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Abstract: This paper presents a deep learning approach to 

emotion recognition as applied to virtual reality and music 

predictive analytics. Firstly, it investigates the deep parameter 

tuning of the multi-hidden layer neural networks, which are also 

commonly referred to simply as deep networks that are used to 

conduct emotion detection in virtual reality (VR)-

electroencephalography (EEG) predictive analytics. Deep 

networks have been studied extensively over the last decade and 

have shown to be among the most accurate methods for 

predictive analytics in image recognition and speech processing 

domains. However, most predictive analytics deep network 

studies focus on the shallow parameter tuning when attempting 

to boost prediction accuracies, which includes deep network 

tuning parameters such as number of hidden layers, number of 

hidden nodes per hidden layer and the types of activation 

functions used in the hidden nodes. Much less effort has been put 

into investigating the tuning of deep parameters such as input 

dropout ratios, L1 (lasso) regularization and L2 (ridge 

regularization) parameters of the deep networks. As such, the 

goal of this study is to perform a parameter tuning investigation 

on these deep parameters of the deep networks for predicting 

emotions in a virtual reality environment using 

electroencephalography (EEG) signal obtained when the user is 

exposed to immersive content. The results show that deep tuning 

of deep networks in VR-EEG can improve the accuracies of 

predicting emotions. The best emotion prediction accuracy was 

improved to over 96% after deep tuning was conducted on the 

deep network parameters of input dropout ratio, L1 and L2 

regularization parameters. Secondly, it investigates a similar 

possible approach when applied to 4-quadrant music emotion 

recognition. Recent studies have been characterizing music based 

on music genres and various classification techniques have been 

used to achieve the best accuracy rate. Several researches on 

deep learning have shown outstanding results in relation to 

dimensional music emotion recognition. Yet, there is no concrete 

and concise description to express music. In regards to this 

research gap, a research using more detailed metadata on two-

dimensional emotion annotations based on the Russell’s model is 

conducted. Rather than applying music genres or lyrics into 

machine learning algorithm to MER, higher representation of 

music information, acoustic features are used. In conjunction 

with the four classes classification problem, an available dataset 

named AMG1608 is feed into a training model built from deep 

neural network. The dataset is first preprocessed to get full access 

of variables before any machine learning is done. The 

classification rate is then collected by running the scripts in R 

environment. The preliminary result showed a classification rate 

of 46.0%. 
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Experiments on architecture and hyper-parameter tuning as 

well as instance reduction were designed and conducted. The 

tuned parameters that increased the accuracy for deep learners 

were hidden layer architecture, number of epochs, instance 

reduction, input dropout ratio and  ℓ1 and ℓ2 regularization. The 

final best prediction accuracy obtained was 61.7%, giving an 

overall improvement of more than 15% for music emotion 

recognition which are based purely on the music’s acoustical 

features. 

 

Index Terms: neuroinformatics, virtual reality, deep learning, 

electroencephalography, emotion classification, music emotion 

recognition, acoustic features. 

I. INTRODUCTION 

The ability to predict emotions [1] accurately from using 

only commercially-available wearable 

electroencephalography (EEG) devices [2] has important 

ramifications particularly in virtual reality applications. For 

example, being able to detect a computer game player’s 

emotions as the player plays the game in virtual reality will 

enable unique custom-created immersive content that is 

procedurally generated in real-time based on the player’s 

response to how he or she is currently being stimulated 

emotionally by the game; being able to detect the level of 

pleasure or frustration of a physically impaired patient 

undergoing physical therapy via virtual rehabilitation and 

adjusting the content of the virtual therapy in real-time 

based on the detection of the patient’s current emotions 

while undergoing the virtual therapy; or being able to detect 

the arousal or boredom of learners in a virtual learning 

environment as he or she is being exposed to while being 

exposed to learning materials immersively and being able to 

tune, modify and optimize the presentation of subsequent 

learning content to the learner in real-time based on this 

learner’s emotional condition while absorbing the learning 

material. 

Our previous attempt at predicting emotions in a virtual 

reality environment which exposed the user to a high-

adrenaline stimulus in the form of a roller-coaster 

experience as captured in a YouTube 360 video investigated 

a number of traditional classification algorithms including 

support vector machines (SVMs), k-Nearest Neighbor 

(kNN) classifiers, random forests (RFs), conventional single 

hidden layer artificial neural networks (ANNs), and decision 

trees (DTs), where the best prediction accuracy obtained 

was between 65-89%. In this current study, we investigate 

the use of deep learning classifiers and more importantly, to 

perform deep tuning of the 

deep networks parameters for 
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input dropout ratio, L1 (lasso) regularization and L2 (ridge)  

regularization [3], in an attempt to further boost the 

prediction accuracy of our VR-EEG predictive analytics 

problem in emotion detection using commercially-available 

wearable headsets for acquiring the brainwave signals. 

