data 

availability in the software estimation domain. 
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