Moreover, the music industry has shifted to the digital 

distribution era where online stores and streaming services 

are in the lead. Few of the examples are Spotify, iTunes and 

Grooveshark. The shift had caused automatic music 

recommendation to become a relevant problem whereby it is 

essential to have an accurate matching between users’ taste 

and their choice. These online stores are then able to gain 

more customer by aiming right targets to the right audience. 

With the enormous growing of data, there are many 

effective searching methods in indexing, classification or 

clustering.  

Artificial Intelligence (AI) is fast becoming one of the key 

disruptive technologies across multitudes of industry. 

Industry heavyweights such as Google, Spotify, Microsoft, 

Uber, Facebook and Apple are all prime adopters of this 

new wave of technology with many investing significantly 

in the field of AI [4]. As an example of the music industry’s 

customer base and data processing requirements, Spotify 

possesses about 24 million users, where users are able to 

access into a music database with more than 20 million 

songs, either with free access with advertisements or paid 

access without advertisements.  

As Spotify adds approximately 20,000 songs per day, the 

business needs to handle this amount of processing of audio 

files has given rise to the potential use of AI in its daily 

operations. The company is acquiring a number of AI-

startup companies to improve song recommendations and 

targeted advertisements. Automatic systems which can 

predict human emotions from speech, as well as music,are 

essential in developing new AI-driven applications in the 

entertainment industry.  

Another example of an entertainment company that 

combines machine learning with its business needs is 

Netflix. The goal of its application of AI technology is to 

make recommendations based on its users’ favorite shows 

and movies. It initially makes suggestions based on actors, 

genre and filming location of the movies, yet, issues such as 

incorrect recommendations have occurred and this has lead 

the company to investigate deep learning approaches in 

improving its recommendations [5]. The approach is to train 

its software by feeding large amounts of information to a 

learning machine called artificial neural networks, which 

mimic the human brain in terms of pattern identification to 

produce better recommendations. Emotion recognition is not 

only subjective but is also hard to analyze and quantify. 

Thus, generating a flexible model for music emotion 

recommendation is a prime research question.  

In this research, a deep neural network (DNN) is used to 

train the data. The objective is to build a music emotion 

recommender system using deep architectures of artificial 

neural networks to make song recommendations to humans. 

Human emotions can be of different types, such as 

happiness, fear, anger and boredom, it is thus a challenging 

task to classify and make a prediction based on the current 

emotionsof the user while listening to music. The outcomes 

of the research would provide a better understanding on the 

source of inspired emotions for a given music.  

Since this second part of the study deals with a very large 

amount of data, a deep architecture is employed to train and 

produce better prediction models. Deep networks typically 

utilize a number of hidden layers and due to the multiple 

layers, are better at learning certain hierarchical features 

beginning from lower-level features and moving to higher-

level features in its learning process. Deep learning is an 

emerging area in both machine learning communities and 

data mining. The models can be trained either in a 

supervised or unsupervised mode. It is has been shown to 

have been applied successfully to computer vision, audio, 

speech as well as language processing domains. The deep 

learning approach is regularly reported to have 

outperformed many other state-of- the-art machine learning 

approaches. 

The paper is divided into five sections. We introduce the 

study in the first section, followed by literature to explain 

the background of this study in the second section, then the 

methods adopted in this study are presented in the third 

section, followed by the presentation of the results and 

discussion in the fourth section, and finally the conclusion is 

given in the final section. 

II. RELATED MATERIAL 

A. Affective Virtual Reality 

The use of electroencephalography as a non-invasive 

method of detecting emotion has gained significant traction 

over the last five years. Significant advancements have been 

made with diverse successful implementations ranging from 

diagnostic uses such as in detection of autism in young 

children [6], safety mechanisms in AI-assisted driving 

solutions [7], to personalized content in affective 

entertainment [8]. One crucial aspect necessary for the 

general adoption of EEG-based emotion detection among 

consumers is the availability of affordable, commercial-off-

the-shelf EEG headsets commonly referred to as wearable 

EEG devices. Such devices allow for end-users such as 

consumers and hobbyists to acquire a number of widely 

available wearable EEG devices at sub-$200 prices. The 

widespread availability of such affordable wearable EEG 

devices has allowed for the field of emotion-based 

applications based on EEG to generate a great amount of 

interest from lay users and subsequently provides a very 

strong motivation for further research into EEG-based 

emotion detection using such consumer-grade devices. 

Nonetheless, with the advent of such consumer-grade 

EEG devices comes another challenge, which is to be able to 

accurately perform emotion detection using much fewer 

sensors coupled with the fact that such sensors have lower 

signal quality compared to their medical-grade, laboratory-

based EEG counterparts that cost anywhere from ten to a 

thousand times more than consumer grade EEG devices. 

Specifically, the challenge here is that the number of 

electrodes available to capture EEG signals from the user’s 

scalp using consumer-grade devices is typically in the 

region of only 1-4 sensors as 

compared to medical grade 
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devices that typically have 32-128 sensors. Moreover, the 

signal acquired from using consumer-grade EEG devices 

tends to contain more noise than medical-grade EEG 

devices. As such, the ability to detect emotions is a much 

more challenging endeavor when using consumer-grade 

EEG devices compared to laboratory settings using medical-

grade EEG devices. 

Another aspect of emotion detection that has not received 

as much attention is in virtual reality (VR) environments. 

The value of the VR industry worldwide is projected to 

exceed USD200 billion by 2020 and one of the main areas 

of revenue generation in this industry comes from 

immersive entertainment such as VR computer gaming. The 

ability to create personalized VR content based on the 

user/gamer’s emotion in real-time will allow for the step in 

the evolution of affective gaming. As such, being able to 

accurately detect emotions while immersed in VR 

environments using only affordable wearable EEG devices 

paired with similarly affordable, high-resolution VR 

headsets holds great promise in moving true affective 

entertainment into the consumer/gamer’s home. 

Consequently, this forms the major motivation for 

conducting this study which attempts to perform deep tuning 

in order to improve the emotion detection accuracy based on 

the brainwave readings obtained from affordable wearable 

EEG devices while the user is immersed in virtual reality. 

B. Affective Music Applications 

Recently, deep neural architectures have been investigated 

in implementing entertainment recommender systems. As 

more researchers are working on this issue, the success in 

the field has encouraged researchers to propose more on the 

learning of latent factors from different sources. Multi-view 

deep models can be generated to learn a rich feature set for 

users from web browsing history and search queries. 

Emotions are a psychological and physiological state, 

related to a variety of thoughts, feelings, and behaviors. 

Research shows that there is a delicate relationship between 

music and emotion. Organized sound or music, can resonate 

with our nerve tissue. Emotion is always related to mood, 

temperament and personality. They are experienced from an 

individual point of view. It can be said that emotions are 

short-term, moods have longer term whereas personalities 

are in very long-term. Emotion recognition from musical 

stimuli represents a highly challenging task since the 

extraction and identification of effective musical features for 

emotion classification remains an open question. A 

community-based framework for evaluating MIR systems, 

Music Information Research Evaluation eXchange 

(MIREX), included audio music mood classification as a 

task in 2007 for the first time. 

 Yet, emotion has not been incorporated within the music 

metadata for music information retrieval (MIR) purpose. 

The reason is due to some unavoidable key problems found 

in music recommenders, which are cold starts, popularity 

bias and human effort. Cold starts, known as sparsity 

problems, mean that there is a lack of ratings, which results 

in poor prediction results. Popularity bias causes unpopular 

and new songs to get less recommendation. Lastly, a good 

recommender system should involve minimum human 

effort, since we are seeking more accurate results. 

Machine learning excels at deciphering patterns from 

complex data. The results showed that the most significant 

features are danceability, energy, loudness, tempo and time 

signature. Moreover, there are no precise definitions for 

each genre. Musical genres are usually determined based on 

the name of the artist or the name of the album rather than 

on the individual musical recordings. This typically results 

in MP3 metadata tags that tend to have less than reliable 

annotations. Moreover, new musical genres are introduced 

from time to time, and as such the knowledge base of 

musical genres would naturally evolve and grow over time.  

As for dataset preparation, the larger the input layer to 

neural network, the better the system performs, and the use 

of limited song features indicates a more robust system. 

Furthermore, input data should be reduced to reduce noise. 

Therefore, before performing any training, it is essential to 

understand and design the inputs so that the dataset is 

suitable for the deep architecture usage. Findings and results 

from prior studies have shown that the selection for dataset 

and feature are important in music classification, which will 

also have a direct impact on music recommendation.  

When it comes to the context of music, when related to 

automated systems, very often it is associated with music 

genres. Yet, choosing songs is arguably not based on genres 

but rather as a result of emotions. A lot of work is being 

done in music emotion recognition. However, there is no 

standard benchmark for music recommendation, especially 

when it deals with human emotion sincehuman emotion 

varies from time-to-time. Deep learning methods mimics the 

architecture of human brains, which is therefore worthwhile 

to investigate its use for the analysis and classification of 

music data. 

One of the first studies to apply deep learning in 

unsupervised music content analysis was reported by Lee et 

al. [9]. Using two hidden layers within a convolutional deep 

belief network, the deep learning architecture was trained 

using unsupervised learning to produce meaningful musical 

features. Subsequently, a conventional neural network was 

used to classify songs into four distinct types of musical 

genres which were techno, rock, classical, techno and pop. 

Using a Hidden Markov Model (HMM) with sequences of 

features, Shao et al. [10] reported on musical clustering of 

pop, country, jazz and classical music in an unsupervised 

machine learning approach to music content analysis. 

Hamel & Eck [11]were considered the earliest to apply 

deep learning in supervised music content classification. 

The accuracy for genre classification was 84.3%. Li et al. 

[12] used Convolutional Neural Networks(CNNs) for MIR 

and was also one of the pioneer studies that adopted a deep 

learning approach in analysing musical content. Dahl et al. 

[13]showed that using optimal dropout ratios and Rectified 

Linear Units (ReLUs) can result in significant classification 

improvement with only minimal hyper-parameter tuning in a 

Large Vocabulary Continuous Speech Recognition 

(LVCSR) problem.  
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Sigtia & Dixon [14] improved the architecture of the deep 

learner by tuning more hyper-parameters in order to increase 

the music genre classification rate. In summary, neural 

networks typically need large amounts of training data, yet 

the understanding on the importance of feature reduction 

and hyper-parameter tuninglargely remainsunexplored 

particularly in the application of deep learning approaches in 

MIR. The number of features in the MIR datasetsas well as 

the deep learner’s hyper-parameters is large and has very 

significant impact on the classification outcomes. It is 

therefore beneficial to find out the most optimal input 

features through feature reduction as well as tuning of deep 

learning hyper-parameter settings. 

III. METHODS 

A. Affective Virtual Reality 

As previously highlighted, the underlying goal of this 

series of studies is to enable the deployment of consumer-

grade EEG headsets for classifying emotions for VR users. 

To this end, we have chosen to use the Muse headset from 

Interaxon [15] as the EEG data acquisition device as shown 

in Fig. 1. The se-up is trivial since it is a dry-electrode 

device and just requires the user to put the headset on like 

putting on a headband. It also comes at a very affordable 

cost of below $200 per set. Another advantage of the Muse 

headset is that the user’s head will remain fully mobile. This 

is due to the fact that this particular headband uses 

Bluetooth technology for connection and thus enables 

wireless data transmission, an aspect which is crucial for VR 

applications. Using the international 10-20 coordinates 

standard [16] for referencing the electrode placements on 

the skull, the Muse headband has four channels at TP9, AF7, 

AF8 and TP10 as shown in Fig. 2. A reference channel with 

3 sensors are located at Fpz. 

 

Fig. 1 The Muse wearable EEG headset from Interaxon 

(source: Interaxon) 

 

Fig. 2 Muse electrode locations according to the 10-20 

international standard notation 

For the immersive VR stimuli, we chose a roller-coaster 

video from YouTube 360 [17] and displayed using Google’s 

Cardboard VR technology [18]. The reason we chose a 

roller coaster video is to elicit a strong excitement reaction 

to the VR stimuli, in which the video has two specific 

exciting sections, one which is a drop from a high peak and 

another comprising a series of high speed 360-degrees turns. 

Screengrabs of these two specific stimuli segments are as 

shown in Fig. 3 and Fig. 4. 

 

Fig. 3 Screengrab of the stimulus PRIOR to the segment 

which elicits the excited response 

 

Fig. 4 Screengrab of the stimulus DURING one of the 

segments which elicits the excited response 

The group of participants in this study comprised 24 VR 

users (12 females, 12 males) who had normal or corrected-

to-normal vision with no history of psychiatric illnesses with 

the ages ranging between 20 to 28 years old. The VR users 

were asked to sit on a rotatable chair without any restriction 

to head movements while he or she was immersed within 

the VR stimuli environment. A photograph of a participant 

experiencing the VR session wearing the Muse headset is as 

shown in Fig. 5. 

 

Fig. 5 View of experimental 

setup for Muse EEG 
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headset and VR headset on a human participant 

B. Affective Music Applications 

AMG1608 [19] is a dataset with 1608 30-second music 

clips that were manually annotated by 665 human listeners. 

The dataset is accessible online to the public. The songs 

contain Western music from AMG with 34 distinct mood 

categories. Songs are said to be distributed evenly in the 

emotion space. The valence arousal values are created from 

tag2VA algorithm. The quadrant column plays a significant 

role in this study’s 4-class classification problem. Based on 

Russell’semotion model, each song will be annotated by the 

subject based on valence and arousal values. The song will 

be plotted into the emotion plane to indicate the emotional 

quadrant of that particular song. However, in this dataset, 

each song has at least 15 annotated emotions, and each 

instance cannot be removed and need to be treated as one 

unique transaction. The reason is that perceived emotion is 

very subjective, thus, all samples should be taken account.  

RStudiois used to separate the dataset into valence and 

arousal space. From the original dataset downloaded online, 

it has a structure of 1608 x 665, where 1608 refers to the 

number of songs and 665 depicts the number of subjects 

who annotated the AMG1608 dataset. All NA values are 

then removed. One issue that was needed to be considered 

during processing is that each song will have a different 

number of annotations, where the minimum number of 

annotation for a song was 15, and the maximum was 32. 

After processing all the NA values, the total number of 

instances, or annotated emotions for 1608 songs has a total 

of 26,914 instances. Since the original file of “song_label” 

are packaged into two layers, a validation on both valence 

and arousal values for each song is essential. This means 

that if there is an annotation found in one column, then the 

arousal layer should have the annotation as well, otherwise 

it is considered as an erroneous entry. 

Lastly, a new column is added into the valence-arousal 

file, where the new column represents the quadrant of that 

particular annotation. For the MIR quadrants, the column 

consists of four types of classes, namely Q1 (happy), Q2 

(upset), Q3 (bored) and Q4 (calm). The classes are based on 

valence and arousal values. 

IV. EXPERIMENTAL RESULTS & DISCUSSION 

A. Affective Virtual Reality 

In order to conduct deep tuning of the deep learning 

neural networks, three parameters were investigated, namely 

the parameter settings for input dropout ratio, L1 (lasso) 

regularization and L2 (ridge) regularization [20,21]. The 

input dropout ratio determines the probability that an input 

feature will be suppressed during training in order to 

improve generalization of the deep network. L1 and L2 

regularization is achieved by adding penalty values to the 

existing loss function via Equation (1) as follows: 

 

𝐿′ 𝑊,𝐵 𝑗 = 𝐿 𝑊,𝐵 𝑗 + 𝜆1𝑅1 𝑊,𝐵 𝑗 + 𝜆2𝑅2 𝑊,𝐵 𝑗  
 

where L represents the loss function, W and B the weights 

and biases of the network; j the training instance; L1 

regularization is achieved via R1(W,B|j) which represents of 

the sum of all absolute values of the weights and biases in 

the network; L2 regularization is achieved via R2(W;B|j) 

represents the sum of squares of all the weights and biases in 

the network; and the constants parameters λ1 and λ2 are 

usually set at a very small value such as 10-5. In essence, L1 

reduces the complexity of the network in order to avoid 

overfitting and improve overall generalization whereas L2 

regularization improves the overall learned model by 

reducing the estimate variance of the deep network 

classifier. 

Preliminary testing using shallow tuning of the deep 

networks’ parameters yielded neural network architectures 

that performed best when utilizing three hidden layers with 

200 hidden nodes within each layer and where the initial 

weights were set using the uniform adaptive method [22] 

and using cross-entropy as the error function [23].  The 

hidden layer nodes utilized a rectified linear unit (ReLU) 

transfer function [24] with 50% dropout and adaptive 

learning rate while the output layer used a softmax transfer 

function. The deep neural learning architectures were tested 

using 10-fold cross-validation and run for 10 epochs in each 

experiment. Short-Time Fourier Transform [25] was used to 

decompose the raw signal from each electrode into 5 bands 

(delta, theta, alpha, beta, gamma) [26]. Each participant 

contributed one set of non-excited state data and two sets of 

excited state data giving a total of 72 observations (3 

observations x 24 participants). For each class, 16 

timepoints were obtained per class giving a total of 80 

features (5 bands x 16 timepoints). As can be seen, this 

dataset is extremely challenging in that there are much less 

observations than there are input features. Thus, this 

challenging dataset presents a good test case for discerning 

the actual capabilities of the deep networks through deep 

tuning. The results obtained are tabulated below in Table 1. 

The first test consisted of changing the input dropout ratio 

from 0 to 0.9 in increments of 0.1. As can be seen from 

Table 1, the best prediction result was obtained from an 

input dropout ratio of 0.2 at 91.15% whereas the worst was 

obtained with a setting of 0.9 at 77.30%. From Fig. 6(a), it 

appears that the trend points towards a smaller value being 

more suitable for the input dropout ratio as compared to 

larger values that tended to perform increasingly worse. The 

second and third test consisted of changing the 

regularization factor from 0 to 0.0 as shown in Table 1 

column 3. Using the best input dropout ratio of 0.2 found 

from the first test, in the second test for L1 (lasso) 

regularization, the best prediction result obtained was using 

a setting of 0.01 at 94.92% whereas the worst was obtained 

with a setting of 0.0001 at 83.78%. Using the best input 

dropout ratio of 0.2 found from the first test and the best L1 

regularization factor of 0.01 found from the second test, in 

the third test for L2 (ridge) regularization, the best 

prediction result obtained was using a setting of 0.001 at 

95.50% whereas the worst was also obtained with a setting 

of 0.0001 at 82.80%. There did not appear to be any trends 

in terms of the best settings for L1 and L2 regularization. 
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Table. 1 Results of Prediction Accuracy after Deep Tuning of the Deep Networks for Emotion Detection

Parameter 

Setting for 

Input Dropout 

Ratio 

Prediction 

Accuracy for Input 

Dropout Ratio 

Tuning 

Parameter Setting 

for L1 & L2 

Regularization 

Prediction Accuracy 

for 

L1 Regularization 

Tuning 

Prediction Accuracy 

for 

L2 Regularization 

Tuning 

0 88.21 0 91.15 94.92 

0.1 84.84 0.00001 89.53 89.78 

0.2 91.15 0.00005 87.32 87.42 

0.3 89.57 0.0001 83.78 82.80 

0.4 86.70 0.0005 87.83 86.99 

0.5 86.05 0.001 87.14 95.50 

0.6 84.45 0.005 87.87 87.75 

0.7 82.96 0.01 94.92 87.98 

0.8 90.27 0.05 90.92 83.28 

0.9 77.30 0.1 87.02 90.10 

 

 
(a) (b) (c) 

Fig. 6 Plots of prediction accuracy against deep parameter tuning settings. (a) Input dropout ratio tuning results         

(b) L1 regularization tuning results (c) L2 regularization tuning result.

B. Affective Music Applications 

1) Preliminary Experiments 

The results from the trained model used standard 

parameters with 10 epochs, 10-fold cross-validation, 500-50 

hidden layers, Rectifier Linear Units (ReLU) as the 

activation function and 0.5 as dropout ratio. As a start, 

results of running 10 epochs and 50 epochs are compared as 

shown In Table 2. From the results, more epochs will result 

in higher accuracy, but the difference is not significant. 

Based on the preliminary result, an accuracy of 46.0% and 

47.2% were obtained 

Table. 2 Preliminary Results 

Number of epochs Accuracy 

10 0.460 

50 0.472 

2) Experiment 1: The architecture of hidden layers 

A deep learning model has a deep architecture due to the 

presence of multiple hidden layers. The complex network is 

important as it connects neuronal layers with the inputs and 

the outputs. When dealing with dense layers with 

complicated datasets, additional layers can be beneficial. 

Thus, questions on the most ideal number of hidden layers 

and hidden nodes arise. The accuracy is obtained through  

the standard experiment setting as mentioned previously, 

except that there is change on number of hidden layers. The 

experiments all have 500 nodes. For example, for number of 

hidden layers is two, the architecture of the deep learner is 

500-500-500. The accuracies are obtained through running 

the model for 10 iterations, and the mean for the average 

accuracy. 

a) Experiment 1a: Number of hidden layers 

The first question that arises is how many hidden layers 

will result in higher accuracy? To answer the question, a few 

architectures of hidden layers were tested. Networks with 2, 

3, 4, and 5 hidden layers were tested. Each hidden layer was 

set to the 500 hidden nodes each. From the experiment, the 

highest accuracy of 49.3% was obtained when 3 hidden 

layers were used. 
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Table. 3 Results of Accuracy based on number of hidden 

layers 

 

b) Experiment 1b: Number of hidden nodes 

The overall deep learning architecture cannot be complete 

without defining the number of neurons in the hidden layers. 

Referring to the experiment on the number of hidden layers 

mentioned previously, the best setting was 3 hidden layers 

and it is used here in this experiment. 

Four experiments with the above network architecture but 

with different settings for the number of hidden nodes are 

performed, in order to answer the inquiry on number of 

hidden nodes. The results showed that the 1000-1000-1000 

architecture provided the highest accuracy of 49.3%. 

However, compared to the 500-500-500 hidden nodes 

design, the model took a longer time to process due to the 

larger network slide. 

Table. 4 Results of Accuracy based on number of hidden 

nodes 

Architecture of hidden nodes Accuracy 

50-50-50 0.475 

100-100-100 0.489 

500-500-500 0.490 

1000-1000-1000 0.491 

 

Fig. 7 Graph showing accuracies based on results on 

various hidden nodes number 

c) Experiment 1c: Shrinking of number of nodes 

Observing that three layers with 1000-1000-100 hidden 

layer setup performed the best, this experiment is carried out 

to check on the effect of shrinking the number of hidden 

nodes. The research question emerged where what is the 

most optimum number of hidden nodes to produce the 

highest accuracy. Table 5 shows the results of the 

experiments where the 500-100-50 architecture resulted in 

the highest accuracy. 

Table. 5 Results based on various number of hidden 

nodes 

Architecture of hidden nodes Accuracy 

2000-1000-500 0.475 

1000-500-100 0.489 

500-100-50 0.493 

3) Experiment 2: Activation Function 

Neurons are computational unit which take input and output, 

through activation function. This next experiment tested 

three of the commonly used activiation function, namely 

“Tanh”, “Rectifier” and “Maxout” functions.  

The assumption is that the activation function, Rectifier 

Linear Units (ReLU) will result in the highest accuracy, and 

this assumption was made since the preliminary experiment. 

Table. 6 Accuracies based on different activation 

functions 

Activation Functions Accuracy 

Rectifier 0.493 

Tanh 0.477 

Maxout 0.456 

 

The results can be explained that ReLU caused the deep 

learning model fasten the forward and backward passes and 

meanwhile being able to maintain the non-linear nature of 

activation function. The hypothesis made is accepted based 

on the results showed above. 

4) Experiment 3: Number of epochs 

One of the arguments in R’s h2o deep learning library is 

the number of epochs, which is the number of times the 

dataset should be passed through, or iterated. With the 

increase number of epochs, it is assumed that the network 

will remember the pairs of pattern and categories of the 

instances. Six experiments on different number of epochs 

along with the standard setting mentioned previously are 

performed. The design of the hidden layer is based on the 

result as per deduced from the earlier experiment, which is 

the 500-100-50 hidden layers. The results are displayed in 

Table 6.  

Table. 7 Accuracies with various number of epochs 

Number of Epochs Accuracy 

10 0.460 

20 0.493 

30 0.490 

50 0.472 

80 0.505 

100 0.500 

5) Experiment 4: Instances Reduction 

The results from Experiments 1 to 3 were still not very 

convincing as the deep learner was only able to achieve the 

best accuracy of very slightly over 50.0%. The original 

dataset has originally 1608 songs with 40 dimensions which 

represent four acoustic features of music. After pre-

processing, the new dataset has increased both in the 

number of columns and rows, which now has 26914 

instances with 288 features. Instances reduction is 

performed in this experiment with respect to Russell’s Four 

Quadrant Circumplex Model. Revisiting back Russell’s 

model, no emotion annotations are ever located in the 

central (middle) region of the 

overall 2-axes graph:the 

emotion annotations are all 

0.45
0.5

0.55 ACCURACY

Number of hidden layers Accuracy 

2 0.460 

3 0.490 

4 0.436 

5 0.420 
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essentially distributed on the outermost edges of each of the 

quadrants. Thus, in this instance reduction experiment, the 

modified dataset will attempt to mimic the actual regions of 

annotated emotions as per the graph of Russell’s model. A 

threshold, x2, will be set whereby the value will come in a 

form of square. In other words, instances that fall within this 

threshold will be removed from the dataset. Three values are 

used in this experiment, which are 0.2, 0.5 and 0.8. Using 

the pre-processed dataset, the instances in the dataset is 

reduced based on the threshold values. The results are 

shown in Table 8 below. The trained deep learning model 

showed the highest accuracy at 57.5% with 0.5 set as the 

instance reduction threshold. This instance reduction 

approach produced a very significant improvement in the 

prediction accuracy of the deep learning model where the 

classification performance has increased by 7%. Hence, this 

shows that instance reduction to use only the outermost-

lying training records is important in music emotion 

recognition. 

6) Experiment 5: Hyper-Parameters Tuning  

In order to reduce the issue of overfitting, regularization 

techniques can be implemented in the deep learning model. 

Two parameters are considered in this context, namely the 

input dropout ratio, as well as the l1 and l2 regularization 

parameters. Previous best parameter values found so far for 

the deep learner is fixed and used in the experiments, which 

are a hidden layer architecture of 500-100-50, 80 epochs, 

ReLU as activation function and dataset with excluded 

instances located in the middle with x2 = 0.5. 

Table. 8 Results of experiments on instances reduction 

Threshold(x
2
) Hidden 

layer 

Number 

of epochs 

Accuracy 

0.2 500,50 

500,100,50 

10 

80 

0.461 

0.543 

0.5 500,50 

500,100,50 

10 

80 

0.456 

0.575 

0.8 500,50 

500,100,50 

10 

80 

0.452 

0.556 

a) Experiment 5a: Input Dropout Ratio 

In the case of input dropout ratio, nine different values are 

tested using grid search, where the values are {0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Table 9 below shows the 

accuracies for each setting. The initial value used in 

preliminary experiment is 0.5, and the results showed that 

input dropout ratio of 0.1 resulted in the highest accuracy, 

which is 60.6%. Compared to default setting of 0.5, the 

prediction accuracy of the deep learning model has 

increased by 3.1%. 

Table. 9 Table of results with various initial dropout 

ratio 

Dropout ratio Accuracy 

0.1 0.606 

0.2 0.601 

0.3 0.596 

0.4 0.589 

0.5 0.575 

0.6 0.572 

0.7 0.505 

0.8 0.457 

0.9 0.457 

b) Experiment 5b: ℓ1 and ℓ2 Regularization 

Another important hyper-parameter to be tuned in deep 

learner is regularization. Experiments on ℓ1 and ℓ2 

regularization parameters were carried out using the best 

settings found thus far. The values used for tuning are {2e-

5,3e-5,4e-5,5e-5} for both parameters, which give 16 unique 

combinations of these hyper-parameters. The results are 

shown in Table 10 above. The best setting with ℓ1  = 4e-5 

and ℓ2 = 3e-5 provided the best prediction accuracy of 

61.7%.  

Table. 10 Results of 16 combinations with different ℓ1 

and ℓ2 values 

ℓ1 ℓ2 Accuracy 

2e-5 

2e-5 0.601 

3e-5 0.609 

4e-5 0.607 

5e-5 0.607 

3e-5 

2e-5 0.598 

3e-5 0.609 

4e-5 0.602 

5e-5 0.610 

4e-5 

2e-5 0.617 

3e-5 0.617 

4e-5 0.607 

5e-5 0.609 

5e-5 

2e-5 0.595 

3e-5 0.608 

4e-5 0.604 

5e-5 0.610 

 

Fig. 9 Line graph of combinations of ℓ1 and ℓ2 and 

respective accuracy 

Table. 12 Parameters settings based on each 

experimented result 

Hidden 

Layers 

Number 

of 

Epochs 

Initial 

Dropout 

Ratio 

ℓ1 ℓ2 Accuracy 

500-

100-50 

80 0.1 4e-

5 

3e-

5 

0.617 

 

0.58

0.59

0.6

0.61

0.62

0.00E+00

2.00E-05

4.00E-05

6.00E-05

Combinations of ℓ1 and ℓ2 with 
respect to Accuracy

L1 L2 Accuracy
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V. CONCLUSION 

This study firstly investigated the deep tuning of deep 

learning neural networks used for the task of emotion 

prediction in a virtual reality environment setting. Three 

deep parameters were tested, namely input dropout ratio, L1 

regularization and L2 regularization. Compared to shallow 

tuning, the results have shown that deep tuning is able to 

increase the prediction accuracy to above 95% from 88%. 

Smaller values for input dropout ratio appeared to generate 

better prediction accuracies compared to larger setting. 

However for L1 and L2 regularization, there appears to be a 

sweet spot without any obvious trends in terms of finding 

good settings for generating superior prediction results. For 

future work, we intend to augment the current EEG-based 

prediction with inertial sensing data obtained from 

accelerometer sensors coupled with gyroscopic data of the 

user’s head positions while experiencing the VR stimuli. 

This study secondly investigated deep learning for music 

emotion recognition. Starting out with an average accuracy 

of 46.0% using the default deep learning settings of 10 

epochs, hidden layer of 500-50 architecture, dropout ratio of 

0.5 and activation function of Rectified Linear Unit 

(ReLU),subsequent experiments in tuning the various 

parameters of the deep learning architecture progressively 

improved the accuracy at each stage of hand-tuning. 

Optimizing the hidden layer architecture improved the 

accuracy slightly to 49.3%. The greatest improvement to 

57.5% was achieved through the introduction of a novel 

instance reduction parameter to enable the input feature 

space to be focused around the outermost edges of Russell’s 

Circumplex Model of Emotions. Futher tuning of the input 

dropout ratio regularlization terms further improved the best 

final prediction accuracy of 61.7%. For future work, instead 

of using Russell’s model, other emotion model could be 

used, for example those that include the utilization of 

dominance information. 
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